[1] Zhang M, Wang X X, Cao W Q, et al. Electromagnetic Functions of Patterned 2D Materials for Micro-Nano Devices Covering GHz, THz, and Optical Frequency[J]. Advanced Optical Materials, 2019, 7(19): 1900689.
[2] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2d Materials, 2014, 1(2): 025001.
[3] Kroto H W, Heath J R, Obrien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
[4] Hebard A F, Rosseinsky M J, Haddon R C, et al. Superconductivity at 18 K in potassium-doped C60[J]. Nature, 1991, 350(6319): 600-601.
[5] Wachowiak A, Yamachika R, Khoo K H, et al. Visualization of the molecular Jahn-Teller effect in an insulating K4C60 monolayer[J]. Science, 2005, 310(5747): 468-470.
[6] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[7] ijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348): 56-58.
[8] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[9] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.
[10] Yin J F, Huang Y X, Hameed S, et al. Large scale assembly of nanomaterials: mechanisms and applications[J]. Nanoscale, 2020, 12(34): 17571-17589.
[11] Zhang J Q, Zhao Y F, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992.
[12] Liu J C, Tang Y, Wang Y G, et al. Theoretical understanding of the stability of single-atom catalysts[J]. National Science Review, 2018, 5(5): 638-641.
[13] Hendrickx N W, Lawrie W I L, Russ M, et al. A four-qubit germanium quantum processor[J]. Nature, 2021, 591(7851): 580-585.
[14] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[15] Kouwenhoven L P, Austing D G, Tarucha S. Few-electron quantum dots[J]. Reports on Progress in Physics, 2001, 64(6): 701-736.
[16] Veldhorst M, Yang C H, Hwang J C, et al. A two-qubit logic gate in silicon[J]. Nature, 2015, 526(7573): 410-414.
[17] Wyrick J, Wang X Q, Kashid R V, et al. Atom-by-Atom Fabrication of Single and Few Dopant Quantum Devices[J]. Advanced Functional Materials, 2019, 29(52): 1903475.
[18] Kiczynski M, Gorman S K, Geng H, et al. Engineering topological states in atom-based semiconductor quantum dots[J]. Nature, 2022, 606(7915): 694-699.
[19] Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon[J]. Nature, 2019, 569(7757): 532-536.
[20] Clark R G, Brenner R, Buehler T M, et al. Progress in silicon-based quantum computing[J]. Philos Trans A Math Phys Eng Sci, 2003, 361(1808): 1451-1471.
[21] Wang Y J, Bronikowski M J, Hamers R J. An Atomically Resolved Stm Study of the Interaction of Phosphine with the Silicon(001) Surface[J]. Journal of Physical Chemistry, 1994, 98(23): 5966-5973.
[22] Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale[J]. Science, 2012, 335(6064): 64-67.
[23] Wolfowicz G, Simmons S, Tyryshkin A M, et al. Decoherence mechanisms of209Bi donor electron spins in isotopically pure28Si[J]. Physical Review B, 2012, 86(24): 245301.
[24] Broome M A, Gorman S K, House M G, et al. Two-electron spin correlations in precision placed donors in silicon[J]. Nat Commun, 2018, 9(1): 980.
[25] Muhonen J T, Dehollain J P, Laucht A, et al. Storing quantum information for 30 seconds in a nanoelectronic device[J]. Nat Nanotechnol, 2014, 9(12): 986-991.
[26] He Y, Gorman S K, Keith D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371-375.
[27] Veldhorst M, Hwang J C, Yang C H, et al. An addressable quantum dot qubit with fault-tolerant control-fidelity[J]. Nat Nanotechnol, 2014, 9(12): 981-985.
[28] Liu L, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856.
[29] Zhao M, Chen Y, Wang K, et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors[J]. Science, 2020, 368(6493): 878-881.
[30] Comès R, Shapiro S M, Shirane G, et al. Neutron-Scattering Study of the 38- and 54-K Phase Transitions in Deuterated Tetrathiafulvalene- Tetracyanoquinodimethane (TTF-TCNQ)[J]. Physical Review Letters, 1975, 35(22): 1518-1521.
