中文版 | English
Title

四种功能低维结构在表面上的生长与操控研究

Alternative Title
GROWTH AND MANIPULATION OF FOUR FUNCTIONAL LOW DIMENSIONAL STRUCTURES ON SURFACES
Author
Name pinyin
LIU Guowei
School number
11849598
Degree
博士
Discipline
070205 凝聚态物理
Subject category of dissertation
07 理学
Supervisor
王克东
Mentor unit
物理系
Publication Years
2022-10-27
Submission date
2022-12-30
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

低维结构(包括零维量子点和单原子、一维纳米线以及二维薄膜材料等)的新奇物性为半导体单元微型化和高性能器件多样化的研发提供了广阔的研究平台。一方面,低维结构展现出丰富的量子限域效应、拓扑物态和强关联效应等量子效应,以其为核心将可能制备出具有特殊或优异功能的器件。另一方面,低维结构的物性可以通过生长调控、衬底诱导或者元素掺杂等方式进行有效改良,在精密制造、信息计算、新能源和生物医疗等领域都有广阔的应用前景。尽管低维结构的相关研究已经十分丰富,但仍然存在不少难题悬而未决,比如原子级精度的零维量子点甚至单原子器件的构建、性能优异的纳米线的制备与表征、新型二维材料的原位生长与性能研究等。低维结构一般都依附于表面,在所有表面原位表征分析技术中,扫描隧道显微镜(STM)具有无与伦比的优势。因此,结合STM实验和第一性原理计算,对表面上四种低维结构的生长和操控展开研究,并针对不同维度的四个体系各提供了相应的调控手段,实现了部分人工可控的生长与制备。主要研究内容如下:

基于STM纵向操纵术和脉冲诱导分解术实现了单个磷原子在单晶硅表面的精确植入。硅中植入单个磷原子是实现基于单个磷原子的一种固态量子比特方案的核心步骤。实验和理论证明P4分子以微弱的范德华力吸附在硅表面。通过两步法利用P4分子实现了单个磷原子在硅表面的可控植入。第一步:通过STM纵向操纵术将P4分子在硅表面任意位置“提起”与“放下”,实现了原子级地精准定位。第二步:通过脉冲诱导分解术将在目标位点的P4分子分解成单个磷原子以实现植入。与国际主流的硅磷量子比特制备方案相比,新方法有植入位点精度高、植入数量可控和可操作性强的特点。

基于金衬底对As4分子的分解作用,制备了一种新型的一维砷纳米链结构。制备的扶手椅型砷链与Au(111)表面形成(2×3)超胞结构,并且能在较大衬底温度范围内保持稳定(< 600 K)。理论计算表明一维自由砷链具有半导体性质,其本征能隙为0.5 eV。通过对比其它衬底表面生长砷的实验结果和理论计算,证明只有Au(111)表面适合扶手椅型砷链的形成。通过STM针尖操控实现了砷链在Au(111)表面的翻转,证明了砷链可以从金衬底表面进行剥离。与碳纳米管中制备一维砷链的方案相比,新制备方案具有砷链结构稳定、纯度高和操作简单、可大量制备的优点。

通过低温生长制备出了一种高质量的二维As4分子膜。其中四面体形状的As4分子以正置和倒置交替排列的姿态在Au(111) 和HOPG表面自组装形成结构相同的有序膜。实验和理论证明As4分子膜与HOPG的相互作用明显弱于与金衬底的相互作用。因此,HOPG表面的As4分子膜更多地保留了其本征的半导体物性。As4分子膜在Au(111)表面由于衬底的作用,存在具有19.1°夹角的两种取向。通过充分理解砷在不同衬底上的生长机理,为将来进一步制备出高质量砷烯奠定了基础。

通过钾掺杂实现了对有机分子苉(Picene)薄膜电子结构的调控。苉分子块材通过碱金属掺杂可以转变成有机超导体,但是将其降低到二维是否仍具有超导特性还有争议。首先在Au(111) 表面沉积了苉分子薄膜,然后通过钾原子沉积和退火,实现了钾原子的有效掺杂。随着钾掺杂率的增加,KxPicene(x=0~4)薄膜上依次出现了几种新的有序结构。同时,随着从钾原子转移到苉分子膜的电荷量增加,掺钾苉分子膜的费米能级逐渐向最低未占据分子轨道(LUMO)移动。特别是对于K3.4Picene,其LUMO态跨过费米能级时劈裂成上下两个态,揭示着这种系统存在强的电子关联效应,并且未见超导态的出现。

Other Abstract

The novel physical properties of low-dimensional (LD) structures, including zero-dimensional (0D) quantum dots and single atoms, one-dimensional (1D) nanowires and two-dimensional (2D) thin-film materials, etc. provide a broad research platform for the miniaturization of semiconductor elements and the diversification of high-performance devices. On the one hand, LD structures exhibit rich quantum effects, such as quantum confinement effects, topological states, and strong correlation effects, which will lead to the fabrication of devices with special or excellent functions. On the other hand, the physical properties of LD structures can be effectively improved through growth regulation, substrate induction or element doping, etc., and have broad applications in the fields of precision manufacturing, information computing, new energy and biomedicine. Although the relevant research on LD structures has been abundant, there are still many unsolved problems, such as the construction of 0D quantum dots and even single-atom devices at atomic-level precision, the preparation and characterization of nanowires with excellent performance, and the in-situ growth and performance of new 2D materials. LD structures are generally attached to surfaces, and scanning tunneling microscopy (STM) offers unparalleled advantages among all surface in-situ characterization and analysis techniques. Therefore, we combined STM experiments and first-principle calculations to study the growth and manipulation of four LD structures on the surface, and provided corresponding control methods for each of the four systems at different dimensions, realizing partial artificial control, growth and preparation. The main research contents are as follows:

Based on STM vertical manipulation and pulse-induced decomposition, the precise implantation of individual phosphorus atoms on the single-crystal silicon surface is realized. Implanting a single phosphorus atom into silicon is a core step in implementing a solid-state qubit scheme based on a single phosphorus atom. Experiments and theories have proved that the P4 molecule adsorbs on the surface of the silicon with a weak van der Waals force. We have achieved the controllable implantation of single phosphorus atom on the silicon surface by a two-step method using P4 molecules. Step 1: The P4 molecule is "pick-up and "drop-off" at any position on the silicon surface by STM vertical manipulation, achieving atomic-level precise positioning. Step 2: The P4 molecule is decomposed into single phosphorus atom at the target site by STM pulse-induced decomposition for implantation. Compared with the international mainstream Si:P qubit preparation scheme, our method has the characteristics of high implantation accuracy, controllable implantation quantity and strong operability.

