中文版 | English
Title

含络合/有机阳离子金属卤化物的合成及发光性质研究

Alternative Title
Synthesis and luminescence properties of metal halides with complex/organic cation
Author
Name pinyin
ZHANG Liming
School number
11849565
Degree
博士
Discipline
070301 无机化学
Subject category of dissertation
07 理学
Supervisor
权泽卫
Mentor unit
化学系
Publication Years
2022-11-03
Submission date
2022-12-30
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

近年来,零维有机-无机杂化金属卤化物因结构可调、光学性质优异等特性引起了科研工作者极大的研究兴趣。这类材料具有晶格软、量子限域效应强和电-声耦合强等特点,呈现出宽光谱发射、大斯托克斯位移、高发光量子产率等光学特征,在照明、显示以及闪烁体等领域展现出广阔的应用前景。最近的研究表明在高维金属卤化物体系中,有机阳离子在调控有机-无机杂化金属卤化物的光电和物理化学性质中起到关键作用。但在零维体系中,无机多面体仅与有限个数的阳离子产生较弱的相互作用(氢键、静电相互作用),阳离子对材料发光的影响较弱,且较软的有机阳离子骨架会带来更多的非辐射跃迁过程淬灭材料的发光,给研究金属卤化物材料的结构-发光性质之间的关系带来了难度。此外,因为阴阳离子键较弱的相互作用,有机阳离子对材料发光性能的改善有限。因此,本论文主要关注具有刚性结构的有机/络合阳离子对金属卤化物材料发光的影响以及对发光热稳定性、远程发光测温性能的改善。研究内容具体如下:

有机-无机杂化Sn基卤化物材料的多激子发射调控:以刚性有机化合物三乙烯二胺(DABCO)为基础,通过选择性的甲基化反应,合成了两种不同结构的有机阳离子([C8N2H18]2+[C7N2H16]2+),将它们与SnX2X=BrI)共结晶得到了两种具有不同发光性质的零维有机-无机杂化Sn基金属卤化物材料。这两种材料具有不同强度的氢键作用,在强氢键体系中,氢键会诱导产生电荷转移激子,继而引起发光的激发依赖现象,在弱氢键体系中,则保持自陷态激子发光。该工作证明了阴阳离子间的相互作用可以改变材料的发光,这就为进一步改善材料的发光性能提供了一定的理论支持。

高发光热稳定性的Mn基金属卤化物的构筑:利用18-冠醚-6Pb2+离子的尺寸匹配性以及18-冠醚-6自身的强螯合效应,构建了刚性络合阳离子[Pb(C12O6H24)X]+X = ClBr),并将其与MnX2X = ClBr)共结晶,得到了零维Mn基杂化金属卤化物材料[Pb(C12O6H24)X]2[Mn2X6]X = ClBr)。其中,[Pb(C12O6H24)Cl]2[Mn2Cl6]在蓝光(445 nm)激发下,呈现出宽光谱的黄光发射,发光量子产率接近100%。发光机理研究表明黄光发射来源于Mn2+d-d跃迁;图钉状络合阳离子[Pb(C12O6H24)Cl]+中的Pb2+存在空配位点,对双核四面体构型阴离子[Mn2Cl6]2-的形成和稳定起到了促进作用;络合阳离子[Pb(C12O6H24)Cl]+自身的结构刚性也增强了材料的结构刚性,减少了分子热振动引起的非辐射跃迁,提高了杂化Mn基金属卤化物材料的发光热稳定性。

高效远程发光测温的Zn/Cd基金属卤化物的构筑:在上一章节的工作基础上,利用刚性络合阳离子[Pb(C12O6H24)X]+X = ClBr)合成了一系列具有不同多面体发光中心的金属卤化物材料。其中多面体的构型包括:双核四面体构型、金字塔构型、八面体构型等;这些材料的发光呈现出宽光谱发射,光谱涵盖了青光(505 nm)到红光(720 nm)区域,具有丰富的结构和发光可调性;此外,基于ZnCd两种金属合成的[Pb(C12O6H24)Br]2[M2Br6]M = ZnCd)金属卤化物在较宽的温度范围(2T = 68/74 K)内发光寿命与温度成线性关系,具有潜在的远程发光测温应用,且线性测温范围远高于目前已报道的基于自陷态激子发光有机-无机杂化金属卤化物的测温范围(2T = 36 K)。研究发现,结构刚性的络合阳离子减缓了金属卤化物材料随温度升高而引起的声子辅助热辐射过程,拓宽了材料的线性变温区间,提高了远程发光测温性能。

Other Abstract

Recently, zero-dimensional organic-inorganic hybrid metal halides (0D HMHs) have attracted great interest owing to their exceptional structural tunability and intriguing emission properties. They typically exhibit broad emissions with large Stokes shift and high photoluminescence quantum yields due to the strong quantum confinement, soft lattice, and strong electron-phonon coupling. These features endow them with wide applications in liquid crystal displays backlighting, illumination, and scintillators. Progresses in recent years have unraveled the important role of the organic cation in determining the optoelectronic and physicochemical properties of high-dimensional HMHs. In 0D HMHs, metal halide polyhedra have weak interactions with limit organic cations. Therefore, their luminescent properties have seldomly been affected by organic cations. Besides, the soft skeletons of organic cations make it difficult to investage the relationships of HMHs’ structure and properties. On the other hand, the enhancement of luminescent properties for HMHs is limited by the weak interactions between organic cations and metal halide polyhedra. The research contents are summarized as follows:

Luminescence regulation of Sn-based HMHs: Two kinds of organic cations based on DABCO were co-crystallized with SnX2 (X=Br, I) to obtain 0D HMHs: (C8N2H18)2SnX6 and (C7N2H16)2SnX6 (X=Br, I). These two types of hybrid tin bromides share similar structural features with different hydrogen bonding interactions between [SnBr6]4- anions and organic cations. Detailed structural analyses and Hirshfeld surface calculations confirm that the enhanced hydrogen bonding interactions are essential to obtain the multiple emissions in (C7N2H16)2SnBr6.