[31] Terrones M, Botello-Mendez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications[J]. Nano Today, 2010, 5(4): 351-372.
[32] Liu M, Artyukhov V I, Yakobson B I. Mechanochemistry of One-Dimensional Boron: Structural and Electronic Transitions[J]. J Am Chem Soc, 2017, 139(5): 2111-2117.
[33] Kramberger C, Thurakitseree T, Koh H, et al. One-dimensional N2 gas inside single-walled carbon nanotubes[J]. Carbon, 2013, 55: 196-201.
[34] Du L, Zhao Y, Wu L, et al. Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus[J]. Nat Commun, 2021, 12(1): 4822.
[35] Medeiros P V C, Marks S, Wynn J M, et al. Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes[J]. ACS Nano, 2017, 11(6): 6178-6185.
[36] Zhang W, Enriquez H, Tong Y, et al. Flat epitaxial quasi-1D phosphorene chains[J]. Nat Commun, 2021, 12(1): 5160.
[37] Hart M, White E R, Chen J, et al. Encapsulation and Polymerization of White Phosphorus Inside Single-Wall Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2017, 56(28): 8144-8148.
[38] Hart M, Chen J, Michaelides A, et al. One-Dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes[J]. Angew Chem Int Ed Engl, 2018, 57(36): 11649-11653.
[39] Mao Y H, Zhang L F, Wang H L, et al. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Frontiers of Physics, 2018, 13(3): 138106.
[40] Tang Q, Zhou Z. Graphene-analogous low-dimensional materials[J]. Progress in Materials Science, 2013, 58(8): 1244-1315.
[41] Hasan M Z, Kane C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[42] 徐小志, 余佳晨, 张智宏, et al. 石墨烯打开带隙研究进展[J]. 科学通报, 2017, 062(020): 2220-2232.
[43] 吴金蓉, 赵爱迪. 单元素类石墨烯二维拓扑材料的研究进展[J]. 低温物理学报, 2019, 41(02): 73-87.
[44] Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium[J]. Phys Rev Lett, 2011, 107(7): 076802.
[45] Deng J, Xia B, Ma X, et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nat Mater, 2018, 17(12): 1081-1086.
[46] Li L, Lu S Z, Pan J, et al. Buckled germanene formation on Pt(111)[J]. Advanced Materials, 2014, 26(28): 4820-4824.
[47] Meng L, Wang Y, Zhang L, et al. Buckled silicene formation on Ir(111)[J]. Nano Lett, 2013, 13(2): 685-690.
[48] Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.
[49] Zhang S, Guo S, Chen Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment[J]. Chem Soc Rev, 2018, 47(3): 982-1021.
[50] Ma Y, Shao X, Li J, et al. Electrochemically exfoliated platinum dichalcogenide atomic layers for high-performance air-stable infrared photodetectors[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8518-8527.
[51] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372-377.
[52] Golias E, Krivenkov M, Varykhalov A, et al. Band Renormalization of Blue Phosphorus on Au(111)[J]. Nano Lett, 2018, 18(11): 6672-6678.
[53] Tian H, Zhang J Q, Ho W K, et al. Two-Dimensional Metal-Phosphorus Network[J]. Matter, 2020, 2(1): 111-118.
[54] Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angew Chem Int Ed Engl, 2015, 54(10): 3112-3115.
[55] Sheng F, Hua C, Cheng M, et al. Rashba valleys and quantum Hall states in few-layer black arsenic[J]. Nature, 2021, 593(7857): 56-60.
[56] Shah J, Wang W, Sohail H M, et al. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material[J]. 2d Materials, 2020, 7(2): 025013.
[57] Nagase K, Kokubo I, Yamazaki S, et al. Structure and growth of Bi(110) islands on Si(111)root 3 x root 3-B substrates[J]. Physical Review B, 2018, 97(19): 195418.