Based on the decomposition of As4 molecules by gold substrates, a novel 1D arsenic nanochain structure has been fabricated. The armchair arsenic forms a (2×3) supercell structure with the Au(111) surface and remains stable over a wide range of substrate temperature (< 600 K). Theoretical calculations show that the intrinsic 1D arsenic chain has semiconductor properties with an energy gap of 0.5 eV. Comparing the experimental results and theoretical calculations of arsenic grown on other substrates, it is shown that only the Au(111) surface is suitable for the formation of armchair arsenic chains. We have achieved the flip-up of arsenic nanochains on the Au(111) surface through STM tip manipulation, and have proved that arsenic chains can be peeled off from the gold substrate. Compared with the scheme for fabricating 1D arsenic chains in carbon nanotubes, our scheme has the advantages in stable and high-purity arsenic nanochains, simple fabrication and large-scale production.

Based on low temperature growth, a high-quality 2D As4 molecular film is fabricated. The tetrahedral-shaped As4 molecules are self-assembled into forming the same ordered structure on the Au(111) and HOPG surfaces in an alternating upright and inverted posture. Experiments and theoretical calculations prove that the interaction between the As4 molecular film and HOPG is significantly weaker than that with the gold substrate. Therefore, the As4 molecular film on the HOPG surface retains more of its intrinsic semiconductor properties. As4 molecular film on the Au(111) surface are two orientations with an angle of 19.1° due to the effects of the Au(111) substrate. By fully understanding the growth mechanism of arsenic on different substrates, the foundation is laid for fabricating high-quality arsenene in the future

By potassium doping, the electronic structure of the organic picene molecular film is regulated controllably. Picene bulk can be transformed into superconductors by alkali metals doping, but it is controversial whether they are remains superconductivity when this system is reduced to 2D. At first, we have achieved the efficient potassium doping into the picene film on the Au(111) surface by depositing and annealing. With the increase of potassium doping ratio, several new ordered structures in the KxPicene films (x = 0 to 4) appear in turn. At the same time, the Fermi level of the potassium-doped picene molecular film gradually moves towards the lowest unoccupied molecular orbital (LUMO) state as the amount of charge transferred from potassium atoms into the picene molecular film increases. Especially, the LUMO state of K3.4Picene is split into two states when is crosses the Fermi energy level, revealing that the system has a strong electron correlation effect, and no superconducting state appears.

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] Zhang M, Wang X X, Cao W Q, et al. Electromagnetic Functions of Patterned 2D Materials for Micro-Nano Devices Covering GHz, THz, and Optical Frequency[J]. Advanced Optical Materials, 2019, 7(19): 1900689.
[2] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2d Materials, 2014, 1(2): 025001.
[3] Kroto H W, Heath J R, Obrien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
[4] Hebard A F, Rosseinsky M J, Haddon R C, et al. Superconductivity at 18 K in potassium-doped C60[J]. Nature, 1991, 350(6319): 600-601.
[5] Wachowiak A, Yamachika R, Khoo K H, et al. Visualization of the molecular Jahn-Teller effect in an insulating K4C60 monolayer[J]. Science, 2005, 310(5747): 468-470.
[6] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[7] ijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348): 56-58.
[8] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[9] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.
[10] Yin J F, Huang Y X, Hameed S, et al. Large scale assembly of nanomaterials: mechanisms and applications[J]. Nanoscale, 2020, 12(34): 17571-17589.
[11] Zhang J Q, Zhao Y F, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992.