Construction of Mn-based HMHs with high photoluminescence thermal stability: a rigid complex cation was constructed by 18-crown-6 with strong chelating effect and Pb2+, and then co-crystallized with MnX2 (X = Cl, Br) to obtain a 0D Mn-based HMHs [Pb(C12O6H24)X]2[Mn2X6] (X = Cl, Br). Among them, [Pb(C12O6H24)Cl]2[Mn2Cl6] exhibits a broad yellow emission under the excitation of blue light (445 nm), and its photoluminescence quantum yield is near-unity. It was found that the Pb2+ in the pushpin complex cation [Pb(C12O6H24)Cl]+ has an empty coordination site, which plays an important role in promoting the formation and stabilization of the binuclear tetrahedral anion [Mn2Cl6]2-. Meanwhile, the rigidity of the complex cation [Pb(C12O6H24)Cl]+ also greatly enhances the structural rigidity of [Pb(C12O6H24)Cl]2[Mn2Cl6], reduces the non-radiative transitions, and improves the photoluminescence thermal stability.

Construction of HMHs with efficient remote thermometry: Based on complex cations [Pb(C12O6H24)X]+ (X = Cl, Br), a series of HMHs with different metal halide polyhedra were synthesized. The metal halide polyhedra include dimeric tetrahedron, square pyramid, octahedron and so on. The photoluminescence of these HMHs can be tuned from cyan (505 nm) to red (720 nm). More importantly, two kinds of [Pb(C12O6H24)X]2[M2X6] (X = Cl, Br; M = Zn) based on group 12 metals (Zn and Cd) exhibit broad cyan emissions. The lifetimes of [Pb(C12O6H24)Br]2[M2Br6] (M = Zn, Cd) show linear relationships with temperature (93-256 K), which could be used for remote optical thermometry. Compared to other metal halide materials, it is found that the rigidity of complex cations reduces the phonon-assisted nonradiative process and broadens the linear temperature range of Sn-based, Sb-based HMHs.

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-11
References List

[1] ZHANG H, JI X, YAO H, et al. Review on Efficiency Improvement Effort of Perovskite Solar Cell [J]. Solar Energy, 2022, 233: 421-434.
[2] SUN Q, YIN W J. Thermodynamic Stability Trend of Cubic Perovskites [J]. Journal of the American Chemical Society, 2017, 139(42): 14905-14908.
[3] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises [J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190.
[4] CHEN Y, SUN Y, PENG J, et al. 2D Ruddlesden-Popper Perovskites for Optoelectronics [J]. Advanced Materials, 2018, 30(2): 1703487.
[5] MITZI D B. Templating and Structural Engineering in Organic-Inorganic Perovskites [J]. Journal of the Chemical Society, Dalton Transactions, 2001, 1(1): 1-12.
[6] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the Luminescence of Layered Halide Perovskites [J]. Chemical Reviews, 2019, 119(5): 3104-3139.
[7] WANG S, MITZI D B, FEILD C A, et al. Synthesis and Characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single <110> Perovskite Sheets [J]. Journal of the American Chemical Society, 2002, 117(19): 5297-5302.
[8] RAHAMAN M Z, GE S P, LIN C H, et al. One-Dimensional Molecular Metal Halide Materials: Structures, Properties, and Applications [J]. Small Structures, 2021, 2(4): 2000062.
[9] LI M, XIA Z. Recent Progress of Zero-Dimensional Luminescent Metal Halides [J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.
[10] ZHOU C, XU L J, LEE S, et al. Recent Advances in Luminescent Zero-Dimensional Organic Metal Halide Hybrids [J]. Advanced Optical Materials, 2021, 9(18): 2001766.
[11] ZHOU L, LIAO J F, KUANG D B. An Overview for Zero-Dimensional Broadband Emissive Metal-Halide Single Crystals [J]. Advanced Optical Materials, 2021, 9(17): 2100544.
[12] SMITH M D, KARUNADASA H I. White-Light Emission from Layered Halide Perovskites [J]. Accounts of Chemical Research, 2018, 51(3): 619-627.
[13] TAKAGI H, KUNUGITA H, EMA K. Influence of the Image Charge Effect on Excitonic Energy Structure in Organic-Inorganic Multiple Quantum Well Crystals [J]. Physical Review B, 2013, 87(12): 125421.
[14] SMITH M D, PEDESSEAU L, KEPENEKIAN M, et al. Decreasing the Electronic Confinement in Layered Perovskites through Intercalation [J]. Chemical Science, 2017, 8(3): 1960-1968.
[15] QIN Y Y, SHE P F, HUANG X M, et al. Luminescent Manganese(II) Complexes: Synthesis, Properties and Optoelectronic Applications [J]. Coordination Chemistry Reviews, 2020, 416: 213331.
[16] SU B, ZHOU G, HUANG J, et al. Mn2+-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application [J]. Laser & Photonics Reviews, 2021, 15(1): 2000334.
[17] TAO P, LIU S J, WONG W Y. Phosphorescent Manganese(II) Complexes and Their Emerging Applications [J]. Advanced Optical Materials, 2020, 8(20): 2000985.