[58] Wu X, Shao Y, Liu H, et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2[J]. Advanced Materials, 2017, 29(11): 1605407.
[59] Lu Y, Xu W, Zeng M, et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110)[J]. Nano Lett, 2015, 15(1): 80-87.
[60] Wang X S, Kushvaha S S, Yan Z, et al. Self-assembly of antimony nanowires on graphite[J]. Applied Physics Letters, 2006, 88(23): 233105.
[61] Zhu X G, Liu Z, Li W, et al. Observation of Rashba splitting on beta-root 3 x root 3-Sb/Si(111) reconstructed surface[J]. Surface Science, 2013, 618: 115-119.
[62] Seo J, Roushan P, Beidenkopf H, et al. Transmission of topological surface states through surface barriers[J]. Nature, 2010, 466(7304): 343-346.
[63] Tang S P, Freeman A J. Bi-Induced Reconstructions on Si(100)[J]. Physical Review B, 1994, 50(3): 1701-1704.
[64] Bakhtizin R Z, Park C, Hashizume T, et al. Atomic-Structure of Bi on the Si(111) Surface[J]. Journal of Vacuum Science & Technology B, 1994, 12(3): 2052-2054.
[65] Lu Y H, Xu W T, Zeng M G, et al. Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi(110)[J]. Nano Letters, 2015, 15(1): 80-87.
[66] Schindler F, Wang Z, Vergniory M G, et al. Higher-Order Topology in Bismuth[J]. Nat Phys, 2018, 14(9): 918-924.
[67] Du H, Sun X, Liu X, et al. Surface Landau levels and spin states in bismuth (111) ultrathin films[J]. Nat Commun, 2016, 7(1): 10814.
[68] Li S S, Ji W X, Hu S J, et al. Effect of Amidogen Functionalization on Quantum Spin Hall Effect in Bi/Sb(111) Films[J]. Acs Applied Materials & Interfaces, 2017, 9(47): 41443-41453.
[69] Wang X Y, Zhang H, Ruan Z L, et al. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions[J]. Acta Physica Sinica, 2020, 69(11): 118101-118101.
[70] Varma C M. Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity[J]. Reviews of Modern Physics, 2020, 92(3): 031001.
[71] Kim J S, Kremer R K, Boeri L, et al. Specific heat of the Ca-intercalated graphite superconductor CaC6[J]. Phys Rev Lett, 2006, 96(21): 217002.
[72] Emery N, Herold C, d'Astuto M, et al. Superconductivity of bulk CaC6[J]. Phys Rev Lett, 2005, 95(8): 087003.
[73] Oh J Y, Rondeau-Gagne S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 2016, 539(7629): 411-415.
[74] Little W. Possibility of synthesizing an organic superconductor[J]. Physical Review, 1964, 134(6A): A1416.
[75] Kirtley J R, Mannhart J. Organic electronics: when TTF met TCNQ[J]. Nat Mater, 2008, 7(7): 520-521.
[76] Jérome D, Mazaud A, Ribault M, et al. Superconductivity in a synthetic organic conductor (TMTSF)2PF 6[J]. Journal de Physique Lettres, 1980, 41(4): 95-98.
[77] Mitsuhashi R, Suzuki Y, Yamanari Y, et al. Superconductivity in alkali-metal-doped picene[J]. Nature, 2010, 464(7285): 76-79.
[78] Kubozono Y, Mitamura H, Lee X, et al. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors[J]. Phys Chem Chem Phys, 2011, 13(37): 16476-16493.
[79] Wang X F, Liu R H, Gui Z, et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene[J]. Nat Commun, 2011, 2: 507.
[80] Xue M, Cao T, Wang D, et al. Superconductivity above 30 K in alkali-metal-doped hydrocarbon[J]. Sci Rep, 2012, 2: 389.
[81] Snider E, Dasenbrock-Gammon N, McBride R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride[J]. Nature, 2020, 586(7829): 373-377.
