Title | Efficient semi-transparent organic solar cells toward building-integrated photovoltaics applications |
Author | |
Name pinyin | ZHANG Yuniu
|
School number | 11850028
|
Degree | 博士
|
Discipline | Electrical and Electronics Engineering
|
Supervisor | |
Mentor unit | 电子与电气工程系
|
Tutor of External Organizations | Wallace C.H. Choy
|
Tutor units of foreign institutions | 香港大学
|
Publication Years | 2022-12-01
|
Submission date | 2022-12-30
|
University | 香港大学
|
Place of Publication | 香港
|
Abstract | Renewable and cost-effective energy generation technology have been explored for decades owing to the foreseeable energy crisis and the occurred environmental pollution. As an application of photovoltaics (PV) technology, the building-integrated photovoltaics (BIPV) strategy paves a sustainable way to replace traditional building materials with solar cell modules, make the building itself as energy generator. The lightweight, flexibility and semi-transparency of organic solar cells (OSCs) make it applicative for semitransparent power-generating windows, remove the restriction of PV modules installation. OSCs have achieved remarkable progress in recent years, the power conversion efficiency (PCE) of the state-of-the-art OSC has been promoted to exceed over 18%, which is comparable to commercial silicon-based solar cells. Meanwhile, the PCE of semitransparent organic solar cells (STOSCs) have achieved over 12% with average visible transmittance (AVT) around 25%. Efficient STOSCs possess high light utilization efficiency(LUE) of near-infrared (NIR) and ultraviolet (UV) photons, and suitable balance between transparency and absorption in visible range. To realize the ultimate application of STOSCs, it is essential to develop both high-performance organic active materials with NIR absorption and stable transparent electrode with promise conductivity and high transmittance. Target power-generating windows in BIPV applications, we have conducted the following research projects to enhance both the electric and optical performance of STOSCs. 1. Demonstrate a self‐assembled and knitted Ag NPs/MWCNTs transparent top electrode with solution process We present a simple solution route to achieve Ag NPs/MWCNTs composite (AgCNTs) transparent and conductive film. The resultant AgCNTs film exhibits an extremely low sheet resistance of 14.5 Ω sq-1, an AVT of ~ 67% and a high color rendering index (CRI) of 97. The optimized device with solution-processed top transparent electrode achieves an AVT of 36% and a high CRI of 90. 2. Guided-growth ultrathin metal electrode to enhance light utilization efficiency of STOSCs We demonstrate a facile approach of introducing pre-located Ag nanoparticles (Ag NPs) with optimized amount of ligands to form high-quality and ultra-thin evaporated Ag film for high performance transparent electrode beyond those merely evaporated Ag electrodes. Fundamentally, our results show that, with the ligand-optimized Ag NPs, we can guide the growth of evaporated Ag clusters to form high quality transparent electrode. Equally important, the approach also reduce the defects of electron transport layer (ETL) and thus favor the carrier transportation/extraction to the electrode. As prepared film exhibit sheet resistance <15Ω sq-1 with AVT of 59.3%, and PM6:L8-BO based STOSC achieves light utilization efficiency (LUE) of 4.422% and power conversion efficiency of 12.80%. 3. Apply ternary active layer with improved charge transport and optical engineering in devices to achieve efficient STOSCs To optimize the optical and electric properties of active layer in STOSCs, a non-fused ring acceptor (BDC-4F-C8) by alkyl chain engineering is used as third component for ternary blend active layer. With optimizing the proportion of third component, STOSCs with ternary active layer perform improved open circuit voltage, short-circuit current and fill factor, which lead to best PCE of 13.19% with AVT of 24.56%, while the PCE of opaque one is 17.02%. |
Keywords | |
Language | English
|
Training classes | 联合培养
|
Enrollment Year | 2018
|
Year of Degree Awarded | 2023-06
|
References List | 1 E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, K.-H. J. R. Kim & S. E. Reviews. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 2018, 82, 894-900.2 M. A. J. P. i. p. r. Green & applications. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in photovoltaics: research and applications 2009, 17(3), 183-189.3 K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells 2017, 173, 37-42.4 A. K. Shukla, K. Sudhakar, P. J. E. Baredar & Buildings. Recent advancement in BIPV product technologies: A review. Energy and Buildings 2017, 140, 188-195.5 H. Yang, J. Burnett, J. J. E. Ji & buildings. Simple approach to cooling load component calculation through PV walls. Energy and buildings 2000, 31(3), 285-290.6 H. Afshari, B. K. Durant, C. R. Brown, K. Hossain, D. Poplavskyy, B. Rout et al. The role of metastability and concentration on the performance of CIGS solar cells under Low-Intensity-Low-Temperature conditions. Solar Energy Materials and Solar Cells 2020, 212, 110571.7 M. Zhang, J. Wang, X. Ma, J. Gao, C. Xu, Z. Hu et al. Review on smart strategies for achieving highly efficient ternary polymer solar cells. APL Materials 2020, 8(9), 090703.1238 T. Eggenhuisen, Y. Galagan, A. Biezemans, T. Slaats, W. Voorthuijzen, S. Kommeren et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. Journal of Materials Chemistry A 2015, 3(14), 7255-7262.9 H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang & A. J. Heeger. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x. Journal of the Chemical Society, Chemical Communications 1977(16), 578-580.10 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4(11), 864-868.11 J. Wan, X. Xu, G. Zhang, Y. Li, K. Feng & Q. Peng. Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy & Environmental Science 2017, 10(8), 1739-1745.12 A. Karki, A. J. Gillett, R. H. Friend & T. Q. Nguyen. The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Advanced Energy Materials 2021, 11(15), 2003441.13 Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced materials 2015, 27(7), 1170-1174.14 W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang et al. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society 2017, 139(21), 7148-7151.12415 Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Xu, K. Xian et al. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Advanced materials 2019, 31(14), 1808356.16 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3(4), 1140-1151.17 Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li et al. 18% Efficiency organic solar cells. Science Bulletin 2020, 65(4), 272-275.18 Y. Li, J.-D. Lin, X. Che, Y. Qu, F. Liu, L.-S. Liao et al. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. Journal of the American Chemical Society 2017, 139(47), 17114-17119.19 Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang, G. Jia et al. Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralow-Bandgap Nonfullerene Acceptor. Advanced Materials 2017, 29(43), 1703080.20 D. Kearns & M. Calvin. Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics 1958, 29(4), 950-951.21 C. W. Tang. Two‐layer organic photovoltaic cell. Applied Physics Letters 1986, 48(2), 183-185.22 J. Yuan, H. Zhang, R. Zhang, Y. Wang, J. Hou, M. Leclerc et al. Reducing voltage losses in the A-DA′ DA acceptor-based organic solar cells. Chem 2020, 6(9), 2147-2161.12523 B. Shi, L. R. Duan, Y. Zhao, J. S. Luo & X. D. Zhang. Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications. Advanced Materials 2020, 32(3), 1806474.24 X. Tian, Y. Zhang, Y. Hao, Y. Cui, W. Wang, F. Shi et al. Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO3/Ag/MoO3 anode. Journal of Nanophotonics 2015, 9, 093043.25 Y. Zhang, X. He, D. Babu, W. Li, X. Gu, C. Shan et al. Efficient Semi-Transparent Organic Solar Cells with High Color Rendering Index Enabled by Self-Assembled and Knitted AgNPs/MWCNTs Transparent Top Electrode via Solution Process. Advanced Optical Materials 2021, 9(8), 2002108.26 C. Yang, D. Liu, M. Bates, M. C. Barr & R. R. Lunt. How to accurately report transparent solar cells. Joule 2019, 3(8), 1803-1809.27 C. C. Chueh, S. C. Chien, H. L. Yip, J. F. Salinas, C. Z. Li, K. S. Chen et al. Toward High-Performance Semi-Transparent Polymer Solar Cells: Optimization of Ultra-Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials 2013, 3(4), 417-423.28 S. Schubert, J. Meiss, L. Muller-Meskamp & K. Leo. Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer. Advanced Energy Materials 2013, 3(4), 438-443.29 G. Y. Xu, L. Shen, C. H. Cui, S. P. Wen, R. M. Xue, W. J. Chen et al. High-Performance Colorful Semitransparent Polymer Solar Cells with Ultrathin126Hybrid-Metal Electrodes and Fine-Tuned Dielectric Mirrors. Advanced Functional Materials 2017, 27(15), 1605908.30 D. D. Zhang, X. C. Jiang, R. Wang, H. J. Xie, G. F. Ma, Q. D. Ou et al. Enhanced Performance of Semitransparent Inverted Organic Photovoltaic Devices via a High Reflector Structure. ACS Applied Materials & Interfaces 2013, 5(20), 10185-10190.31 M. B. Upama, M. Wright, N. K. Elumalai, M. A. Mahmud, D. Wang, C. Xu et al. High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for Window Application. ACS Photonics 2017, 4(9), 2327-2334.32 C. Tao, G. H. Xie, C. X. Liu, X. D. Zhang, W. Dong, F. X. Meng et al. Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode. Applied Physics Letters 2009, 95(5), 053303.33 D. Han, H. Kim, S. Lee, M. Seo & S. Yoo. Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: utilizing the tunable absorption asymmetry. Optics Express 2010, 18(23), A513-A521.34 S. Lim, D. Han, H. Kim, S. Lee & S. Yoo. Cu-based multilayer transparent electrodes: A low-cost alternative to ITO electrodes in organic solar cells. Solar Energy Materials and Solar Cells 2012, 101, 170-175.35 S. Song, H. W. Cho, J. Jeong, Y. J. Yoon, S. Y. Park, S. Song et al. Dichroic Sb2O3/Ag/Sb2O3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar RRL 2020, 4(9), 2000201.12736 J. Zhao, K. O. Brinkmann, T. Hu, N. Pourdavoud, T. Becker, T. Gahlmann et al. Self-Encapsulating Thermostable and Air-Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials 2017, 7(14), 1602599.37 C. Hanmandlu, C. Y. Chen, K. M. Boopathi, H. W. Lin, C. S. Lai & C. W. Chu. Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes. ACS Applied Materials & Interfaces 2017, 9(38), 32635-32642.38 D. Z. Chen, G. Fan, W. D. Zhu, H. F. Yang, H. Xi, F. Q. He et al. Highly efficient bifacial CsPbIBr2 solar cells with a TeO2/Ag transparent electrode and unsymmetrical carrier transport behavior. Dalton Transactions 2020, 49(18), 6012-6019.39 S. Z. Pang, X. Y. Li, H. Dong, D. Z. Chen, W. D. Zhu, J. J. Chang et al. Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes. ACS Applied Materials & Interfaces 2018, 10(15), 12731-12739.40 J. H. Lu, Y. L. Yu, S. R. Chuang, C. H. Yeh & C. P. Chen. High-Performance, Semitransparent, Easily Tunable Vivid Colorful Perovskite Photovoltaics Featuring Ag/ITO/Ag Microcavity Structures. The Journal of Physical Chemistry C 2016, 120(8), 4233-4239.41 Z. Q. Ying, W. Chen, Y. Lin, Z. F. He, T. Chen, Y. D. Zhu et al. Supersmooth Ta2O5/Ag/Polyetherimide Film as the Rear Transparent Electrode for High Performance Semitransparent Perovskite Solar Cells. Advanced Optical Materials 2019, 7(4), 1801409.42 J. E. McCarthy, C. A. Hanley, L. J. Brennan, V. G. Lambertini & Y. K. Gun'ko. Fabrication of highly transparent and conducting PEDOT:PSS films128using a formic acid treatment. Journal of Materials Chemistry C 2014, 2(4), 764-770.43 Z. Fan, P. Li, D. Du & J. Ouyang. Significantly Enhanced Thermoelectric Properties of