[18] JIANG X, XIA S, ZHANG J, et al. Exploring Organic Metal Halides with Reversible Temperature-Responsive Dual-Emissive Photoluminescence [J]. ChemSusChem, 2019, 12(24): 5228-5232.
[19] ZHOU G, LIU Z, HUANG J, et al. Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn2+-Based Metal Halides: A Case Study of (C10H16N)2Zn1-xMnxBr4 Solid Solutions [J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956-5962.
[20] ZHOU G J, LIU Z Y, MOLOKEEV M S, et al. Manipulation of Cl/Br Transmutation in Zero-Dimensional Mn2+-Based Metal Halides toward Tunable Photoluminescence and Thermal Quenching Behaviors [J]. Journal of Materials Chemistry C, 2021, 9(6): 2047-2053.
[21] SPANOPOULOS I, HADAR I, KE W, et al. Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency [J]. Journal of the American Chemical Society, 2020, 142(19): 9028-9038.
[22] KARIM M M S, GANOSE A M, PIETERS L, et al. Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites [J]. Chemistry of Materials, 2019, 31(22): 9430-9444.
[23] MAUGHAN A E, GANOSE A M, ALMAKER M A, et al. Tolerance Factor and Cooperative Tilting Effects in Vacancy-Ordered Double Perovskite Halides [J]. Chemistry of Materials, 2018, 30(11): 3909-3919.
[24] MAUGHAN A E, GANOSE A M, SCANLON D O, et al. Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors [J]. Chemistry of Materials, 2019, 31(4): 1184-1195.
[25] NAZARENKO O, KOTYRBA M R, YAKUNIN S, et al. Guanidinium and Mixed Cesium-Guanidinium Tin(II) Bromides: Effects of Quantum Confinement and Out-of-Plane Octahedral Tilting [J]. Chemistry of Materials, 2019, 31(6): 2121-2129.
[26] WANG A, GUO Y, ZHOU Z, et al. Aqueous Acid-Based Synthesis of Lead-Free Tin halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency [J]. Chemical Science, 2019, 10(17): 4573-4579.
[27] SU B, SONG G, MOLOKEEV M S, et al. Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (C8H14N2)2SnBr6 [J]. Inorganic Chemistry, 2020, 59(14): 9962-9968.
[28] SUN M E, LI Y, DONG X Y, et al. Thermoinduced Structural-Transformation and Thermochromic Luminescence in Organic Manganese Chloride Crystals [J]. Chemical Science, 2019, 10(13): 3836-3839.
[29] JODLOWSKI A D, YEPEZ A, LUQUE R, et al. Benign-by-Design Solventless Mechanochemical Synthesis of Three-, Two-, and One-Dimensional Hybrid Perovskites [J]. Angewandte Chemie International Edition, 2016, 55(48): 14972-14977.
[30] ELLEUCH S, LUSSON A, PILLET S, et al. White Light Emission from a Zero-Dimensional Lead Chloride Hybrid Material [J]. ACS Photonics, 2020, 7(5): 1178-1187.
[31] PENG H, WANG X, TIAN Y, et al. Highly Efficient Cool-White Photoluminescence of (Gua)3Cu2I5 Single Crystals: Formation and Optical Properties [J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13443-13451.
[32] ZHOU C K, LEE S J, LIN H R, et al. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission [J]. ACS Materials Letters, 2020, 2(4): 376-380.
[33] XU L J, LEE S, LIN X, et al. Multicomponent Organic Metal Halide Hybrid with White Emissions [J]. Angewandte Chemie International Edition, 2020, 59: 14120-14123.
[34] LI M, ZHOU J, ZHOU G, et al. Hybrid Metal Halides with Multiple Photoluminescence Centers [J]. Angewandte Chemie International Edition, 2019, 58(51): 18670-18675.
[35] ZHOU C, TIAN Y, WANG M, et al. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation [J]. Angewandte Chemie International Edition, 2017, 56(31): 9018-9022.
[36] WORKU M, TIAN Y, ZHOU C, et al. Sunlike White-Light-Emitting Diodes Based on Zero-Dimensional Organic Metal Halide Hybrids [J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30051-30057.
[37] ZHOU C, WORKU M, NEU J, et al. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency [J]. Chemistry of Materials, 2018, 30(7): 2374-2378.
[38] XU L J, SUN C Z, XIAO H, et al. Green-Light-Emitting Diodes based on Tetrabromide Manganese(II) Complex through Solution Process [J]. Advanced Materials, 2017, 29(10): 1605739.
[39] MORAD V, CHERNIUKH I, POTTSCHACHER L, et al. Manganese(II) in Tetrahedral Halide Environment: Factors Governing Bright Green Luminescence [J]. Chemistry of Materials, 2019, 31(24): 10161-10169.
[40] MAO L, GUO P, WANG S, et al. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides [J]. Journal of the American Chemical Society, 2020, 142(31): 13582-13589.
[41] SONG G, LI M, YANG Y, et al. Lead-Free Tin(IV)-Based Organic-Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission [J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1808-1813.
[42] SUN C, JIANG K, HAN M-F, et al. A Zero-Dimensional Hybrid Lead Perovskite with Highly Efficient Blue-Violet Light Emission [J]. Journal of Materials Chemistry C, 2020, 8(34): 11890-11895.
[43] ZHOU C, LIN H, SHI H, et al. A Zero-Dimensional Organic Seesaw-Shaped Tin Bromide with Highly Efficient Strongly Stokes-Shifted Deep-Red Emission [J]. Angewandte Chemie International Edition, 2018, 57(4): 1021-1024.
[44] ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic Self-Trapped Emission in 0D Lead-Free (C4H14N2)2In2Br10 Single Crystal [J]. Angewandte Chemie International Edition, 2019, 58(43): 15435-15440.
[45] ZHOU L, LIAO J F, HUANG Z G, et al. A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection [J]. Angewandte Chemie International Edition, 2019, 58(16): 5277-5281.
[46] GAUTIER R, PARIS M, MASSUYEAU F. Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen [J]. Journal of the American Chemical Society, 2019, 141(32): 12619-12623.
[47] SONG K S, WILLIAMS R T. Self-Trapped Excitons [M]. 1 ed.: Springer-Verlag, 1993.
[48] WANG Z, ZHANG Z, TAO L, et al. Hybrid Chloroantimonates(III): Thermally Induced Triple-Mode Reversible Luminescent Switching and Laser-Printable Rewritable Luminescent Paper [J]. Angewandte Chemie International Edition, 2019, 58(29): 9974-9978.
[49] LI S, LUO J, LIU J, et al. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999-2007.
[50] LIU M M, WAN Q, WANG H M, et al. Suppression of Temperature Quenching in Perovskite Nanocrystals for Efficient and Thermally Stable Light-Emitting Diodes [J]. Nature Photonics, 2021, 15(5): 379-385.
[51] LUO J, WANG X, LI S, et al. Efficient and Stable Emission of Warm-White Light from Lead-Free Halide Double Perovskites [J]. Nature, 2018, 563(7732): 541-545.
[52] LI Z Y, LI Y, LIANG P, et al. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency [J]. Chemistry of Materials, 2019, 31(22): 9363-9371.
[53] ZHOU G J, DING J L, JIANG X X, et al. Coordination Units of Mn2+ Modulation toward Tunable Emission in Zero-Dimensional Bromides for White Light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10: 2095-2102.
[54] PENG H, ZOU B, GUO Y, et al. Evolution of the Structure and Properties of Mechanochemically Synthesized Pyrrolidine Incorporated Manganese Bromide Powders [J]. Journal of Materials Chemistry C, 2020, 8(19): 6488-6495.
[55] MEI Y, YU H, WEI Z, et al. Two Coordinated Geometries of Mn2+ Ions in One Single Molecule: Organic-Inorganic Hybrids Constructed with Tris(2-aminoethyl)amine and Manganese Halide and Fluorescent Properties [J]. Polyhedron, 2017, 127: 458-463.
[56] TANG X, ACKERMAN M M, GUYOT-SIONNEST P. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices [J]. ACS Nano, 2018, 12(7): 7362-7370.
[57] MARCINIAK L, KNIEC K, ELZBIECIAK-PIECKA K, et al. Luminescence Thermometry with Transition Metal Ions. A Review [J]. Coordination Chemistry Reviews, 2022, 469: 214671.
[58] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s2 Metal Halides [J]. ACS Materials Letters, 2020, 2(9): 1218-1232.
[59] YAKUNIN S, BENIN B M, SHYNKARENKO Y, et al. High-Resolution Remote Thermometry and Thermography using Luminescent Low-Dimensional Tin-Halide Perovskites [J]. Nature Materials, 2019, 18(8): 846-852.
[60] ZHOU C, TIAN Y, YUAN Z, et al. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite [J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44579-44583.
[61] MORAD V, YAKUNIN S, BENIN B M, et al. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography [J]. Advanced Materials, 2021, 33(9): 2007355.
[62] MORAD V, YAKUNIN S, KOVALENKO M V. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides [J]. ACS Materials Letters, 2020, 2(7): 845-852.
[63] WEI J H, LUO J B, LIAO J F, et al. Te4+-Doped Cs2InCl5·H2O Single Crystals for Remote Optical Thermometry [J]. Science China Materials, 2022, 65(3): 764-772.
[64] BENIN B M, MCCALL K M, WORLE M, et al. The Rb7Bi3-3xSb3xCl16 Family: A Fully Inorganic Solid Solution with Room-Temperature Luminescent Members [J]. Angewandte Chemie International Edition, 2020, 59(34): 14490-14497.
[65] WU N, CHEN C, LIN S, et al. Zero-Dimensional Antimony(III) Halides Templated by Ruthenium Complexes: Photoluminescence, Thermochromism and Photo/Electrical Performances [J]. Inorganic and Nano-Metal Chemistry, 2022: 1-9.
[66] WANG Z, HUANG X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials [J]. Chemistry-A European Journal, 2022, 28(37): e202200609.
[67] ZHANG Z, LIN Y, JIN J, et al. Crystalline-Phase-Recognition-Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption [J]. Angewandte Chemie International Edition, 2021, 60(43): 23373-23379.
[68] WANG Z, XIE D, ZHANG F, et al. Controlling Information Duration on Rewritable Luminescent Paper Based on Hybrid Antimony (III) Chloride/Small-Molecule Absorbates [J]. Science Advances, 2020, 6(48): eabc2181.
[69] WEI J H, OU W T, LUO J B, et al. Zero-Dimensional Zn-Based Halides with Ultra-Long Room-Temperature Phosphorescence for Time-Resolved Anti-Counterfeiting [J]. Angewandte Chemie International Edition, 2022, 61(33): 202207985.
[70] SHEN Y, LIU Y, YE H, et al. Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection [J]. Angewandte Chemie International Edition, 2020, 59(35): 14896-14902.
[71] XU L J, LIN X, HE Q, et al. Highly Efficient Eco-Friendly X-Ray Scintillators Based on an Organic Manganese Halide [J]. Nature Communications, 2020, 11(1): 4329.