[82] Mitrano M, Cantaluppi A, Nicoletti D, et al. Possible light-induced superconductivity in K3C60 at high temperature[J]. Nature, 2016, 530(7591): 461-464.
[83] Stephens P W, Mihaly L, Lee P L, et al. Structure of Single-Phase Superconducting K3c60[J]. Nature, 1991, 351(6328): 632-634.
[84] Kubozono Y, Goto H, Jabuchi T, et al. Superconductivity in aromatic hydrocarbons[J]. Physica C-Superconductivity and Its Applications, 2015, 514: 199-205.
[85] Xu C, Que Y, Zhuang Y, et al. Growth Behavior of Pristine and Potassium Doped Coronene Thin Films on Substrates with Tuned Coupling Strength[J]. J Phys Chem B, 2018, 122(2): 601-611.
[86] Wu X F, Xu C Q, Wang K D, et al. Charge Transfer, Phase Separation, and Mott-Hubbard Transition in Potassium-Doped Coronene Films[J]. Journal of Physical Chemistry C, 2016, 120(28): 15446-15452.
[87] Wakita T, Okazaki H, Jabuchi T, et al. Electronic structure of K-doped picene film on HOPG[J]. J Phys Condens Matter, 2017, 29(6): 064001.
[88] Tersoff J, Hamann D R. Theory and Application for the Scanning Tunneling Microscope[J]. Physical Review Letters, 1983, 50(25): 1998-2001.
[89] Binnig G, Rohrer H, Gerber C, et al. Surface Studies by Scanning Tunneling Microscopy[J]. Physical Review Letters, 1982, 49(1): 57-61.
[90] Binnig G, Rohrer H, Gerber C, et al. 7 × 7 Reconstruction on Si(111) Resolved in Real Space[J]. Physical Review Letters, 1983, 50(2): 120-123.
[91] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Phys Rev Lett, 1986, 56(9): 930-933.
[92] Dirac P A M. Quantum mechanics of many-electron systems[J]. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1929, 123(792): 714-733.
[93] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics[J]. Reviews of Modern Physics, 2013, 85(3): 961-1019.
[94] Wang X, Hagmann J A, Namboodiri P, et al. Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers[J]. Nanoscale, 2018, 10(9): 4488-4499.
[95] Abrosimov N V, Aref’ev D G, Becker P, et al. A new generation of 99.999% enriched28Si single crystals for the determination of Avogadro’s constant[J]. Metrologia, 2017, 54(4): 599-609.
[96] van Donkelaar J, Yang C, Alves A D, et al. Single atom devices by ion implantation[J]. J Phys Condens Matter, 2015, 27(15): 154204.
[97] Liu Q, Lei Y, Shao X, et al. Controllable dissociations of PH3 molecules on Si(001)[J]. Nanotechnology, 2016, 27(13): 135704.
[98] Klimes J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19): 195131.
[99] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15): 154104.
[100] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[101] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186.
[102] Blochl P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994, 50(24): 17953-17979.
[103] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996)[J]. Physical Review Letters, 1997, 78(7): 1396-1396.
[104] Tersoff J, Hamann D R. Theory of the scanning tunneling microscope[J]. Phys Rev B Condens Matter, 1985, 31(2): 805-813.
[105] Radilla J, Galván M, Trinidad-Reyes Y, et al. STM Image Simulation: Effect of the Number of Tunneling States and the Isosurface Value[J]. MRS Proceedings, 2011, 838(1): 1-6.
[106] Gustafsson A, Okabayashi N, Peronio A, et al. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study[J]. Physical Review B, 2017, 96(8): 085415.
[107] Schlesinger M E. The thermodynamic properties of phosphorus and solid binary phosphides[J]. Chem Rev, 2002, 102(11): 4267-4301.
[108] Raghavachari K, Haddon R C, Binkley J S. Small elemental clusters: theoretical study of P, P2, P4 and P8[J]. Chemical Physics Letters, 1985, 122(3): 219-224.