PEDOT:PSS Films through Sequential Post-Treatments with Common Acids and Bases. Advanced Energy Materials 2017, 7(8), 1602116.44 N. Kim, H. Kang, J. H. Lee, S. Kee, S. H. Lee & K. Lee. Highly conductive all‐plastic electrodes fabricated using a novel chemically controlled transfer‐printing method. Advanced Materials 2015, 27(14), 2317-2323.45 Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen et al. A highly stretchable, transparent, and conductive polymer. Science advances 2017, 3(3), e1602076.46 L. Sun, W. Zeng, C. Xie, L. Hu, X. Dong, F. Qin et al. Flexible All-Solution-Processed Organic Solar Cells with High-Performance Nonfullerene Active Layers. Advanced Materials 2020, 32(14), 1907840.47 X. Fan, B. Xu, N. Wang, J. Wang, S. Liu, H. Wang et al. Highly conductive stretchable all‐plastic electrodes using a novel dipping‐embedded transfer method for high‐performance wearable sensors and semitransparent organic solar cells. Advanced Electronic Materials 2017, 3(5), 1600471.48 J. Czolk, A. Puetz, D. Kutsarov, M. Reinhard, U. Lemmer & A. Colsmann. Inverted semi‐transparent polymer solar cells with transparency color rendering indices approaching 100. Advanced Energy Materials 2013, 3(3), 386-390.49 Y. D. Yin, Z. Y. Li, Z. Y. Zhong, B. Gates, Y. N. Xia & S. Venkateswaran. Synthesis and characterization of stable aqueous dispersions of silver129nanoparticles through the Tollens process. Journal of Materials Chemistry 2002, 12(3), 522-527.50 P. Raveendran, J. Fu & S. L. Wallen. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chemistry 2006, 8(1), 34-38.51 Z. Jia, H. Sun & Q. Gu. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2013, 419, 174-179.52 J. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z.-Y. Li, Q. Zhang et al. Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. Journal of the American Chemical Society 2010, 132(25), 8552-8553.53 B. Y. Ahn, D. J. Lorang & J. A. Lewis. Transparent conductive grids via direct writing of silver nanoparticle inks. Nanoscale 2011, 3(7), 2700-2702.54 S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon et al. Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano 2013, 7(6), 5024-5031.55 J. H. Park, D. Y. Lee, W. Seung, Q. Sun, S.-W. Kim & J. H. Cho. Metallic Grid Electrode Fabricated via Flow Coating for High-Performance Flexible Piezoelectric Nanogenerators. The Journal of Physical Chemistry C 2015, 119(14), 7802-7808.56 J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker & D. Poulikakos. Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid130Transparent Electrodes. Advanced Functional Materials 2016, 26(6), 833-840.57 S. Lu, J. Lin, K. Liu, S. Yue, K. Ren, F. Tan et al. Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer. Acta Materialia 2017, 130, 208-214.58 L. Zhou, H.-Y. Xiang, S. Shen, Y.-Q. Li, J.-D. Chen, H.-J. Xie et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano 2014, 8(12), 12796-12805.59 R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley & K. I. Winey. Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors. ACS Nano 2013, 7(9), 7654-7663.60 A. T. Bellew, H. G. Manning, C. G. da Rocha, M. S. Ferreira & J. J. Boland. Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks. ACS Nano 2015, 9(11), 11422-11429.61 F. Guo, X. D. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas et al. ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Advanced Energy Materials 2013, 3(8), 1062-1067.62 G. Q. Ji, Y. L. Wang, Q. Luo, K. Han, M. L. Xie, L. P. Zhang et al. Fully Coated Semitransparent Organic Solar Cells with a Doctor-Blade-Coated Composite Anode Buffer Layer of Phosphomolybdic Acid and PEDOT:PSS and a Spray-Coated Silver Nanowire Top Electrode. ACS Applied Materials & Interfaces 2018, 10(1), 943-954.13163 F. Selzer, N. Weiss, D. Kneppe, L. Bormann, C. Sachse, N. Gaponik et al. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale 2015, 7(6), 2777-2783.64 J. Zhang, F. Li, K. Yang, C. P. Veeramalai & T. Guo. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode. Applied Surface Science 2016, 369, 308-313.65 F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Y. Hu, C. Bronnbauer et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 2015, 7(5), 1642-1649.66 Y. S. Fang, Z. C. Wu, J. Li, F. Y. Jiang, K. Zhang, Y. L. Zhang et al. High-Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials 2018, 28(9), 1705409.67 M. L. Xie, H. Lu, L. P. Zhang, J. Wang, Q. Luo, J. Lin et al. Fully Solution-Processed Semi-Transparent Perovskite Solar Cells With Ink-Jet Printed Silver Nanowires Top Electrode. Solar RRL 2018, 2(2), 1700184.68 C. O. R. Quiroz, Y. Shen, M. Salvador, K. Forberich, N. Schrenker, G. D. Spyropoulos et al. Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes. Journal of Materials Chemistry A 2018, 6(8), 3583-3592.69 X. Wang, L. Zhi & K. Muellen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letter 2008, 8(1), 323-327.13270 Y. Wang, X. Chen, Y. Zhong, F. Zhu & K. P. Loh. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters 2009, 95(6), 063302.71 Y. Wang, Y. Chen, S. D. Lacey, L. Xu, H. Xie, T. Li et al. Reduced graphene oxide film with record-high conductivity and mobility. Materials Today 2018, 21(2), 186-192.72 V. V. Brus, M. A. Gluba, X. Zhang, K. Hinrichs, J. Rappich & N. H. Nickel. Stability of graphene-silicon heterostructure solar cells. Physica Status Solidi a-Applications and Materials Science 2014, 211(4), 843-847.73 Z. Liu, J. Li & F. Yan. Package-Free Flexible Organic Solar Cells with Graphene top Electrodes. Advanced Materials 2013, 25(31), 4296-4301.74 P. Lin, W. C. H. Choy, D. Zhang, F. Xie, J. Xin & C. W. Leung. Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Applied Physics Letters 2013, 102(11), 113303.75 H. Kim, J. Byun, S.-H. Bae, T. Ahmed, J.-X. Zhu, S.