[72] XIAO Z, MENG W, WANG J, et al. Searching for Promising New Perovskite-Based Photovoltaic Absorbers: the Importance of Electronic Dimensionality [J]. Materials Horizons, 2017, 4(2): 206-216.
[73] GAUTIER R, PARIS M, MASSUYEAU F. Hydrogen Bonding and Broad-Band Emission in Hybrid Zinc Halide Phosphors [J]. Inorganic Chemistry, 2020, 59(5): 2626-2630.
[74] MANZHOS S, PAL A, CHEN Y, et al. Effect of organic cation states on electronic properties of mixed organic–inorganic halide perovskite clusters [J]. Physical Chemistry Chemical Physics, 2019, 21(15): 8161-8169.
[75] LEE J W, TAN S, SEOK S I, et al. Rethinking the A cation in halide perovskites [J]. Science, 2022, 375(6583): eabj1186.
[76] FU Y, JIANG X, LI X, et al. Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages [J]. Journal of the American Chemical Society, 2020, 142(8): 4008-4021.
[77] XUE J, WANG R, CHEN X, et al. Reconfiguring the Band-Edge States of Photovoltaic Perovskites by Conjugated Organic Cations [J]. Science, 2021, 371(6529): 636-640.
[78] SI H, ZHANG Z, LIAO Q, et al. A-Site Management for Highly Crystalline Perovskites [J]. Advanced Materials, 2020, 32(4): e1904702.
[79] SUN S, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications [J]. Advanced Science, 2021, 8(24): 2102689.
[80] JIN J-C, SHEN N-N, WANG Z-P, et al. Photoluminescent Ionic Metal Halides Based on s2 Typed Ions and Aprotic Ionic Liquid Cations [J]. Coordination Chemistry Reviews, 2021, 448: 214185.
[81] ZHOU C, LIN H, WORKU M, et al. Blue Emitting Single Crystalline Assembly of Metal Halide Clusters [J]. Journal of the American Chemical Society, 2018, 140(41): 13181-13184.
[82] LEE S, ZHOU C, NEU J, et al. Bulk Assemblies of Lead Bromide Trimer Clusters with Geometry-Dependent Photophysical Properties [J]. Chemistry of Materials, 2019, 32(1): 374-380.
[83] ZHOU C, LIN H, NEU J, et al. Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency [J]. Acs Energy Letters, 2019, 4(7): 1579-1583.
[84] LI M Z, MOLOKEEV M S, ZHAO J, et al. Optical Functional Units in Zero-Dimensional Metal Halides as a Paradigm of Tunable Photoluminescence and Multicomponent Chromophores [J]. Advanced Optical Materials, 2020, 8(8): 1902114.
[85] LI Q, CHEN Z, LI M, et al. Pressure-Engineered Photoluminescence Tuning in Zero-Dimensional Lead Bromide Trimer Clusters [J]. Angewandte Chemie International Edition, 2021, 60(5): 2583-2587.
[86] ZHOU C, LEE S, LIN H, et al. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission [J]. ACS Materials Letters, 2020: 376-380.
[87] SHEN N, LI J, WU Z, et al. alpha- and beta-[Bmim][BiCl4(2,2'-bpy)]: Two Polymorphic Bismuth-Containing Ionic Liquids with Crystallization-Induced Phosphorescence [J]. Chemistry, 2017, 23(62): 15795-15804.
[88] SHEN N N, CAI M L, SONG Y, et al. Supramolecular Organization of [TeCl6]2- with Ionic Liquid Cations: Studies on the Electrical Conductivity and Luminescent Properties [J]. Inorganic Chemistry, 2018, 57(9): 5282-5291.
[89] SHEN N, LI J, LI G, et al. Designing Polymorphic Bi3+-Containing Ionic Liquids for Stimuli-Responsive Luminescent Materials [J]. Inorganic Chemistry, 2019, 58(12): 8079-8085.
[90] LIN F, WANG H, LIU W, et al. Zero-Dimensional Ionic Antimony Halide Inorganic-Organic Hybrid with Strong Greenish Yellow Emission [J]. Journal of Materials Chemistry C, 2020, 8(22): 7300-7303.
[91] YU S S, JIANG S X, ZHANG H, et al. Crystal Structural and Thermochromic Luminescence Properties Modulation by Ion Liquid Cations in Bromoplumbate Perovskites [J]. Inorganic Chemistry Communications, 2020, 112: 107690.
[92] LIN F, WANG H, LIN H, et al. An Antimony Based Organic-Inorganic Hybrid Coating Material with High Quantum Efficiency and Thermal Quenching Effect [J]. Chemical Communications, 2021, 57(14): 1754-1757.
[93] WANG Z P, WANG J Y, LI J R, et al. [Bmim]2SbCl5: a Main Group Metal-Containing Ionic Liquid Exhibiting Tunable Photoluminescence and White-Light Emission [J]. Chemical Communications, 2015, 51(15): 3094-3097.
[94] XU L J, PLAVIAK A, LIN X, et al. Metal Halide Regulated Photophysical Tuning of Zero-Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow [J]. Angewandte Chemie International Edition, 2020, 59(51): 23067-23071.
[95] LI C, LUO Z S, LIU Y L, et al. Self-Trapped Exciton Emission with High Thermal Stability in Antimony-Doped Hybrid Manganese Chloride [J]. Advanced Optical Materials, 2022, 10(12): 2102746.
[96] LIU S, FANG X, LU B, et al. Wide Range Zero-Thermal-Quenching Ultralong Phosphorescence from Zero-Dimensional Metal Halide Hybrids [J]. Nature Communications, 2020, 11(1): 4649.