[109] Zachariah M R, Melius C F. Theoretical calculation of thermochemistry for molecules in the Si-P-H system[J]. Journal of Physical Chemistry A, 1997, 101(5): 913-918.
[110] Zhang C, Chen G, Wang K, et al. Experimental and theoretical investigation of single Cu, Ag, and Au atoms adsorbed on Si(111)-(7x7)[J]. Phys Rev Lett, 2005, 94(17): 176104.
[111] Binnig G, Rohrer H. In touch with atoms[J]. Reviews of Modern Physics, 1999, 71(2): S324-S330.
[112] Myslivecek J, Strozecka A, Steffl J, et al. Structure of the adatom electron band of the Si(111)-7x7 surface[J]. Physical Review B, 2006, 73(16): 161302.
[113] Ming F, Mulugeta D, Tu W, et al. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping[J]. Nat Commun, 2017, 8: 14721.
[114] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[115] Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature[J]. Nature Nanotechnology, 2015, 10(3): 227-231.
[116] Mannix A J, Zhou X-F, Kiraly B, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs[J]. Science, 2015, 350(6267): 1513-1516.
[117] Derivaz M, Dentel D, Stephan R, et al. Continuous germanene layer on Al (111)[J]. Nano Letters, 2015, 15(4): 2510-2516.
[118] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[119] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 1-15.
[120] Ruffieux P, Wang S, Yang B, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology[J]. Nature, 2016, 531(7595): 489-492.
[121] Que Y, Liu B, Zhuang Y, et al. On-Surface Synthesis of Graphene Nanoribbons on Two-Dimensional Rare Earth–Gold Intermetallic Compounds[J]. The Journal of Physical Chemistry Letters, 2020, 11(13): 5044-5050.
[122] Watts M C, Picco L, Russell-Pavier F S, et al. Production of phosphorene nanoribbons[J]. Nature, 2019, 568(7751): 216-220.
[123] Yang Y-R, Zhang Z-Q, Gu L, et al. Spin-dependent Seebeck effect in zigzag black phosphorene nanoribbons[J]. RSC advances, 2016, 6(50): 44019-44023.
[124] Yang G, Xu S, Zhang W, et al. Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons[J]. Physical Review B, 2016, 94(7): 075106.
[125] Sisakht E T, Fazileh F, Zare M, et al. Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons[J]. Physical Review B, 2016, 94(8): 085417.
[126] Tsai H-S, Chen C-W, Hsiao C-H, et al. The advent of multilayer antimonene nanoribbons with room temperature orange light emission[J]. Chemical Communications, 2016, 52(54): 8409-8412.
[127] Ares P, Palacios J J, Abellán G, et al. Recent progress on antimonene: a new bidimensional material[J]. Advanced Materials, 2018, 30(2): 1703771.
[128] Touski S B, López-Sancho M P. Effects of Vertical Electric Field and Charged Impurities on the Spin-Polarized Transport of β-Antimonene Armchair Nanoribbons[J]. Physical Review B, 2021, 103(11): 115433.
[129] van Veen E, Yu J, Katsnelson M I, et al. Electronic structure of monolayer antimonene nanoribbons under out-of-plane and transverse bias[J]. Physical Review Materials, 2018, 2(11): 114011.
[130] Srivastava P, Sharma V, Jaiswal N K. First‐Principles Investigation of Antimonene Nanoribbons for Sensing Toxic NO2 Gas[J]. physica status solidi (b), 2020, 257(9): 2000034.
[131] Vishnoi P, Mazumder M, Pati S K, et al. Arsenene nanosheets and nanodots[J]. New Journal of Chemistry, 2018, 42(17): 14091-14095.
[132] Zhang S, Xie M, Li F, et al. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities[J]. Angew Chem Int Ed Engl, 2016, 55(5): 1666-1669.
[133] Chen Y, Chen C, Kealhofer R, et al. Black arsenic: a layered semiconductor with extreme in‐plane anisotropy[J]. Advanced Materials, 2018, 30(30): 1800754.
[134] Horcas I, Fernandez R, Gomez-Rodriguez J M, et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology[J]. Review of Scientific Instruments, 2007, 78(1): 013705.
[135] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[136] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of chemical physics, 2000, 113(22): 9901-9904.
[137] Wang V, Xu N, Liu J, et al. VASPKIT: A Pre- and Post-Processing Program for VASP code[J]. arXiv: Materials Science, 2019
[138] Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions[J]. Angewandte Chemie, 2015, 127(10): 3155-3158.
[139] Zhang P, Ma J-Z, Ishida Y, et al. Topologically entangled rashba-split shockley states on the surface of grey arsenic[J]. Physical Review Letters, 2017, 118(4): 046802.
[140] Kong X, Gao M, Yan X W, et al. Superconductivity in electron-doped arsenene[J]. Chinese Physics B, 2018, 27(4): 131-137.
[141] Sheng F, Hua C, Cheng M, et al. Rashba Valleys and Quantum Hall States in Few-Layer Black Arsenic[J]. Nature, 2021, 593(7857): 56-60.
[142] Seidl M, Balazs G, Scheer M. The Chemistry of Yellow Arsenic[J]. Chem Rev, 2019, 119(14): 8406-8434.
[143] Mardanya S, Thakur V K, Bhowmick S, et al. Four allotropes of semiconducting layered arsenic that switch into a topological insulator via an electric field: Computational study[J]. Physical Review B, 2016, 94(3): 035423.
[144] Chen C, Lv H, Zhang P, et al. Synthesis of bilayer borophene[J]. Nature Chemistry, 2022, 14(1): 25-31.
[145] Nørskov J K, Studt F, Abild-Pedersen F, et al. Fundamental concepts in heterogeneous catalysis[M]. John Wiley & Sons, 2014.
[146] Hu S, Zhao A, Kan E, et al. Electrical rectification by selective wave-function coupling in small Ag clusters on Si (111)−(7× 7)[J]. Physical Review B, 2010, 81(11): 115458.
[147] Wang Y, Ding Y. Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study[J]. Nanoscale research letters, 2015, 10(1): 1-10.
[148] Hao Z-B, Ren Z-Y, Guo W-P, et al. Studies on incorporation of As2 and As4 in III–V compound semiconductors with two group V elements grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2001, 224(3-4): 224-229.
[149] Zhang X W, Yan X J, Zhou Z R, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML[J]. Science, 2010, 328(5975): 240-243.
[150] Wang X, Hu Y, Mo J, et al. Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins[J]. Angew Chem Int Ed Engl, 2020, 59(13): 5151-5158.
[151] Gusmao R, Sofer Z, Bousa D, et al. Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders[J]. Angew Chem Int Ed Engl, 2017, 56(46): 14417-14422.
[152] Steiner Petrovič D. Kinetics of Arsenic Surface Segregation in Scrap-Based Silicon Electrical Steel[J]. Metals, 2021, 11(1): 1.
[153] Stegemann B, Bernhardt T M, Kaiser B, et al. STM investigation of surface alloy formation and thin film growth by Sb-4 deposition on Au(111)[J]. Surface Science, 2002, 511(1-3): 153-162.
[154] Artyukhov V I, Liu Y, Yakobson B I. Equilibrium at the edge and atomistic mechanisms of graphene growth[J]. Proc Natl Acad Sci U S A, 2012, 109(38): 15136-15140.
[155] Kubozono Y, Mitamura H, Lee X, et al. Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors[J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16476-16493.
[156] Naghavi S S, Tosatti E. Crystal structure search and electronic properties of alkali-doped phenanthrene and picene[J]. Physical Review B, 2014, 90(7): 075143.
[157] Ren M Q, Chen W, Liu Q, et al. Observation of gapped phases in potassium-doped single-layer p-terphenyl on Au (111)[J]. Physical Review B, 2019, 99(4): 045417.
[158] Kubozono Y, Eguchi R, Goto H, et al. Recent progress on carbon-based superconductors[J]. J Phys Condens Matter, 2016, 28(33): 334001.
[159] Yano M, Endo M, Hasegawa Y, et al. Well-ordered monolayers of alkali-doped coronene and picene: molecular arrangements and electronic structures[J]. J Chem Phys, 2014, 141(3): 034708.
[160] Shao X J, Ma X H, Liu M J, et al. Comparing study of picene thin films on SnSe and Au(111) surfaces[J]. Chemical Physics, 2020, 532: 110689.
[161] Pompei E, Turchetti C, Hamao S, et al. Fabrication of flexible high-performance organic field-effect transistors using phenacene molecules and their application toward flexible CMOS inverters[J]. Journal of Materials Chemistry C, 2019, 7(20): 6022-6033.
[162] Ros E, Puigdollers J, Ortega P, et al. Origin of the Negative Differential Resistance in the output characteristics of a picene-based Thin-Film Transistor[J]. 2019 Latin American Electron Devices Conference (Laedc), 2019: 53-56.
[163] Rao A, Chow P C, Gelinas S, et al. The role of spin in the kinetic control of recombination in organic photovoltaics[J]. Nature, 2013, 500(7463): 435-439.
[164] Deibel C, Strobel T, Dyakonov V. Role of the charge transfer state in organic donor-acceptor solar cells[J]. Advanced Materials, 2010, 22(37): 4097-4111.
[165] Giovannetti G, Capone M. Electronic correlation effects in superconducting picene from ab initio calculations[J]. Physical Review B, 2011, 83(13): 134508.
[166] Okazaki H, Wakita T, Muro T, et al. Electronic structure of pristine and K-doped solid picene: Nonrigid band change and its implication for electron-intramolecular-vibration interaction[J]. Physical Review B, 2010, 82(19): 195114.
[167] Caputo M, Di Santo G, Parisse P, et al. Experimental Study of Pristine and Alkali Metal Doped Picene Layers: Confirmation of the Insulating Phase in Multilayer Doped Compounds[J]. Journal of Physical Chemistry C, 2012, 116(37): 19902-19908.
[168] Casula M, Calandra M, Profeta G, et al. Intercalant and intermolecular phonon assisted superconductivity in K-doped picene[J]. Phys Rev Lett, 2011, 107(13): 137006.
[169] Kelly S J, Sorescu D C, Wang J, et al. Structural and electronic properties of ultrathin picene films on the Ag(100) surface[J]. Surface Science, 2016, 652: 67-75.
[170] Teranishi K, He X X, Sakai Y, et al. Observation of zero resistivity in K-doped picene[J]. Physical Review B, 2013, 87(6): 060505.
[171] Kambe T, He X X, Takahashi Y, et al. Synthesis and physical properties of metal-doped picene solids[J]. Physical Review B, 2012, 86(21): 214507.
[172] Heguri S, Kobayashi M, Tanigaki K. Questioning the existence of superconducting potassium doped phases for aromatic hydrocarbons[J]. Physical Review B, 2015, 92(1): 014502.
[173] Mahns B, Roth F, Knupfer M. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?[J]. J Chem Phys, 2012, 136(13): 134503.
[174] Ruff A, Sing M, Claessen R, et al. Absence of metallicity in K-doped picene: importance of electronic correlations[J]. Phys Rev Lett, 2013, 110(21): 216403.
[175] Chen S W, Sang I C, Okamoto H, et al. Adsorption of Phenacenes on a Metallic Substrate: Revisited[J]. Journal of Physical Chemistry C, 2017, 121(21): 11390-11398.
[176] Okamoto H, Hamao S, Eguchi R, et al. Synthesis of the extended phenacene molecules,
[10]phenacene and
[11]phenacene, and their performance in a field-effect transistor[J]. Sci Rep, 2019, 9(1): 4009.
[177] Okazaki H, Jabuchi T, Wakita T, et al. Evidence for metallic states in potassium-intercalated picene film on graphite[J]. Physical Review B, 2013, 88(24): 245414.
[178] Yoshida Y, Yang H H, Huang H S, et al. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)[J]. J Chem Phys, 2014, 141(11): 114701.
[179] Zhou C S, Shan H, Li B, et al. Imaging Molecular Orbitals of Single Picene Molecules Adsorbed on Cu(111) Surface: a Combined Experimental and Theoretical Study[J]. Chinese Journal of Chemical Physics, 2017, 30(1): 29-35.
[180] Zhou C S, Shan H, Li B, et al. Engineering hybrid Co-picene structures with variable spin coupling[J]. Applied Physics Letters, 2016, 108(17): 171601.
[181] Eigler D M, Lutz C P, Rudge W E. An Atomic Switch Realized with the Scanning Tunneling Microscope[J]. Nature, 1991, 352(6336): 600-603.
[182] Hosokai T, Hinderhofer A, Bussolotti F, et al. Thickness and Substrate Dependent Thin Film Growth of Picene and Impact on the Electronic Structure[J]. Journal of Physical Chemistry C, 2015, 119(52): 29027-29037.
[183] Zhang C, Tsuboi H, Hasegawa Y, et al. Fabrication of Highly Oriented Multilayer Films of Picene and DNTT on Their Bulklike Monolayer[J]. ACS Omega, 2019, 4(5): 8669-8673.
[184] Huempfner T, Hafermann M, Udhardt C, et al. Insight into the unit cell: Structure of picene thin films on Ag(100) revealed with complementary methods[J]. J Chem Phys, 2016, 145(17): 174706.
[185] Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[186] Xie Z X, Huang Z F, Xu X. Influence of reconstruction on the structure of self-assembled normal-alkane monolayers on Au(111) surfaces[J]. Physical Chemistry Chemical Physics, 2002, 4(8): 1486-1489.
[187] Okamoto H, Kawasaki N, Kaji Y, et al. Air-assisted high-performance field-effect transistor with thin films of picene[J]. J Am Chem Soc, 2008, 130(32): 10470-10471.
[188] Kosugi T, Miyake T, Ishibashi S, et al. First-Principles Electronic Structure of Solid Picene[J]. Journal of the Physical Society of Japan, 2009, 78(11): 113704.
[189] Wang Y, Yamachika R, Wachowiak A, et al. Novel orientational ordering and reentrant metallicity in K(x)C(60) monolayers for 3 < or = x < or = 5[J]. Phys Rev Lett, 2007, 99(8): 086402.
[190] Naghavi S S, Fabrizio M, Qin T, et al. Electron-doped organics: Charge-disproportionate insulators and Hubbard-Frohlich metals[J]. Physical Review B, 2013, 88(11): 115106.
[191] Kosugi T, Miyake T, Ishibashi S, et al. First-principles structural optimization and electronic structure of the superconductor picene for various potassium doping levels[J]. Physical Review B, 2011, 84(21): 214506.
[192] Monti O L. Understanding Interfacial Electronic Structure and Charge Transfer: An Electrostatic Perspective[J]. J Phys Chem Lett, 2012, 3(17): 2342-2351.
[193] Wang Y, Yamachika R, Wachowiak A, et al. Tuning fulleride electronic structure and molecular ordering via variable layer index[J]. Nat Mater, 2008, 7(3): 194-197.
[194] de Andres P L, Guijarro A, Vergés J A. Crystal structure and electronic states of tripotassium picene[J]. Physical Review B, 2011, 83(24): 245113.
[195] Kim M, Min B I, Lee G, et al. Density functional calculations of electronic structure and magnetic properties of the hydrocarbon K(3)picene superconductor near the metal-insulator transition[J]. Physical Review B, 2011, 83(21): 214510.
[196] Giovannetti G, Casula M, Werner P, et al. Downfolding electron-phonon Hamiltonians from ab initio calculations: Application to K-3 picene[J]. Physical Review B, 2014, 90(11): 115435.
Edit Comment