[12] Liu J C, Tang Y, Wang Y G, et al. Theoretical understanding of the stability of single-atom catalysts[J]. National Science Review, 2018, 5(5): 638-641.
[13] Hendrickx N W, Lawrie W I L, Russ M, et al. A four-qubit germanium quantum processor[J]. Nature, 2021, 591(7851): 580-585.
[14] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[15] Kouwenhoven L P, Austing D G, Tarucha S. Few-electron quantum dots[J]. Reports on Progress in Physics, 2001, 64(6): 701-736.
[16] Veldhorst M, Yang C H, Hwang J C, et al. A two-qubit logic gate in silicon[J]. Nature, 2015, 526(7573): 410-414.
[17] Wyrick J, Wang X Q, Kashid R V, et al. Atom-by-Atom Fabrication of Single and Few Dopant Quantum Devices[J]. Advanced Functional Materials, 2019, 29(52): 1903475.
[18] Kiczynski M, Gorman S K, Geng H, et al. Engineering topological states in atom-based semiconductor quantum dots[J]. Nature, 2022, 606(7915): 694-699.
[19] Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon[J]. Nature, 2019, 569(7757): 532-536.
[20] Clark R G, Brenner R, Buehler T M, et al. Progress in silicon-based quantum computing[J]. Philos Trans A Math Phys Eng Sci, 2003, 361(1808): 1451-1471.
[21] Wang Y J, Bronikowski M J, Hamers R J. An Atomically Resolved Stm Study of the Interaction of Phosphine with the Silicon(001) Surface[J]. Journal of Physical Chemistry, 1994, 98(23): 5966-5973.
[22] Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale[J]. Science, 2012, 335(6064): 64-67.
[23] Wolfowicz G, Simmons S, Tyryshkin A M, et al. Decoherence mechanisms of209Bi donor electron spins in isotopically pure28Si[J]. Physical Review B, 2012, 86(24): 245301.
[24] Broome M A, Gorman S K, House M G, et al. Two-electron spin correlations in precision placed donors in silicon[J]. Nat Commun, 2018, 9(1): 980.
[25] Muhonen J T, Dehollain J P, Laucht A, et al. Storing quantum information for 30 seconds in a nanoelectronic device[J]. Nat Nanotechnol, 2014, 9(12): 986-991.
[26] He Y, Gorman S K, Keith D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371-375.
[27] Veldhorst M, Hwang J C, Yang C H, et al. An addressable quantum dot qubit with fault-tolerant control-fidelity[J]. Nat Nanotechnol, 2014, 9(12): 981-985.
[28] Liu L, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856.
[29] Zhao M, Chen Y, Wang K, et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors[J]. Science, 2020, 368(6493): 878-881.
[30] Comès R, Shapiro S M, Shirane G, et al. Neutron-Scattering Study of the 38- and 54-K Phase Transitions in Deuterated Tetrathiafulvalene- Tetracyanoquinodimethane (TTF-TCNQ)[J]. Physical Review Letters, 1975, 35(22): 1518-1521.
[31] Terrones M, Botello-Mendez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications[J]. Nano Today, 2010, 5(4): 351-372.
[32] Liu M, Artyukhov V I, Yakobson B I. Mechanochemistry of One-Dimensional Boron: Structural and Electronic Transitions[J]. J Am Chem Soc, 2017, 139(5): 2111-2117.
[33] Kramberger C, Thurakitseree T, Koh H, et al. One-dimensional N2 gas inside single-walled carbon nanotubes[J]. Carbon, 2013, 55: 196-201.
[34] Du L, Zhao Y, Wu L, et al. Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus[J]. Nat Commun, 2021, 12(1): 4822.
[35] Medeiros P V C, Marks S, Wynn J M, et al. Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes[J]. ACS Nano, 2017, 11(6): 6178-6185.
[36] Zhang W, Enriquez H, Tong Y, et al. Flat epitaxial quasi-1D phosphorene chains[J]. Nat Commun, 2021, 12(1): 5160.
[37] Hart M, White E R, Chen J, et al. Encapsulation and Polymerization of White Phosphorus Inside Single-Wall Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2017, 56(28): 8144-8148.
[38] Hart M, Chen J, Michaelides A, et al. One-Dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2018, 57(36): 11649-11653.
[39] Mao Y H, Zhang L F, Wang H L, et al. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Frontiers of Physics, 2018, 13(3): 138106.
[40] Tang Q, Zhou Z. Graphene-analogous low-dimensional materials[J]. Progress in Materials Science, 2013, 58(8): 1244-1315.
[41] Hasan M Z, Kane C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[42] 徐小志, 余佳晨, 张智宏, et al. 石墨烯打开带隙研究进展[J]. 科学通报, 2017, 062(020): 2220-2232.
[43] 吴金蓉, 赵爱迪. 单元素类石墨烯二维拓扑材料的研究进展[J]. 低温物理学报, 2019, 41(02): 73-87.
[44] Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium[J]. Phys Rev Lett, 2011, 107(7): 076802.
[45] Deng J, Xia B, Ma X, et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nat Mater, 2018, 17(12): 1081-1086.
[46] Li L, Lu S Z, Pan J, et al. Buckled germanene formation on Pt(111)[J]. Advanced Materials, 2014, 26(28): 4820-4824.
[47] Meng L, Wang Y, Zhang L, et al. Buckled silicene formation on Ir(111)[J]. Nano Lett, 2013, 13(2): 685-690.
[48] Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.
[49] Zhang S, Guo S, Chen Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chem Soc Rev, 2018, 47(3): 982-1021.
[50] Ma Y, Shao X, Li J, et al. Electrochemically exfoliated platinum dichalcogenide atomic layers for high-performance air-stable infrared photodetectors[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8518-8527.
[51] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372-377.
[52] Golias E, Krivenkov M, Varykhalov A, et al. Band Renormalization of Blue Phosphorus on Au(111)[J]. Nano Lett, 2018, 18(11): 6672-6678.
[53] Tian H, Zhang J Q, Ho W K, et al. Two-Dimensional Metal-Phosphorus Network[J]. Matter, 2020, 2(1): 111-118.
[54] Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angew Chem Int Ed Engl, 2015, 54(10): 3112-3115.
[55] Sheng F, Hua C, Cheng M, et al. Rashba valleys and quantum Hall states in few-layer black arsenic[J]. Nature, 2021, 593(7857): 56-60.
[56] Shah J, Wang W, Sohail H M, et al. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material[J]. 2d Materials, 2020, 7(2): 025013.
[57] Nagase K, Kokubo I, Yamazaki S, et al. Structure and growth of Bi(110) islands on Si(111)root 3 x root 3-B substrates[J]. Physical Review B, 2018, 97(19): 195418.
[58] Wu X, Shao Y, Liu H, et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2[J]. Advanced Materials, 2017, 29(11): 1605407.
[59] Lu Y, Xu W, Zeng M, et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110)[J]. Nano Lett, 2015, 15(1): 80-87.
[60] Wang X S, Kushvaha S S, Yan Z, et al. Self-assembly of antimony nanowires on graphite[J]. Applied Physics Letters, 2006, 88(23): 233105.
[61] Zhu X G, Liu Z, Li W, et al. Observation of Rashba splitting on beta-root 3 x root 3-Sb/Si(111) reconstructed surface[J]. Surface Science, 2013, 618: 115-119.
[62] Seo J, Roushan P, Beidenkopf H, et al. Transmission of topological surface states through surface barriers[J]. Nature, 2010, 466(7304): 343-346.
[63] Tang S P, Freeman A J. Bi-Induced Reconstructions on Si(100)[J]. Physical Review B, 1994, 50(3): 1701-1704.
[64] Bakhtizin R Z, Park C, Hashizume T, et al. Atomic-Structure of Bi on the Si(111) Surface[J]. Journal of Vacuum Science & Technology B, 1994, 12(3): 2052-2054.
[65] Lu Y H, Xu W T, Zeng M G, et al. Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi(110)[J]. Nano Letters, 2015, 15(1): 80-87.
[66] Schindler F, Wang Z, Vergniory M G, et al. Higher-Order Topology in Bismuth[J]. Nat Phys, 2018, 14(9): 918-924.
[67] Du H, Sun X, Liu X, et al. Surface Landau levels and spin states in bismuth (111) ultrathin films[J]. Nat Commun, 2016, 7(1): 10814.
[68] Li S S, Ji W X, Hu S J, et al. Effect of Amidogen Functionalization on Quantum Spin Hall Effect in Bi/Sb(111) Films[J]. Acs Applied Materials & Interfaces, 2017, 9(47): 41443-41453.
[69] Wang X Y, Zhang H, Ruan Z L, et al. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions[J]. Acta Physica Sinica, 2020, 69(11): 118101-118101.
[70] Varma C M. Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity[J]. Reviews of Modern Physics, 2020, 92(3): 031001.
[71] Kim J S, Kremer R K, Boeri L, et al. Specific heat of the Ca-intercalated graphite superconductor CaC6[J]. Phys Rev Lett, 2006, 96(21): 217002.
[72] Emery N, Herold C, d'Astuto M, et al. Superconductivity of bulk CaC6[J]. Phys Rev Lett, 2005, 95(8): 087003.
[73] Oh J Y, Rondeau-Gagne S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 2016, 539(7629): 411-415.
[74] Little W. Possibility of synthesizing an organic superconductor[J]. Physical Review, 1964, 134(6A): A1416.
[75] Kirtley J R, Mannhart J. Organic electronics: when TTF met TCNQ[J]. Nat Mater, 2008, 7(7): 520-521.
[76] Jérome D, Mazaud A, Ribault M, et al. Superconductivity in a synthetic organic conductor (TMTSF)2PF 6[J]. Journal de Physique Lettres, 1980, 41(4): 95-98.
[77] Mitsuhashi R, Suzuki Y, Yamanari Y, et al. Superconductivity in alkali-metal-doped picene[J]. Nature, 2010, 464(7285): 76-79.
[78] Kubozono Y, Mitamura H, Lee X, et al. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors[J]. Phys Chem Chem Phys, 2011, 13(37): 16476-16493.
[79] Wang X F, Liu R H, Gui Z, et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene[J]. Nat Commun, 2011, 2: 507.
[80] Xue M, Cao T, Wang D, et al. Superconductivity above 30 K in alkali-metal-doped hydrocarbon[J]. Sci Rep, 2012, 2: 389.
[81] Snider E, Dasenbrock-Gammon N, McBride R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride[J]. Nature, 2020, 586(7829): 373-377.
[82] Mitrano M, Cantaluppi A, Nicoletti D, et al. Possible light-induced superconductivity in K3C60 at high temperature[J]. Nature, 2016, 530(7591): 461-464.
[83] Stephens P W, Mihaly L, Lee P L, et al. Structure of Single-Phase Superconducting K3c60[J]. Nature, 1991, 351(6328): 632-634.
[84] Kubozono Y, Goto H, Jabuchi T, et al. Superconductivity in aromatic hydrocarbons[J]. Physica C-Superconductivity and Its Applications, 2015, 514: 199-205.
[85] Xu C, Que Y, Zhuang Y, et al. Growth Behavior of Pristine and Potassium Doped Coronene Thin Films on Substrates with Tuned Coupling Strength[J]. J Phys Chem B, 2018, 122(2): 601-611.
[86] Wu X F, Xu C Q, Wang K D, et al. Charge Transfer, Phase Separation, and Mott-Hubbard Transition in Potassium-Doped Coronene Films[J]. Journal of Physical Chemistry C, 2016, 120(28): 15446-15452.
[87] Wakita T, Okazaki H, Jabuchi T, et al. Electronic structure of K-doped picene film on HOPG[J]. J Phys Condens Matter, 2017, 29(6): 064001.
[88] Tersoff J, Hamann D R. Theory and Application for the Scanning Tunneling Microscope[J]. Physical Review Letters, 1983, 50(25): 1998-2001.
[89] Binnig G, Rohrer H, Gerber C, et al. Surface Studies by Scanning Tunneling Microscopy[J]. Physical Review Letters, 1982, 49(1): 57-61.
[90] Binnig G, Rohrer H, Gerber C, et al. 7 × 7 Reconstruction on Si(111) Resolved in Real Space[J]. Physical Review Letters, 1983, 50(2): 120-123.
[91] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Phys Rev Lett, 1986, 56(9): 930-933.
[92] Dirac P A M. Quantum mechanics of many-electron systems[J]. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1929, 123(792): 714-733.
[93] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics[J]. Reviews of Modern Physics, 2013, 85(3): 961-1019.
[94] Wang X, Hagmann J A, Namboodiri P, et al. Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers[J]. Nanoscale, 2018, 10(9): 4488-4499.
[95] Abrosimov N V, Aref’ev D G, Becker P, et al. A new generation of 99.999% enriched28Si single crystals for the determination of Avogadro’s constant[J]. Metrologia, 2017, 54(4): 599-609.
[96] van Donkelaar J, Yang C, Alves A D, et al. Single atom devices by ion implantation[J]. J Phys Condens Matter, 2015, 27(15): 154204.
[97] Liu Q, Lei Y, Shao X, et al. Controllable dissociations of PH3 molecules on Si(001)[J]. Nanotechnology, 2016, 27(13): 135704.
[98] Klimes J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19): 195131.
[99] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15): 154104.
[100] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[101] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186.
[102] Blochl P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994, 50(24): 17953-17979.
[103] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996)[J]. Physical Review Letters, 1997, 78(7): 1396-1396.
[104] Tersoff J, Hamann D R. Theory of the scanning tunneling microscope[J]. Phys Rev B Condens Matter, 1985, 31(2): 805-813.
[105] Radilla J, Galván M, Trinidad-Reyes Y, et al. STM Image Simulation: Effect of the Number of Tunneling States and the Isosurface Value[J]. MRS Proceedings, 2011, 838(1): 1-6.
[106] Gustafsson A, Okabayashi N, Peronio A, et al. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study[J]. Physical Review B, 2017, 96(8): 085415.
[107] Schlesinger M E. The thermodynamic properties of phosphorus and solid binary phosphides[J]. Chem Rev, 2002, 102(11): 4267-4301.
[108] Raghavachari K, Haddon R C, Binkley J S. Small elemental clusters: theoretical study of P, P2, P4 and P8[J]. Chemical Physics Letters, 1985, 122(3): 219-224.
[109] Zachariah M R, Melius C F. Theoretical calculation of thermochemistry for molecules in the Si-P-H system[J]. Journal of Physical Chemistry A, 1997, 101(5): 913-918.
[110] Zhang C, Chen G, Wang K, et al. Experimental and theoretical investigation of single Cu, Ag, and Au atoms adsorbed on Si(111)-(7x7)[J]. Phys Rev Lett, 2005, 94(17): 176104.
[111] Binnig G, Rohrer H. In touch with atoms[J]. Reviews of Modern Physics, 1999, 71(2): S324-S330.
[112] Myslivecek J, Strozecka A, Steffl J, et al. Structure of the adatom electron band of the Si(111)-7x7 surface[J]. Physical Review B, 2006, 73(16): 161302.
[113] Ming F, Mulugeta D, Tu W, et al. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping[J]. Nat Commun, 2017, 8: 14721.
[114] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[115] Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature[J]. Nature Nanotechnology, 2015, 10(3): 227-231.
[116] Mannix A J, Zhou X-F, Kiraly B, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs[J]. Science, 2015, 350(6267): 1513-1516.
[117] Derivaz M, Dentel D, Stephan R, et al. Continuous germanene layer on Al (111)[J]. Nano Letters, 2015, 15(4): 2510-2516.
[118] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[119] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 1-15.
[120] Ruffieux P, Wang S, Yang B, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology[J]. Nature, 2016, 531(7595): 489-492.
[121] Que Y, Liu B, Zhuang Y, et al. On-Surface Synthesis of Graphene Nanoribbons on Two-Dimensional Rare Earth–Gold Intermetallic Compounds[J]. The Journal of Physical Chemistry Letters, 2020, 11(13): 5044-5050.
[122] Watts M C, Picco L, Russell-Pavier F S, et al. Production of phosphorene nanoribbons[J]. Nature, 2019, 568(7751): 216-220.
[123] Yang Y-R, Zhang Z-Q, Gu L, et al. Spin-dependent Seebeck effect in zigzag black phosphorene nanoribbons[J]. RSC advances, 2016, 6(50): 44019-44023.
[124] Yang G, Xu S, Zhang W, et al. Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons[J]. Physical Review B, 2016, 94(7): 075106.
[125] Sisakht E T, Fazileh F, Zare M, et al. Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons[J]. Physical Review B, 2016, 94(8): 085417.
[126] Tsai H-S, Chen C-W, Hsiao C-H, et al. The advent of multilayer antimonene nanoribbons with room temperature orange light emission[J]. Chemical Communications, 2016, 52(54): 8409-8412.
[127] Ares P, Palacios J J, Abellán G, et al. Recent progress on antimonene: a new bidimensional material[J]. Advanced Materials, 2018, 30(2): 1703771.
[128] Touski S B, López-Sancho M P. Effects of Vertical Electric Field and Charged Impurities on the Spin-Polarized Transport of β-Antimonene Armchair Nanoribbons[J]. Physical Review B, 2021, 103(11): 115433.
[129] van Veen E, Yu J, Katsnelson M I, et al. Electronic structure of monolayer antimonene nanoribbons under out-of-plane and transverse bias[J]. Physical Review Materials, 2018, 2(11): 114011.
[130] Srivastava P, Sharma V, Jaiswal N K. First‐Principles Investigation of Antimonene Nanoribbons for Sensing Toxic NO2 Gas[J]. physica status solidi (b), 2020, 257(9): 2000034.
[131] Vishnoi P, Mazumder M, Pati S K, et al. Arsenene nanosheets and nanodots[J]. New Journal of Chemistry, 2018, 42(17): 14091-14095.
[132] Zhang S, Xie M, Li F, et al. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities[J]. Angew Chem Int Ed Engl, 2016, 55(5): 1666-1669.
[133] Chen Y, Chen C, Kealhofer R, et al. Black arsenic: a layered semiconductor with extreme in‐plane anisotropy[J]. Advanced Materials, 2018, 30(30): 1800754.
[134] Horcas I, Fernandez R, Gomez-Rodriguez J M, et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology[J]. Review of Scientific Instruments, 2007, 78(1): 013705.
[135] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[136] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of chemical physics, 2000, 113(22): 9901-9904.
[137] Wang V, Xu N, Liu J, et al. VASPKIT: A Pre- and Post-Processing Program for VASP code[J]. arXiv: Materials Science, 2019
[138] Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions[J]. Angewandte Chemie, 2015, 127(10): 3155-3158.
[139] Zhang P, Ma J-Z, Ishida Y, et al. Topologically entangled rashba-split shockley states on the surface of grey arsenic[J]. Physical Review Letters, 2017, 118(4): 046802.
[140] Kong X, Gao M, Yan X W, et al. Superconductivity in electron-doped arsenene[J]. Chinese Physics B, 2018, 27(4): 131-137.
[141] Sheng F, Hua C, Cheng M, et al. Rashba Valleys and Quantum Hall States in Few-Layer Black Arsenic[J]. Nature, 2021, 593(7857): 56-60.
[142] Seidl M, Balazs G, Scheer M. The Chemistry of Yellow Arsenic[J]. Chem Rev, 2019, 119(14): 8406-8434.
[143] Mardanya S, Thakur V K, Bhowmick S, et al. Four allotropes of semiconducting layered arsenic that switch into a topological insulator via an electric field: Computational study[J]. Physical Review B, 2016, 94(3): 035423.
[144] Chen C, Lv H, Zhang P, et al. Synthesis of bilayer borophene[J]. Nature Chemistry, 2022, 14(1): 25-31.
[145] Nørskov J K, Studt F, Abild-Pedersen F, et al. Fundamental concepts in heterogeneous catalysis[M]. John Wiley & Sons, 2014.
[146] Hu S, Zhao A, Kan E, et al. Electrical rectification by selective wave-function coupling in small Ag clusters on Si (111)−(7× 7)[J]. Physical Review B, 2010, 81(11): 115458.
[147] Wang Y, Ding Y. Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study[J]. Nanoscale research letters, 2015, 10(1): 1-10.
[148] Hao Z-B, Ren Z-Y, Guo W-P, et al. Studies on incorporation of As2 and As4 in III–V compound semiconductors with two group V elements grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2001, 224(3-4): 224-229.
[149] Zhang X W, Yan X J, Zhou Z R, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML[J]. Science, 2010, 328(5975): 240-243.
[150] Wang X, Hu Y, Mo J, et al. Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins[J]. Angew Chem Int Ed Engl, 2020, 59(13): 5151-5158.
[151] Gusmao R, Sofer Z, Bousa D, et al. Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders[J]. Angew Chem Int Ed Engl, 2017, 56(46): 14417-14422.
[152] Steiner Petrovič D. Kinetics of Arsenic Surface Segregation in Scrap-Based Silicon Electrical Steel[J]. Metals, 2021, 11(1): 1.
[153] Stegemann B, Bernhardt T M, Kaiser B, et al. STM investigation of surface alloy formation and thin film growth by Sb-4 deposition on Au(111)[J]. Surface Science, 2002, 511(1-3): 153-162.
[154] Artyukhov V I, Liu Y, Yakobson B I. Equilibrium at the edge and atomistic mechanisms of graphene growth[J]. Proc Natl Acad Sci U S A, 2012, 109(38): 15136-15140.
[155] Kubozono Y, Mitamura H, Lee X, et al. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors[J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16476-16493.
[156] Naghavi S S, Tosatti E. Crystal structure search and electronic properties of alkali-doped phenanthrene and picene[J]. Physical Review B, 2014, 90(7): 075143.
[157] Ren M Q, Chen W, Liu Q, et al. Observation of gapped phases in potassium-doped single-layer p-terphenyl on Au (111)[J]. Physical Review B, 2019, 99(4): 045417.
[158] Kubozono Y, Eguchi R, Goto H, et al. Recent progress on carbon-based superconductors[J]. J Phys Condens Matter, 2016, 28(33): 334001.
[159] Yano M, Endo M, Hasegawa Y, et al. Well-ordered monolayers of alkali-doped coronene and picene: molecular arrangements and electronic structures[J]. J Chem Phys, 2014, 141(3): 034708.
[160] Shao X J, Ma X H, Liu M J, et al. Comparing study of picene thin films on SnSe and Au(111) surfaces[J]. Chemical Physics, 2020, 532: 110689.
[161] Pompei E, Turchetti C, Hamao S, et al. Fabrication of flexible high-performance organic field-effect transistors using phenacene molecules and their application toward flexible CMOS inverters[J]. Journal of Materials Chemistry C, 2019, 7(20): 6022-6033.
[162] Ros E, Puigdollers J, Ortega P, et al. Origin of the Negative Differential Resistance in the output characteristics of a picene-based Thin-Film Transistor[J]. 2019 Latin American Electron Devices Conference (Laedc), 2019: 53-56.
[163] Rao A, Chow P C, Gelinas S, et al. The role of spin in the kinetic control of recombination in organic photovoltaics[J]. Nature, 2013, 500(7463): 435-439.
[164] Deibel C, Strobel T, Dyakonov V. Role of the charge transfer state in organic donor-acceptor solar cells[J]. Advanced Materials, 2010, 22(37): 4097-4111.
[165] Giovannetti G, Capone M. Electronic correlation effects in superconducting picene from ab initio calculations[J]. Physical Review B, 2011, 83(13): 134508.
[166] Okazaki H, Wakita T, Muro T, et al. Electronic structure of pristine and K-doped solid picene: Nonrigid band change and its implication for electron-intramolecular-vibration interaction[J]. Physical Review B, 2010, 82(19): 195114.
[167] Caputo M, Di Santo G, Parisse P, et al. Experimental Study of Pristine and Alkali Metal Doped Picene Layers: Confirmation of the Insulating Phase in Multilayer Doped Compounds[J]. Journal of Physical Chemistry C, 2012, 116(37): 19902-19908.
[168] Casula M, Calandra M, Profeta G, et al. Intercalant and intermolecular phonon assisted superconductivity in K-doped picene[J]. Phys Rev Lett, 2011, 107(13): 137006.
[169] Kelly S J, Sorescu D C, Wang J, et al. Structural and electronic properties of ultrathin picene films on the Ag(100) surface[J]. Surface Science, 2016, 652: 67-75.
[170] Teranishi K, He X X, Sakai Y, et al. Observation of zero resistivity in K-doped picene[J]. Physical Review B, 2013, 87(6): 060505.
[171] Kambe T, He X X, Takahashi Y, et al. Synthesis and physical properties of metal-doped picene solids[J]. Physical Review B, 2012, 86(21): 214507.
[172] Heguri S, Kobayashi M, Tanigaki K. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons[J]. Physical Review B, 2015, 92(1): 014502.
[173] Mahns B, Roth F, Knupfer M. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?[J]. J Chem Phys, 2012, 136(13): 134503.
[174] Ruff A, Sing M, Claessen R, et al. Absence of metallicity in K-doped picene: importance of electronic correlations[J]. Phys Rev Lett, 2013, 110(21): 216403.
[175] Chen S W, Sang I C, Okamoto H, et al. Adsorption of Phenacenes on a Metallic Substrate: Revisited[J]. Journal of Physical Chemistry C, 2017, 121(21): 11390-11398.
[176] Okamoto H, Hamao S, Eguchi R, et al. Synthesis of the extended phenacene molecules,
[10]phenacene and
[11]phenacene, and their performance in a field-effect transistor[J]. Sci Rep, 2019, 9(1): 4009.
[177] Okazaki H, Jabuchi T, Wakita T, et al. Evidence for metallic states in potassium-intercalated picene film on graphite[J]. Physical Review B, 2013, 88(24): 245414.
[178] Yoshida Y, Yang H H, Huang H S, et al. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)[J]. J Chem Phys, 2014, 141(11): 114701.
[179] Zhou C S, Shan H, Li B, et al. Imaging Molecular Orbitals of Single Picene Molecules Adsorbed on Cu(111) Surface: a Combined Experimental and Theoretical Study[J]. Chinese Journal of Chemical Physics, 2017, 30(1): 29-35.
[180] Zhou C S, Shan H, Li B, et al. Engineering hybrid Co-picene structures with variable spin coupling[J]. Applied Physics Letters, 2016, 108(17): 171601.
[181] Eigler D M, Lutz C P, Rudge W E. An Atomic Switch Realized with the Scanning Tunneling Microscope[J]. Nature, 1991, 352(6336): 600-603.
[182] Hosokai T, Hinderhofer A, Bussolotti F, et al. Thickness and Substrate Dependent Thin Film Growth of Picene and Impact on the Electronic Structure[J]. Journal of Physical Chemistry C, 2015, 119(52): 29027-29037.
[183] Zhang C, Tsuboi H, Hasegawa Y, et al. Fabrication of Highly Oriented Multilayer Films of Picene and DNTT on Their Bulklike Monolayer[J]. ACS Omega, 2019, 4(5): 8669-8673.
[184] Huempfner T, Hafermann M, Udhardt C, et al. Insight into the unit cell: Structure of picene thin films on Ag(100) revealed with complementary methods[J]. J Chem Phys, 2016, 145(17): 174706.
[185] Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[186] Xie Z X, Huang Z F, Xu X. Influence of reconstruction on the structure of self-assembled normal-alkane monolayers on Au(111) surfaces[J]. Physical Chemistry Chemical Physics, 2002, 4(8): 1486-1489.
[187] Okamoto H, Kawasaki N, Kaji Y, et al. Air-assisted high-performance field-effect transistor with thin films of picene[J]. J Am Chem Soc, 2008, 130(32): 10470-10471.
[188] Kosugi T, Miyake T, Ishibashi S, et al. First-Principles Electronic Structure of Solid Picene[J]. Journal of the Physical Society of Japan, 2009, 78(11): 113704.
[189] Wang Y, Yamachika R, Wachowiak A, et al. Novel orientational ordering and reentrant metallicity in K(x)C(60) monolayers for 3 < or = x < or = 5[J]. Phys Rev Lett, 2007, 99(8): 086402.
[190] Naghavi S S, Fabrizio M, Qin T, et al. Electron-doped organics: Charge-disproportionate insulators and Hubbard-Frohlich metals[J]. Physical Review B, 2013, 88(11): 115106.
[191] Kosugi T, Miyake T, Ishibashi S, et al. First-principles structural optimization and electronic structure of the superconductor picene for various potassium doping levels[J]. Physical Review B, 2011, 84(21): 214506.
[192] Monti O L. Understanding Interfacial Electronic Structure and Charge Transfer: An Electrostatic Perspective[J]. J Phys Chem Lett, 2012, 3(17): 2342-2351.
[193] Wang Y, Yamachika R, Wachowiak A, et al. Tuning fulleride electronic structure and molecular ordering via variable layer index[J]. Nat Mater, 2008, 7(3): 194-197.
[194] de Andres P L, Guijarro A, Vergés J A. Crystal structure and electronic states of tripotassium picene[J]. Physical Review B, 2011, 83(24): 245113.
[195] Kim M, Min B I, Lee G, et al. Density functional calculations of electronic structure and magnetic properties of the hydrocarbon K(3)picene superconductor near the metal-insulator transition[J]. Physical Review B, 2011, 83(21): 214510.
[196] Giovannetti G, Casula M, Werner P, et al. Downfolding electron-phonon Hamiltonians from ab initio calculations: Application to K-3 picene[J]. Physical Review B, 2014, 90(11): 115435.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/417128
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
刘国威. 四种功能低维结构在表面上的生长与操控研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849598-刘国威-物理系.pdf(11117KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘国威]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘国威]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘国威]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.