[97] LUO Z, LIU Y, LIU Y, et al. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications [J]. Advanced Materials, 2022, 34(18): 2200607.
[98] XU J, LI S, QIN C, et al. Identification of Singlet Self-Trapped Excitons in a New Family of White-Light-Emitting Zero-Dimensional Compounds [J]. The Journal of Physical Chemistry C, 2020, 124(21): 11625-11630.
[99] HUANG J L, SU B B, SONG E H, et al. Ultra-Broad-Band-Excitable Cu(I)-Based Organometallic Halide with Near-Unity Emission for Light-Emitting Diode Applications [J]. Chemistry of Materials, 2021, 33(12): 4382-4389.
[100] LI S, XU J, LI Z G, et al. One-Dimensional Lead-Free Halide with Near-Unity Greenish-Yellow Light Emission [J]. Chemistry of Materials, 2020, 32(15): 6525-6531.
[101] HUANG J, PENG Y, JIN J, et al. Unveiling White Light Emission of a One-Dimensional Cu(I)-Based Organometallic Halide toward Single-Phase Light-Emitting Diode Applications [J]. The Journal of Physical Chemistry Letters, 2021, 12(51): 12345-12351.
[102] ZHU C, JIN J, GAO M, et al. Supramolecular Assembly of Halide Perovskite Building Blocks [J]. Journal of the American Chemical Society, 2022, 144(27): 12450-12458.
[103] ZHAO J, ZHANG T, DONG X Y, et al. Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides [J]. Journal of the American Chemical Society, 2019, 141(40): 15755-15760.
[104] KATAN C, MERCIER N, EVEN J. Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors [J]. Chemical Reviews, 2019, 119(5): 3140-3192.
[105] MAO L, GUO P, KEPENEKIAN M, et al. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites [J]. Journal of the American Chemical Society, 2018, 140(40): 13078-13088.
[106] MAO L, KE W, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D Lead Iodide Perovskites [J]. Journal of the American Chemical Society, 2018, 140(10): 3775-3783.
[107] STOUMPOS C C, SOE C M M, TSAI H, et al. High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16 [J]. Chemistry, 2017, 2(3): 427-440.
[108] STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors [J]. Chemistry of Materials, 2016, 28(8): 2852-2867.
[109] DOHNER E R, HOKE E T, KARUNADASA H I. Self-Assembly of Broadband White-Light Emitters [J]. Journal of the American Chemical Society, 2014, 136(5): 1718-1721.
[110] DOHNER E R, JAFFE A, BRADSHAW L R, et al. Intrinsic White-Light Emission from Layered Hybrid Perovskites [J]. Journal of the American Chemical Society, 2014, 136(38): 13154-13157.
[111] SMITH M D, JAFFE A, DOHNER E R, et al. Structural Origins of Broadband Emission from Layered Pb-Br Hybrid Perovskites [J]. Chemical Science, 2017, 8(6): 4497-4504.
[112] SU B, GENG S, XIAO Z, et al. Highly Distorted Antimony(III) Chloride [Sb2Cl8]2- Dimers for Near-Infrared Luminescence up to 1070 nm [J]. Angewandte Chemie International Edition, 2022, 61(33): 202208881.
[113] WU Z, ZHANG W, YE H, et al. Bromine-Substitution-Induced High-Tc Two-Dimensional Bilayered Perovskite Photoferroelectric [J]. Journal of the American Chemical Society, 2021, 143(20): 7593-7598.
[114] YAO Y, JIANG H, PENG Y, et al. High-Curie Temperature Multilayered Hybrid Double Perovskite Photoferroelectrics Induced by Aromatic Cation Alloying [J]. Journal of the American Chemical Society, 2021, 143(39): 15900-15906.
[115] SHEIKH T, MAQBOOL S, MANDAL P, et al. Introducing Intermolecular Cation-π Interactions for Water-Stable Low Dimensional Hybrid Lead Halide Perovskites [J]. Angewandte Chemie International Edition, 2021, 60(33): 18265-18271.
[116] CAO D H, STOUMPOS C C, FARHA O K, et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J]. Journal of the American Chemical Society, 2015, 137(24): 7843-7850.
[117] SOURISSEAU S, LOUVAIN N, BI W, et al. Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic-Inorganic Interface [J]. Chemistry of Materials, 2007, 19(3): 600-607.
[118] BRAUN M, TUFFENTSAMMER W, WACHTEL H, et al. Tailoring of Energy Levels in Lead Chloride Based Layered Perovskites and Energy Transfer between the Organic and Inorganic Planes [J]. Chemical Physics Letters, 1999, 303: 157-164.
[119] GONG L K, HU Q Q, HUANG F Q, et al. Efficient Modulation of Photoluminescence by Hydrogen Bonding Interactions between Inorganic [MnBr4]2- Anions and Organic Cations [J]. Chemical Communications, 2019, 55(51): 7303-7306.
[120] MAO L, WU Y, STOUMPOS C C, et al. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx [J]. Journal of the American Chemical Society, 2017, 139(34): 11956-11963.
[121] LI Q, XU B, CHEN Z W, et al. Excitation-Dependent Emission Color Tuning of 0D Cs2InBr5·H2O at High Pressure [J]. Advanced Functional Materials, 2021, 31(38): 2104923.
[122] ZHANG L, WANG K, LIN Y, et al. Pressure Effects on the Electronic and Optical Properties in Low-Dimensional Metal Halide Perovskites [J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693-4701.
[123] LU X, STOUMPOS C, HU Q, et al. Regulating Off-Centering Distortion Maximizes Photoluminescence in Halide Perovskites [J]. National Science Review, 2021, 8(9): nwaa288.
[124] BRAMMER L, SWEARINGEN J K, BRUTON E A, et al. Hydrogen Bonding and Perhalometallate Ions: a Supramolecular Synthetic Strategy for New Inorganic Materials [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 4956-4961.
[125] AAKERöY C B, SEDDON K R. The Hydrogen Bond and Crystal Engineering [J]. Chemical Society Reviews, 1993, 22(6): 397-407.
[126] LIU X T, YANG Z Q, GE C D, et al. Multiple Hydrogen Bond-Induced Structural Distortion for Broadband White-Light Emission in Two-Dimensional Perovskites [J]. CCS Chemistry, 2021, 3(10): 2576-2583.
[127] YANG W, XIAO X, HE H, et al. Intermolecular Hydrogen-Bonding Correlated Structure Distortion and Broadband White-Light Emission in 5-Ammonium Valeric Acid Templated Lead Chloride Perovskites [J]. Crystal Growth & Design, 2021, 21(10): 5731-5739.
[128] MERCIER N, POIROUX S, RIOU A, et al. Unique Hydrogen Bonding Correlating with a Reduced Band Gap and Phase Transition in the Hybrid Perovskites (HO(CH2)2NH3)2PbX4 (X = I, Br) [J]. Inorganic Chemistry, 2004, 43(26): 8361-8366.
[129] HUA X N, GAO J X, CHEN X G, et al. Ultrahigh Phase Transition Temperature in a Metal-Halide Perovskite-Type Material Containing Unprecedented Hydrogen Bonding Interactions [J]. Dalton Transactions, 2019, 48(19): 6621-6626.
[130] SONG G M, LI M Z, ZHANG S Z, et al. Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules [J]. Advanced Functional Materials, 2020, 30(32): 2002468.
[131] TUREDI B, LEE K J, DURSUN I, et al. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites [J]. The Journal of Physical Chemistry C, 2018, 122(25): 14128-14134.
[132] YU G, LIN F, ZHOU K, et al. One-Dimensional Organic-Metal Halide with Highly Efficient Warm White-Light Emission and Its Moisture-Induced Structural Transformation [J]. Chemistry of Materials, 2021, 33(14): 5668-5674.
[133] CUI B B, HAN Y, HUANG B, et al. Locally Collective Hydrogen Bonding Isolates Lead Octahedra for White Emission Improvement [J]. Nature Communications, 2019, 10(1): 5190.
[134] LUO J B, WEI J H, ZHANG Z Z, et al. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide [J]. Inorganic Chemistry, 2022, 61(1): 338-345.
[135] SVANE K L, FORSE A C, GREY C P, et al. How Strong Is the Hydrogen Bond in Hybrid Perovskites? [J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6154-6159.
[136] LIU W, ZHU K, TEAT S J, et al. All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals [J]. Journal of the American Chemical Society, 2017, 139(27): 9281-9290.
[137] ROBINSON K, GIBBS G V, RIBBE P H. Quadratic Elongation: a Quantitative Measure of Distortion in Coordination Polyhedra [J]. Science, 1971, 172(3983): 567-570.
[138] XIAO G, FANG X, MA Y J, et al. Multi-Mode and Dynamic Persistent Luminescence from Metal Cytosine Halides through Balancing Excited-State Proton Transfer [J]. Advanced Science, 2022, 9: 2200992.
[139] WU S, ZHOU B, YAN D. Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission [J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26451-26460.
[140] ZHOU B, XIAO G, YAN D. Boosting Wide-Range Tunable Long-Afterglow in 1D Metal-Organic Halide Micro/Nanocrystals for Space/Time-Resolved Information Photonics [J]. Advanced Materials, 2021, 33(16): 2007571.
[141] STADLER W, HOFMANN D M, ALT H C, et al. Optical Investigations of Defects in Cd1-xZnxTe [J]. Physical Review B, 1995, 51(16): 10619-10630.
[142] WU G, ZHOU C, MING W, et al. A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions [J]. Acs Energy Letters, 2018, 3(6): 1443-1449.
[143] EBSWORTH E A V, SHEPPARD N. The Infra-Red Spectra of Some Methylammonium Iodides: Angle Deformation Frequencies of N+H and N+H2 Groups [J]. Spectrochimica Acta, 1959, 13(4): 261-270.
[144] GUZONAS D A, IRISH D E. A Raman and Infrared Spectroscopic Study of Triethylenediamine (DABCO) and Its Protonated Forms [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1988, 66(5): 1249-1257.
[145] MERZLYAKOVA E, WOLF S, LEBEDKIN S, et al. 18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects [J]. J Am Chem Soc, 2021, 143(2): 798-804.
[146] SUN J-S, ZHAO H, OUYANG X, et al. Structures, Magnetic Properties, and Reactivity Studies of Salts Containing the Dinuclear Anion [M2Cl6]2- (M = Mn, Fe, Co) [J]. Inorganic Chemistry, 1999, 38(25): 5841-5855.
[147] PAMPALONI G, ENGLERT U. Tetrahydrofuran and 1,2-Dimethoxyethane Derivatives of Vanadium(II) and Vanadium(III) [J]. Inorganica Chimica Acta, 1995, 231(1-2): 167-173.
[148] HU G C, XU B, WANG A F, et al. Stable and Bright Pyridine Manganese Halides for Efficient White Light-Emitting Diodes [J]. Advanced Functional Materials, 2021, 31(19): 2011191.
[149] WANG Z X, LI P F, LIAO W Q, et al. Structure-Triggered High Quantum Yield Luminescence and Switchable Dielectric Properties in Manganese(II) Based Hybrid Compounds [J]. Chemistry-An Asian Journal, 2016, 11(7): 981-985.
[150] LI C, BAI X, GUO Y, et al. Tunable Emission Properties of Manganese Chloride Small Single Crystals by Pyridine Incorporation [J]. ACS Omega, 2019, 4(5): 8039-8045.
[151] ZHANG Y Z, SUN D S, CHEN X G, et al. Optical-Dielectric Duple Bistable Switches: Photoluminescence of Reversible Phase Transition Molecular Material [J]. Chemistry-An Asian Journal, 2019, 14(21): 3863-3867.
[152] LI Q, CHEN Z, YANG B, et al. Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu2I3 with Tetrahedral Units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786-1791.
[153] BAI X W, ZHONG H Z, CHEN B K, et al. Pyridine-Modulated Mn Ion Emission Properties of C10H12N2MnBr4 and C5H6NMnBr3 Single Crystals [J]. The Journal of Physical Chemistry C, 2018, 122(5): 3130-3137.
[154] LIN H, ZHOU C, TIAN Y, et al. Bulk Assembly of Organic Metal Halide Nanotubes [J]. Chemical Science, 2017, 8(12): 8400-8404.
[155] LIN H R, ZHOU C K, NEU J, et al. Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission [J]. Advanced Optical Materials, 2019, 7(6): 1801474.
[156] FU P, HUANG M, SHANG Y, et al. Organic-Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission [J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34363-34369.
[157] TAN Z, CHU Y, CHEN J, et al. Lead-Free Perovskite Variant Solid Solutions Cs2Sn1-xTexCl6: Bright Luminescence and High Anti-Water Stability [J]. Advanced Materials, 2020, 32(32): 2002443.
[158] LIN R, GUO Q, ZHU Q, et al. All-Inorganic CsCu2I3 Single Crystal with High-PLQY (≈15.7%) Intrinsic White-Light Emission via Strongly Localized 1D Excitonic Recombination [J]. Advanced Materials, 2019, 31(46): 1905079.
[159] GONG Q, HU Z, DEIBERT B J, et al. Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency [J]. Journal of the American Chemical Society, 2014, 136(48): 16724-16727.
[160] CHU S, ZHANG C, XU H, et al. Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries [J]. Angewandte Chemie International Edition, 2021, 60(24): 13366-13371.
[161] YE H Y, LI S H, ZHANG Y, et al. Solid state molecular dynamic investigation of an inclusion ferroelectric: [(2,6-diisopropylanilinium)([(
[18]-crown-6)]BF4 [J]. Journal of the American Chemical Society, 2014, 136(28): 10033-10040.
[162] MA Y Y, SUN Y M, XU W J, et al. Ultrastable 0D Organic Zinc Halides with Highly Efficient Blue Light Emissions [J]. Advanced Optical Materials, 2022, 10: 2200386.
[163] OHNISHI A, YAMADA T, YOSHINARI T, et al. Emission Spectra and Decay Characteristics in Photo-Stimulated (CnH2n+1NH3)2CdCl4 : n=1, 2, 3 [J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 163-166.
[164] KITAURA M, NAKAGAWA H, FUKUI K, et al. Decay Time Studies on UV-Luminescence in CdBr2-CdCl2 Mixed Crystals [J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 175-178.
[165] ROCCANOVA R, MING W, WHITESIDE V R, et al. Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH3NH3)2CdX4 (X = Cl, Br, I) [J]. Inorganic Chemistry, 2017, 56(22): 13878-13888.
[166] YANGUI A, PILLET S, BENDEIF E-E, et al. Broadband Emission in a New Two-Dimensional Cd-Based Hybrid Perovskite [J]. ACS Photonics, 2018, 5(4): 1599-1611.
[167] XU H, ZHANG Z, DONG X, et al. Corrugated 1D Hybrid Metal Halide [C6H7ClN]CdCl3 Exhibiting Broadband White-Light Emission [J]. Inorganic Chemistry, 2022, 61(11): 4752-4759.
[168] YANG X, YAN D. Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrids [J]. Advanced Optical Materials, 2016, 4(6): 897-905.
[169] YANGUI A, ROCCANOVA R, MCWHORTER T M, et al. Hybrid Organic-Inorganic Halides (C5H7N2)2MBr4 (M = Hg, Zn) with High Color Rendering Index and High-Efficiency White-Light Emission [J]. Chemistry of Materials, 2019, 31(8): 2983-2991.
[170] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s(2) Metal Halides [J]. ACS Mater Lett, 2020, 2(9): 1218-1232.
[171] MORAD V, YAKUNIN S, BENIN B M, et al. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography [J]. Adv Mater, 2021: e2007355.
[172] MSALMI R, DAMMAK K, ELLEUCH S, et al. Optoelectronic, Luminescence, and Nonlinear Properties of a Non-Centrosymmetric Cd(II)-Based Complex [J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110567.
[173] HE Q, ZHOU C, XU L, et al. Highly Stable Organic Antimony Halide Crystals for X-Ray Scintillation [J]. ACS Materials Letters, 2020, 2(6): 633-638.
[174] PENG H, TIAN Y, WANG X, et al. Bulk Assembly of a 0D Organic Antimony Chloride Hybrid with Highly Efficient Orange Dual Emission by Self-Trapped States [J]. Journal of Materials Chemistry C, 2021, 9(36): 12184-12190.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O627.51
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/417127
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
张利明. 含络合/有机阳离子金属卤化物的合成及发光性质研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849565-张利明-化学系.pdf(12890KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张利明]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张利明]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张利明]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.