-J. Kwon et al. On-Fabrication Solid-State N-Doping of Graphene by an Electron-Transporting Metal Oxide Layer for Efficient Inverted Organic Solar Cells. Advanced Energy Materials 2016, 6(12), 1600172.76 S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi & H. Park. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles. Nano Letter 2018, 18(2), 1337-1343.77 Y. Chen, Y. Y. Yue, S. R. Wang, N. Zhang, J. Feng & H. B. Sun. Thermally-induced wrinkles on PH1000/graphene composite electrode for enhanced133efficiency of organic solar cells. Solar Energy Materials and Solar Cells 2019, 201, 8.78 J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock & L. Dai. Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells. Advanced Materials 2012, 24(17), 2228-2233.79 D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis et al. Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices. Advanced Functional Materials 2015, 25(15), 2213-2221.80 A. G. Ricciardulli, S. Yang, X. Feng & P. W. M. Blom. Solution-Processable High-Quality Graphene for Organic Solar Cells. ACS Applied Materials & Interfaces 2017, 9(30), 25412-25417.81 Z. Liu, J. Li, Z.-H. Sun, G. Tai, S.-P. Lau & F. Yan. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 2012, 6(1), 810-818.82 Z. K. Liu, P. You, S. H. Liu & F. Yan. Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. ACS Nano 2015, 9(12), 12026-12034.83 S. Iijima. HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature 1991, 354(6348), 56-58.84 S. Iijima & T. Ichihashi. SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER. Nature 1993, 363(6430), 603-605.85 R. H. Baughman, A. A. Zakhidov & W. A. de Heer. Carbon nanotubes - the route toward applications. Science 2002, 297(5582), 787-792.13486 E. G. Gamaly & T. W. Ebbesen. MECHANISM OF CARBON NANOTUBE FORMATION IN THE ARC-DISCHARGE. Physical Review B 1995, 52(3), 2083-2089.87 M. F. L. De Volder, S. H. Tawfick, R. H. Baughman & A. J. Hart. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339(6119), 535-539.88 Q. W. Li, H. Yan, Y. Cheng, J. Zhang & Z. F. Liu. A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. Journal of Materials Chemistry 2002, 12(4), 1179-1183.89 E. Flahaut, R. Bacsa, A. Peigney & C. Laurent. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications 2003(12), 1442-1443.90 H. Griffiths, C. Xu, T. Barrass, M. Cooke, F. Iacopi, P. Vereecken et al. Plasma assisted growth of nanotubes and nanowires. Surface & Coatings Technology 2007, 201(22-23), 9215-9220.91 F. Rohmund, R. E. Morjan, G. Ledoux, F. Huisken & R. Alexandrescu. Carbon nanotube films grown by laser-assisted chemical vapor deposition. Journal of Vacuum Science & Technology B 2002, 20(3), 802-811.92 T. F. Kuo, Z. Y. Juang, C. H. Tsai, Y. M. Tsau, H. F. Cheng & I. N. Lin. Microwave-assisted chemical vapor deposition process for synthesizing carbon nanotubes. Journal of Vacuum Science & Technology B 2001, 19(3), 1030-1033.93 Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou et al. Transparent, conductive carbon nanotube films. Science 2004, 305(5688), 1273-1276.13594 A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller & M. Chhowalla. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Applied Physics Letters 2005, 87(20),203511.95 H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang & Y. H. Lee. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society 2007, 129(25), 7758.96 I. Jeon, C. Delacou, A. Kaskela, E. I. Kauppinen, S. Maruyama & Y. Matsuo. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes. Scientific Reports 2016, 6, 31348.97 F. Zhang, X. Yang, M. Cheng, W. Wang & L. Sun. Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 2016, 20, 108-116.98 K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjornsson, M. Saliba, A. Abate et al. High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Advanced Materials 2017, 29(17), 1606398.99 I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela, O. Reynaud et al. Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letter 2015, 15(10), 6665-6671.100 N. Ahn, I. Jeon, J. Yoon, E. I. Kauppinen, Y. Matsuo, S. Maruyama et al. Carbon-sandwiched perovskite solar cell. Journal of Materials Chemistry A 2018, 6(4), 1382-1389.136101 I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky et al. High-Performance Solution-Processed Double-Walled Carbon Nanotube Transparent Electrode for Perovskite Solar Cells. Advanced Energy Materials 2019, 9(27), 1901204.102 J.-W. Lee, I. Jeon, H.-S. Lin, S. Seo, T.-H. Han, A. Anisimov et al. Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Letter 2019, 19(4), 2223-2230.103 F. R. Li, Y. Xu, W. Chen, S. H. Xie & J. Y. Li. Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells. Journal of Materials Chemistry A 2017, 5(21), 10374-10379.104 Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai, L. Zhang et al. High‐performance semitransparent ternary organic solar cells. Advanced Functional Materials 2018, 28(49), 1800627.105 P. Yin, Z. Yin, Y. Ma & Q. Zheng. Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy & Environmental Science 2020, 13(12), 5177-5185.106 Y. Song, K. Zhang, S. Dong, R. Xia, F. Huang & Y. Cao. Semitransparent organic solar cells enabled by a sequentially deposited bilayer structure. ACS Applied Materials & Interfaces 2020, 12(16), 18473-18481.107 C. Xu, K. Jin, Z. Xiao, Z. Zhao, X. Ma, X. Wang et al. Wide bandgap polymer with narrow photon harvesting in visible light range enables efficient semitransparent organic photovoltaics. Advanced Functional Materials 2021, 31(52), 2107934.137108 Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye, X. Feng et al. Fibril Network Strategy Enables High-Performance Semitransparent Organic Solar Cells. Advanced Functional Materials 2020, 30(28), 2002181.109 J. Zhang, G. Xu, F. Tao, G. Zeng, M. Zhang, Y. Yang et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Advanced Materials 2019, 31(10), 1807159.110 R. Betancur, P. Romero-Gomez, A. Martinez-Otero, X. Elias, M. Maymó & J. Martorell. Transparent polymer solar cells employing a layered light-trapping architecture. Nature Photonics 2013, 7(12), 995-1000.111 Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou, C. Z. Li et al. Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Advanced Materials 2019, 31(40), 1903173.112 B. Dudem, J. W. Jung & J. S. Yu. Improved light harvesting efficiency of semitransparent organic solar cells enabled by broadband/omnidirectional subwavelength antireflective architectures. Journal of Materials Chemistry A 2018, 6(30), 14769-14779.113 R. R. Lunt & V. Bulovic. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied Physics Letters 2011, 98(11), 113305.114 F. Pastorelli, P. Romero‐Gomez, R. Betancur, A. Martinez‐Otero, P. Mantilla‐Perez, N. Bonod et al. Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration. Advanced Energy Materials 2015, 5(2), 1400614.138115 Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin et al. Microcavity‐embedded, colour‐tuneable, transparent organic solar cells. Advanced Materials 2014, 26(7), 1129-1134.116 J. H. Lu, Y. H. Lin, B. H. Jiang, C. H. Yeh, J. C. Kao & C. P. Chen. Microcavity structure provides high‐performance (> 8.1%) semitransparent and colorful organic photovoltaics. Advanced Functional Materials 2018, 28(7), 1703398.117 S. Chen, H. Yao, B. Hu, G. Zhang, L. Arunagiri, L. K. Ma et al. A nonfullerene semitransparent tandem organic solar cell with 10.5% power conversion efficiency. Advanced Energy Materials 2018, 8(31), 1800529.118 A. Polman, M. Knight, E. C. Garnett, B. Ehrler & W. C. Sinke. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352(6283), 10.119 V. V. Brus, J. Lee, B. R. Luginbuhl, S.-J. Ko, G. C. Bazan & T.-Q. Nguyen. Solution-Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. Advanced Materials 2019, 31(30), 1900904.120 Q. Liao, Q. Kang, Y. Yang, C. An, B. Xu & J. Hou. Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Advanced Materials 2020, 32(7), 1906557.121 L. X. Meng, Y. M. Zhang, X. J. Wan, C. X. Li, X. Zhang, Y. B. Wang et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361(6407), 1094.139122 J. Yuan, Y. Q. Zhang, L. Y. Zhou, G. C. Zhang, H. L. Yip, T. K. Lau et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3(4), 1140-1151.123 L. Feng, J. Yuan, Z. Zhang, H. Peng, Z.-G. Zhang, S. Xu et al. Thieno 3,2-b pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics. ACS Applied Materials & Interfaces 2017, 9(37), 31985-31992.124 C. J. Traverse, R. Pandey, M. C. Barr & R. R. Lunt. Emergence of highly transparent photovoltaics for distributed applications. Nature Energy 2017, 2(11), 12, 849-860.125 W. Wang, C. Yan, T.-K. Lau, J. Wang, K. Liu, Y. Fan et al. Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials 2017, 29(31), 1701308.126 F. Liu, Z. Zhou, C. Zhang, J. Zhang, Q. Hu, T. Vergote et al. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor. Advanced Materials 2017, 29(21), 1606574.127 S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade et al. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials 2016, 28(42), 9423.128 Q. Xue, R. Xia, C. J. Brabec & H.-L. Yip. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy & Environmental Science 2018, 11(7), 1688-1709.140129 N. Espinosa, R. Garcia-Valverde, A. Urbina & F. C. Krebs. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Solar Energy Materials and Solar Cells 2011, 95(5), 1293-1302.130 J. W. Zhang, G. Y. Xu, F. Tao, G. Zeng, M. Y. Zhang, Y. Yang et al. Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100. Advanced Materials 2019, 31(10), 1807159.131 Y. Wang, B. Jia, F. Qin, Y. Wu, W. Meng, S. Dai et al. Semitransparent, non-fullerene and flexible all-plastic solar cells. Polymer 2016, 107, 108-112.132 L. Bu, Z. Liu, M. Zhang, W. Li, A. Zhu, F. Cai et al. Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7(32), 17776-17781.133 J. Czolk, A. Puetz, D. Kutsarov, M. Reinhard, U. Lemmer & A. Colsmann. Inverted Semi-transparent Polymer Solar Cells with Transparency Color Rendering Indices approaching 100. Advanced Energy Materials 2013, 3(3), 386-390.134 J. H. Heo, D. H. Shin, D. H. Song, D. H. Kim, S. J. Lee & S. H. Im. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A 2018, 6(18), 8251-8258.135 D. H. Shin, C. W. Jang, H. S. Lee, S. W. Seo & S.-H. Choi. Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes. ACS Applied Materials & Interfaces 2018, 10(4), 3596-3601.141136 Y. Song, S. Chang, S. Gradecak & J. Kong. Visibly-Transparent Organic Solar Cells on Flexible Substrates with All-Graphene Electrodes. Advanced Energy Materials 2016, 6(20), 1600847.137 P. You, Z. Liu, Q. Tai, S. Liu & F. Yan. Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials 2015, 27(24), 3632-3638.138 Y. Zhou, X. Yin, Q. Luo, X. Zhao, D. Zhou, J. Han et al. Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Interfaces 2018, 10(37), 31384-31393.139 A. K. K. Kyaw, T. A. Yemata, X. Wang, S. L. Lim, W. S. Chin, K. Hippalgaonkar et al. Enhanced Thermoelectric Performance of PEDOT:PSS Films by Sequential Post-Treatment with Formamide. Macromolecular Materials and Engineering 2018, 303(2), 170042.140 Y. Xia, K. Sun & J. Ouyang. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials 2012, 24(18), 2436-2440.141 M. T. Z. Myint, M. Hada, H. Inoue, T. Marui, T. Nishikawa, Y. Nishina et al. Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N2 pressure-induced nitric acid treatment. Rsc Advances 2018, 8(64), 36563-36570.142 Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi et al. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Organic Electronics 2014, 15(3), 661-666.142143 L. Yin, Z. Zhao, F. Jiang, Z. Li, S. Xiong & Y. Zhou. PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells. Organic Electronics 2014, 15(10), 2593-2598.144 Y. Zhang, S.-W. Ng, X. Lu & Z. Zheng. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews 2020, 120(4), 2049-2122.145 X. Ren, X. Li & W. C. H. Choy. Optically enhanced semi-transparent organic solar cells through hybrid metal/nanoparticle/dielectric nanostructure. Nano Energy 2015, 17, 187-195.146 H. Lu, X. Ren, D. Ouyang & W. C. H. Choy. Emerging Novel Metal Electrodes for Photovoltaic Applications. Small 2018, 14(14), 1703140.147 J. Kang, C.-G. Park, S.-H. Lee, C. Cho, D.-G. Choi & J.-Y. Lee. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles. Nanoscale 2016, 8(21), 11217-11223.148 X. He, Y. Wang, H. Lu, D. Ouyang, Z. Huang & W. C. H. Choy. Realizing the ultimate goal of fully solution-processed organic solar cells: a compatible self-sintering method to achieve silver back electrode. Journal of Materials Chemistry A 2020, 8(12), 6083-6091.149 D. Wang, T. Xie, Q. Peng & Y. Li. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. Journal of the American Chemical Society 2008, 130(12), 4016-4022.150 D. D. Evanoff & G. J. C. Chumanov. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem 2010, 6(7), 1221-1231.143151 C. Dahmen, A. N. Sprafke, H. Dieker, M. Wuttig & G. von Plessen. Optical and structural changes of silver nanoparticles during photochromic transformation. Applied Physics Letters 2006, 88(1), 011923.152 H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao & W. C. H. Choy. Locally Welded Silver Nano-Network Transparent Electrodes with High Operational Stability by a Simple Alcohol-Based Chemical Approach. Advanced Functional Materials 2015, 25(27), 4211-4218.153 J. Kim, D. Ouyang, H. F. Lu, F. Ye, Y. W. Guo, N. Zhao et al. High Performance Flexible Transparent Electrode via One-Step Multifunctional Treatment for Ag Nanonetwork Composites Semi-Embedded in Low-Temperature-Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials 2020, 10(15), 1903919.154 H. Lu, D. Zhang, X. Ren, J. Liu & W. C. H. Choy. Selective Growth and Integration of Silver Nanoparticles on Silver Nanowires at Room Conditions for Transparent Nano-Network Electrode. ACS Nano 2014, 8(10), 10980-10987.155 I. Lopez-Salido, D. C. Lim & Y. D. Kim. Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS. Surface Science 2005, 588(1-3), 6-18.156 S. W. Han, Y. Kim & K. Kim. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. Journal of Colloid and Interface Science 1998, 208(1), 272-278.157 M. Y. Bashouti, S. Resch, J. Ristein, M. Mackovic, E. Spiecker, S. R. Waldvogel et al. Functionalization of Silver Nanowires Surface using Ag-C144Bonds in a Sequential Reductive Method. ACS Applied Materials & Interfaces 2015, 7(39), 21657-21661.158 G. Xue, Q. P. Dai & S. G. Jiang. CHEMICAL-REACTIONS OF IMIDAZOLE WITH METALLIC SILVER STUDIED BY THE USE OF SERS AND XPS TECHNIQUES. Journal of the American Chemical Society 1988, 110(8), 2393-2395.159 Y.-Q. Zhang, M. Paszkiewicz, P. Du, L. Zhang, T. Lin, Z. Chen et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nature Chemistry 2018, 10(3), 296-304.160 C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo et al. High efficiency single-junction semitransparent perovskite solar cells. Energy & Environmental Science 2014, 7(9), 2968-2973.161 E. Della Gaspera, Y. Peng, Q. C. Hou, L. Spiccia, U. Bach, J. J. Jasieniak et al. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 2015, 13, 249-257.162 Y.-Y. Lee, K.-H. Tu, C.-C. Yu, S.-S. Li, J.-Y. Hwang, C.-C. Lin et al. Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano 2011, 5(8), 6564-6570.163 F. Fu, T. Feurer, T. Jaeger, E. Avancini, B. Bissig, S. Yoon et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications 2015, 6, 8932.145164 H. Kim, H. S. Kim, J. Ha, N. G. Park & S. Yoo. Empowering Semi-Transparent Solar Cells with Thermal-Mirror Functionality. Advanced Energy Materials 2016, 6(14), 1502466.165 A. Guerrero, S. Loser, G. Garcia-Belmonte, C. J. Bruns, J. Smith, H. Miyauchi et al. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys. 2013, 15(39), 16456-16462.166 A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede & U. Lemmer. Efficient Semi-Transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties. Advanced Energy Materials 2011, 1(4), 599-603.167 M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nature Communications 2021, 12(1), 1-10.168 L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials 2022, 1-8.169 Y. Zhang, D. Luo, C. Shan, Q. Liu, X. Gu, W. Li et al. High‐Performance Semitransparent Organic Solar Cells Enabled by Improved Charge Transport and Optical Engineering of Ternary Blend Active Layer. Solar RRL 2022, 2100785.170 Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An, M. Zhang et al. Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 2019, 55, 424-432.146171 T. Li, S. Dai, Z. Ke, L. Yang, J. Wang, C. Yan et al. Fused Tris (thienothiophene)‐Based Electron Acceptor with Strong Near‐Infrared Absorption for High‐Performance As‐Cast Solar Cells. Advanced Materials 2018, 30(10), 1705969.172 Y. Chang, X. Zhu, L. Zhu, Y. Wang, C. Yang, X. Gu et al. Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy 2021, 86, 106098.173 D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li et al. High‐performance semitransparent organic solar cells with excellent infrared reflection and see‐through functions. Advanced Materials 2020, 32(32), 2001621.174 J. Yun. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Advanced Functional Materials 2017, 27(18), 1606641.175 N. Kaiser. Review of the fundamentals of thin-film growth. Applied optics 2002, 41(16), 3053-3060.176 M. Henzler, T. Lüer & A. Burdach. Nonmetallic conductivity of epitaxial monolayers of Ag at low temperatures. Physical Review B 1998, 58(15), 10046.177 J. Meiss, M. Riede & K. Leo. Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes. Applied Physics Letters 2009, 94(1), 013303.178 L. Ke, S. Lai, H. Liu, C. Peh, B. Wang & J. Teng. Ultrasmooth silver thin film on PEDOT: PSS nucleation layer for extended surface plasmon propagation. ACS Applied Materials & Interfaces 2012, 4(3), 1247-1253.147179 H. Shi, R. Xia, C. Sun, J. Xiao, Z. Wu, F. Huang et al. Synergic Interface and Optical Engineering for High‐Performance Semitransparent Polymer Solar Cells. Advanced Energy Materials 2017, 7(20), 1701121.180 C. C. Chueh, S. C. Chien, H. L. Yip, J. F. Salinas, C. Z. Li, K. S. Chen et al. Toward high‐performance semi‐transparent polymer solar cells: optimization of ultra‐thin light absorbing layer and transparent cathode architecture. Advanced Energy Materials 2013, 3(4), 417-423.181 X. He, Y. Wang, L. Zhang, R. Zhang, J. Kim, K. S. Wong et al. Evaporation‐Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials 2021, 31(19), 2010764.182 H. Kang, S. Jung, S. Jeong, G. Kim & K. Lee. Polymer-metal hybrid transparent electrodes for flexible electronics. Nature Communications 2015, 6(1), 1-7.183 F. Gao & Z. Gu. in Handbook of Nanoparticles 661-690 (Springer, 2016).184 S. Mourdikoudis & L. M. Liz-Marzán. Oleylamine in nanoparticle synthesis. Chem. Mat. 2013, 25(9), 1465-1476.185 W. Liu, S. Sun, S. Xu, H. Zhang, Y. Zheng, Z. Wei et al. Theory‐Guided Material Design Enabling High‐Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations. Advanced Materials 2022, 34(18), 2200337.186 Z.-P. Yu, X. Li, C. He, D. Wang, R. Qin, G. Zhou et al. High-efficiency organic solar cells with low voltage-loss of 0.46 V. Chinese Chemical Letters 2020, 31(7), 1991-1996.148187 P. Yin, Z. Yin, Y. Ma & Q. Zheng. Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy & Environmental Science 2020, 13(12), 5177-5185.188 A. Pockett, H. K. H. Lee, B. L. Coles, W. C. Tsoi & M. J. Carnie. A combined transient photovoltage and impedance spectroscopy approach for a comprehensive study of interlayer degradation in non-fullerene acceptor organic solar cells. Nanoscale 2019, 11(22), 10872-10883.189 S. Lee, I. Jeong, H. P. Kim, S. Y. Hwang, T. J. Kim, Y. D. Kim et al. Effect of incidence angle and polarization on the optimized layer structure of organic solar cells. Solar Energy Materials and Solar Cells 2013, 118, 9-17.190 L. Dou, W. H. Chang, J. Gao, C. C. Chen, J. You & Y. Yang. A selenium‐substituted low‐bandgap polymer with versatile photovoltaic applications. Advanced Materials 2013, 25(6), 825-831.191 Y. Liu, P. Cheng, T. Li, R. Wang, Y. Li, S.-Y. Chang et al. Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 2019, 13(2), 1071-1077.192 X. Sun, W. Zha, T. Lin, J. Wei, I. Ismail, Z. Wang et al. Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells. Journal of Materials Science 2020, 55(30), 14893-14906.193 Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye, X. Feng et al. Fibril network strategy enables high‐performance semitransparent organic solar cells. Advanced Functional Materials 2020, 30(28), 2002181.194 Y. Bai, C. Zhao, X. Chen, S. Zhang, S. Zhang, T. Hayat et al. Interfacial engineering and optical coupling for multicolored semitransparent inverted149organic photovoltaics with a record efficiency of over 12%. Journal of Materials Chemistry A 2019, 7(26), 15887-15894.195 Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, X. Wang et al. Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance. Journal of Materials Chemistry A 2021, 9(11), 6797-6804.196 Y. Xiong, R. E. Booth, T. Kim, L. Ye, Y. Liu, Q. Dong et al. Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and High‐Efficiency Semitransparent Organic Photovoltaics. Solar RRL 2020, 4(10), 2000328.197 X. Li, H. Meng, F. Shen, D. Su, S. Huo, J. Shan et al. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes and Pigments 2019, 166, 196-202.198 Y. Li, X. Guo, Z. Peng, B. Qu, H. Yan, H. Ade et al. Color-neutral, semitransparent organic photovoltaics for power window applications. Proceedings of the National Academy of Sciences 2020, 117(35), 21147-21154.199 X. Liu, Z. Zhong, R. Zhu, J. Yu & G. Li. Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 2022.200 H. I. Jeong, S. Biswas, S. C. Yoon, S. J. Ko, H. Kim & H. Choi. Rational Design of Highly Efficient Semi‐Transparent Organic Photovoltaics with Silver Nanowire Top Electrode via 3D Optical Simulation Study. Advanced Energy Materials 2021, 11(47), 2102397.201 Y. Li, G. Xu, C. Cui & Y. Li. Flexible and Semitransparent Organic Solar Cells. Adv. Energy Mater 2018, 8(7), 375-408.150202 W. Li, Q. Liu, Y. Zhang, C. a. Li, Z. He, W. C. H. Choy et al. Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials 2020, 32(33), 2001591.203 P. Cheng, G. Li, X. Zhan & Y. Yang. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics 2018, 12(3), 131-142.204 S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nature Photonics 2020, 14(5), 300-305.205 F. Qi, K. Jiang, F. Lin, Z. Wu, H. Zhang, W. Gao et al. Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Letter 2020, 6(1), 9-15.206 H. Chen, H. Lai, Z. Chen, Y. Zhu, H. Wang, L. Han et al. 17.1%‐Efficient eco‐compatible organic solar cells from a dissymmetric 3D network acceptor. Angewandte Chemie 2021, 133(6), 3275-3283.207 X. Xu, L. Yu, H. Yan, R. Li & Q. Peng. Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy & Environmental Science 2020, 13(11), 4381-4388.208 C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.209 Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, K. Yang et al. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376.151210 Y. S. Fang, Z. C. Wu, J. Li, F. Y. Jiang, K. Zhang, Y. L. Zhang et al. High-Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials 2018, 28(9), 1705409.211 F. Guo, X. D. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas et al. ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors. Advanced Energy Materials 2013, 3(8), 1062-1067.212 G. Q. Ji, Y. L. Wang, Q. Luo, K. Han, M. L. Xie, L. P. Zhang et al. Fully Coated Semitransparent Organic Solar Cells with a Doctor-Blade-Coated Composite Anode Buffer Layer of Phosphomolybdic Acid and PEDOT:PSS and a Spray-Coated Silver Nanowire Top Electrode. ACS Applied Materials & Interfaces 2018, 10(1), 943-954.213 J. H. Heo, D. H. Shin, D. H. Song, D. H. Kim, S. J. Lee & S. H. Im. Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. Journal of Materials Chemistry A 2018, 6(18), 8251-8258.214 F. R. Li, Y. Xu, W. Chen, S. H. Xie & J. Y. Li. Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells. Journal of Materials Chemistry A 2017, 5(21), 10374-10379.215 W. Wang, C. Yan, T.-K. Lau, J. Wang, K. Liu, Y. Fan et al. Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials 2017, 29(31), 1701308.152216 F. Liu, Z. Zhou, C. Zhang, J. Zhang, Q. Hu, T. Vergote et al. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor. Advanced Materials 2017, 29(21), 1606574.217 D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li et al. High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-Through Functions. Advanced Materials 2020, 32, 2001621.218 Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang, G. Jia et al. Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralow-Bandgap Nonfullerene Acceptor. Advanced Materials 2017, 29(43), 1703080.219 Y. Wu, H. Yang, Y. Zou, Y. Dong, J. Yuan, C. Cui et al. A new dialkylthio-substituted naphtho 2,3-c thiophene-4,9-dione based polymer donor for high-performance polymer solar cells. Energy & Environmental Science 2019, 12(2), 675-683.220 Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye, X. Feng et al. Fibril Network Strategy Enables High-Performance Semitransparent Organic Solar Cells. Advanced Functional Materials 2020, 30(28), 2002181.221 H. Fu, C. Li, P. Bi, X. Hao, F. Liu, Y. Li et al. Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Advanced Functional Materials 2019, 29(4), 1807006.222 T. Yan, W. Song, J. Huang, R. Peng, L. Huang & Z. Ge. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Advanced Materials 2019, 31(39), 1902210.153223 W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang, Y. Wu et al. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications 2020, 11(1), 1218.224 Y. Qin, S. Zhang, Y. Xu, L. Ye, Y. Wu, J. Kong et al. Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. Advanced Energy Materials 2019, 9(35), 1901823.225 Y. Dong, Y. Zou, J. Yuan, H. Yang, Y. Wu, C. Cui et al. Ternary Polymer Solar Cells Facilitating Improved Efficiency and Stability. Advanced Materials 2019, 31(52), 1904601.226 R. Ma, Y. Chen, T. Liu, Y. Xiao, Z. Luo, M. Zhang et al. Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C 2020, 8(3), 909-915.227 Y. Zhu, A. Gadisa, Z. Peng, M. Ghasemi, L. Ye, Z. Xu et al. Rational Strategy to Stabilize an Unstable High-Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component. Advanced Energy Materials 2019, 9(20), 1900376.228 D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan, H. Zhu et al. High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 2021, 5(4), 945-957.229 X. Lu, L. Cao, X. Du, H. Lin, C. Zheng, Z. Chen et al. Hydrogen-Bond-Induced High Performance Semitransparent Ternary Organic Solar Cells with 14% Efficiency and Enhanced Stability. Advanced Optical Materials 2021, 9, 2100064.154230 L. A. Dou, L. A. Xue, Z. B. Nan, B. Cd, A. Zw, W. A. Kai et al. High-performance and low-energy loss organic solar cells with non-fused ring acceptor by alkyl chain engineering. Chem. Eng. J. 2021, 420, 129768.231 D. Luo, X. Lai, N. Zheng, C. Duan, Z. Wang, K. Wang et al. High-performance and low-energy loss organic solar cells with non-fused ring acceptor by alkyl chain engineering. Chemical Engineering Journal 2021, 420, 129768.232 N. Gasparini, A. Salleo, I. McCulloch & D. Baran. The role of the third component in ternary organic solar cells. Nature Review Materials 2019, 4(4), 229-242.233 W.-L. Xu, B. Wu, F. Zheng, X.-Y. Yang, H.-D. Jin, F. Zhu et al. Förster Resonance Energy Transfer and Energy Cascade in Broadband Photodetectors with Ternary Polymer Bulk Heterojunction. The Journal of Physical Chemistry C 2015, 119(38), 21913-21920.234 M. Koppe, H. J. Egelhaaf, E. Clodic, M. Morana, L. Lüer, A. Troeger et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Advanced Energy Materials 2013, 3(7), 949-958.235 P. Cheng, C. Yan, Y. Wu, J. Wang, M. Qin, Q. An et al. Alloy acceptor: superior alternative to PCBM toward efficient and stable organic solar cells. Advanced Materials 2016, 28(36), 8021-8028.236 V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen & P. W. M. Blom. Photocurrent generation in polymer-fullerene bulk heterojunctions. Physical Review Letters 2004, 93(21), 216601.155237 A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan et al. Intensity Dependence of Current-Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells. ACS Nano 2013, 7(5), 4569-4577.238 R. A. Street, S. Cowan & A. J. Heeger. Experimental test for geminate recombination applied to organic solar cells. Physical Review B 2010, 82(12), 121301.239 M. M. Mandoc, L. J. A. Koster & P. W. M. Blom. Optimum charge carrier mobility in organic solar cells. Applied Physics Letters 2007, 90(13), 133504.240 S. R. Cowan, A. Roy & A. J. Heeger. Recombination in polymer-fullerene bulk heterojunction solar cells. Physical Review B 2010, 82(24), 245207. |
Data Source | 人工提交
|
Document Type | Thesis |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/417629 |
Department | Department of Electrical and Electronic Engineering |
Recommended Citation GB/T 7714 |
Zhang YN. Efficient semi-transparent organic solar cells toward building-integrated photovoltaics applications[D]. 香港. 香港大学,2022.
|
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
11850028-张玉牛-电子与电气工程(21414KB) | Restricted Access | -- | Fulltext Requests |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment