[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2] ZHENG R, ZHANG S, ZENG H, et al. Cancer incidence and mortality in China, 2016 [J]. Journal of the National Cancer Center, 2022, 2(1): 1-9.
[3] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022, 135(5): 584-90.
[4] MILLER K D, NOGUEIRA L, DEVASIA T, et al. Cancer treatment and survivorship statistics, 2022 [J]. CA Cancer J Clin, 2022.
[5] GUPTA P, PASTUSHENKO I, SKIBINSKI A, et al. Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance [J]. Cell stem cell, 2019, 24(1): 65-78.
[6] PASTUSHENKO I, BLANPAIN C. EMT Transition States during Tumor Progression and Metastasis [J]. Trends in cell biology, 2019, 29(3): 212-26.
[7] SONOSHITA M, CAGAN R. Modeling Human Cancers in Drosophila [J]. Current topics in developmental biology, 2017, 121: 287-309.
[8] WU X, PANDOLFI P. Mouse models for multistep tumorigenesis [J]. Trends in cell biology, 2001, 11(11): S2-9.
[9] CAGAN R, ZON L, WHITE R. Modeling Cancer with Flies and Fish [J]. Developmental cell, 2019, 49(3): 317-24.
[10] LIU S, LEACH S. Zebrafish models for cancer [J]. Annual review of pathology, 2011, 6: 71-93.
[11] BREUNIG M, MERKLE J, WAGNER M, et al. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells [J]. Cell stem cell, 2021, 28(6): 1105-24.e19.
[12] THOMA C, ZIMMERMANN M, AGARKOVA I, et al. 3D cell culture systems modeling tumor growth determinants in cancer target discovery [J]. Advanced drug delivery reviews, 2014: 29-41.
[13] ZANONI M, CORTESI M, ZAMAGNI A, et al. Modeling neoplastic disease with spheroids and organoids [J]. Journal of hematology & oncology, 2020, 13(1): 97.
[14] VENINGA V, VOEST E. Tumor organoids: Opportunities and challenges to guide precision medicine [J]. Cancer cell, 2021, 39(9): 1190-201.
[15] HORB M, WLIZLA M, ABU-DAYA A, et al. Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support [J]. Front Physiol, 2019, 10: 387.
[16] WHITMAN M, MELTON D. Induction of mesoderm by a viral oncogene in early Xenopus embryos [J]. Science (New York, NY), 1989, 244(4906): 803-6.
[17] HAYNES-GILMORE N, BANACH M, EDHOLM E S, et al. A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model [J]. Carcinogenesis, 2014, 35(8): 1807-13.
[18] HAYNES-GIMORE N, BANACH M, BROWN E, et al. Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration [J]. Dev Biol, 2015, 408(2): 205-12.
[19] DAHMANE N, LEE J, ROBINS P, et al. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours [J]. Nature, 1997, 389(6653): 876-81.
[20] WALLINGFORD J. Tumors in tadpoles: the Xenopus embryo as a model system for the study of tumorigenesis [J]. Trends in genetics : TIG, 1999, 15(10): 385-8.
[21] WALLINGFORD J, SEUFERT D, VIRTA V, et al. p53 activity is essential for normal development in Xenopus [J]. Current biology : CB, 1997, 7(10): 747-57.
[22] NY A, KOCH M, SCHNEIDER M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis [J]. Nat Med, 2005, 11(9): 998-1004.
[23] PRAGER B, XIE Q, BAO S, et al. Cancer Stem Cells: The Architects of the Tumor Ecosystem [J]. Cell stem cell, 2019, 24(1): 41-53.
[24] HARDWICK L, PHILPOTT A. An oncologist׳s friend: How Xenopus contributes to cancer research [J]. Developmental biology, 2015, 408(2): 180-7.
[25] HARDWICK L, PHILPOTT A. Xenopus Models of Cancer: Expanding the Oncologist's Toolbox [J]. Frontiers in physiology, 2018, 9: 1660.
[26] VAN NIEUWENHUYSEN T, NAERT T, TRAN H, et al. TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis [J]. Oncoscience, 2015, 2(5): 555-66.
[27] NAERT T, COLPAERT R, VAN NIEUWENHUYSEN T, et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis [J]. Scientific reports, 2016, 6: 35264.
[28] NAERT T, DIMITRAKOPOULOU D, TULKENS D, et al. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis [J]. Oncogene, 2020, 39(13): 2692-706.
[29] NAERT T, TULKENS D, VAN NIEUWENHUYSEN T, et al. CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping [J]. Proc Natl Acad Sci U S A, 2021, 118(47).
[30] TULKENS D, DIMITRAKOPOULOU D, VAN NIEUWENHUYSEN T, et al. Engraftment of allotransplantated tumour cells in adult rag2 mutant Xenopus tropicalis [J]. bioRxiv, 2021: 2021.11.15.468684.
[31] WHITE R, SESSA A, BURKE C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis [J]. Cell stem cell, 2008, 2(2): 183-9.
[32] YAN C, BRUNSON D, TANG Q, et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish [J]. Cell, 2019, 177(7): 1903-14.e14.
[33] PATTON E E, MUELLER K L, ADAMS D J, et al. Melanoma models for the next generation of therapies [J]. Cancer Cell, 2021, 39(5): 610-31.
[34] SCHADENDORF D, VAN AKKOOI A C J, BERKING C, et al. Melanoma [J]. The Lancet, 2018, 392(10151): 971-84.
[35] SCHADENDORF D, FISHER D E, GARBE C, et al. Melanoma [J]. Nat Rev Dis Primers, 2015, 1: 15003.
[36] LO J A, FISHER D E. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics [J]. Science, 2014, 346(6212): 945-9.
[37] CURTI B D, FARIES M B. Recent Advances in the Treatment of Melanoma [J]. N Engl J Med, 2021, 384(23): 2229-40.
[38] HUANG A C, ZAPPASODI R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance [J]. Nat Immunol, 2022, 23(5): 660-70.
[39] HOU L, PAVAN W J. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? [J]. Cell Res, 2008, 18(12): 1163-76.
[40] MARTIK M L, BRONNER M E. Riding the crest to get a head: neural crest evolution in vertebrates [J]. Nat Rev Neurosci, 2021, 22(10): 616-26.
[41] SAUKA-SPENGLER T, BRONNER-FRASER M. A gene regulatory network orchestrates neural crest formation [J]. Nat Rev Mol Cell Biol, 2008, 9(7): 557-68.
[42] WAN P, GARNETT M, ROE S, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF [J]. Cell, 2004, 116(6): 855-67.
[43] GODING C, ARNHEITER H. MITF-the first 25 years [J]. Genes & development, 2019, 33: 983-1007.
[44] REBECCA V, SOMASUNDARAM R, HERLYN M. Pre-clinical modeling of cutaneous melanoma [J]. Nature communications, 2020, 11(1): 2858.
[45] FRANTZ W, CEOL C. Research Techniques Made Simple: Zebrafish Models for Human Dermatologic Disease [J]. The Journal of investigative dermatology, 2022, 142: 499-506.e1.
[46] PATTON E, NAIRN R. Xmrk in medaka: a new genetic melanoma model [J]. The Journal of investigative dermatology, 2010, 130(1): 14-7.
[47] PITTET M, WEISSLEDER R. Intravital imaging [J]. Cell, 2011, 147(5): 983-91.
[48] ASOKAN N, DAETWYLER S, BERNAS S, et al. Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts [J]. Scientific reports, 2020, 10(1): 13254.
[49] NAKAYAMA T, NAKAJIMA K, COX A, et al. no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development [J]. Developmental biology, 2017, 426(2): 472-86.
[50] ROLLINS-SMITH L, ROBERT J. XenopusLymphocyte Deficiency Induced by Sublethal Irradiation in [J]. Cold Spring Harbor protocols, 2019, 2019(1).
[51] MASHOOF S, BREAUX B, CRISCITIELLO M. Xenopus laevisLarval Thymectomy of [J]. Cold Spring Harbor protocols, 2018, 2018(7).
[52] O'BRIEN C, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice [J]. Nature, 2007, 445(7123): 106-10.
[53] RAMANAYAKE T, SIMON D A, FRELINGER J G, et al. In vivo study of T-cell responses to skin alloantigens in Xenopus using a novel whole-mount immunohistology method [J]. Transplantation, 2007, 83(2): 159-66.
[54] IZUTSU Y. Skin Grafting in Xenopus laevis: A Technique for Assessing Development and Immunological Disparity [J]. Cold Spring Harb Protoc, 2019, 2019(5).
[55] NEDELKOVSKA H, ROBERT J. Hsp72 mediates stronger antigen-dependent non-classical MHC class Ib anti-tumor responses than hsc73 in Xenopus laevis [J]. Cancer immunity, 2013, 13: 4.
[56] HAUSSER J, ALON U. Tumour heterogeneity and the evolutionary trade-offs of cancer [J]. Nature reviews Cancer, 2020, 20(4): 247-57.
[57] MOTWANI J, ECCLES M R. Genetic and Genomic Pathways of Melanoma Development, Invasion and Metastasis [J]. Genes (Basel), 2021, 12(10).
[58] GRAY-SCHOPFER V, WELLBROCK C, MARAIS R. Melanoma biology and new targeted therapy [J]. Nature, 2007, 445(7130): 851-7.
[59] AROZARENA I, WELLBROCK C. Phenotype plasticity as enabler of melanoma progression and therapy resistance [J]. Nat Rev Cancer, 2019, 19(7): 377-91.
[60] MEIERJOHANN S, SCHARTL M. From Mendelian to molecular genetics: the Xiphophorus melanoma model [J]. Trends Genet, 2006, 22(12): 654-61.
[61] GAFFAL E, LANDSBERG J, BALD T, et al. Neonatal UVB exposure accelerates melanoma growth and enhances distant metastases in Hgf-Cdk4(R24C) C57BL/6 mice [J]. Int J Cancer, 2011, 129(2): 285-94.
[62] MUKHOPADHYAY P, FERGUSON B, MULLER H K, et al. Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C>T mutations in critical genes [J]. Oncogene, 2016, 35(25): 3342-50.
[63] YOKOYAMA S, WOODS S L, BOYLE G M, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma [J]. Nature, 2011, 480(7375): 99-103.
[64] WIESNER T, OBENAUF A C, MURALI R, et al. Germline mutations in BAP1 predispose to melanocytic tumors [J]. Nat Genet, 2011, 43(10): 1018-21.
[65] ROBLES-ESPINOZA C D, HARLAND M, RAMSAY A J, et al. POT1 loss-of-function variants predispose to familial melanoma [J]. Nat Genet, 2014, 46(5): 478-81.
[66] HAYWARD N K. Genetics of melanoma predisposition [J]. Oncogene, 2003, 22(20): 3053-62.
[67] HUANG Q, COHEN M, ALSINA F, et al. Intravital imaging of mouse embryos [J]. Science (New York, NY), 2020, 368(6487): 181-6.
[68] UPADHAYA S, KRICHEVSKY O, AKHMETZYANOVA I, et al. Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche [J]. Cell stem cell, 2020, 27(2): 336-45.e4.
[69] CHRISTODOULOU C, SPENCER J, YEH S, et al. Live-animal imaging of native haematopoietic stem and progenitor cells [J]. Nature, 2020, 578(7794): 278-83.
[70] D'AGATI G, BELTRE R, SESSA A, et al. A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish [J]. Dev Biol, 2017, 430(1): 11-7.
[71] LV P, MA D, GAO S, et al. Generation of foxn1/Casper Mutant Zebrafish for Allograft and Xenograft of Normal and Malignant Cells [J]. Stem cell reports, 2020, 15(3): 749-60.
[72] SUMIDA M, ISLAM M M, IGAWA T, et al. The first see-through frog created by breeding: description, inheritance patterns, and dermal chromatophore structure [J]. Sci Rep, 2016, 6: 24431.
[73] NAKAJIMA K, SHIMAMURA M, FURUNO N. Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout [J]. Dev Dyn, 2021, 250(10): 1420-31.
[74] MEHTA S, CAMPBELL H, DRUMMOND C, et al. Adaptive homeostasis and the p53 isoform network [J]. EMBO reports, 2021, 22(12): e53085.
[75] ANBARASAN T, BOURDON J. The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases [J]. International journal of molecular sciences, 2019, 20(24).
[76] JORUIZ S, BOURDON J. p53 Isoforms: Key Regulators of the Cell Fate Decision [J]. Cold Spring Harbor perspectives in medicine, 2016, 6(8).
[77] SABAPATHY K, LANE D. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others [J]. Nature reviews Clinical oncology, 2018, 15(1): 13-30.
[78] GUHA T, MALKIN D. TP53Inherited Mutations and the Li-Fraumeni Syndrome [J]. Cold Spring Harbor perspectives in medicine, 2017, 7(4).
[79] FREBOURG T, BAJALICA LAGERCRANTZ S, OLIVEIRA C, et al. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes [J]. European journal of human genetics : EJHG, 2020, 28(10): 1379-86.
[80] SANDRU F, DUMITRASCU M, PETCA A, et al. Melanoma in patients with Li-Fraumeni syndrome (Review) [J]. Experimental and therapeutic medicine, 2022, 23(1): 75.
[81] DONEHOWER L, HARVEY M, SLAGLE B, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours [J]. Nature, 1992, 356(6366): 215-21.
[82] DUDGEON C, CHAN C, KANG W, et al. The evolution of thymic lymphomas in p53 knockout mice [J]. Genes & development, 2014, 28(23): 2613-20.
[83] HARVEY M, MCARTHUR M, MONTGOMERY C, et al. Genetic background alters the spectrum of tumors that develop in p53-deficient mice [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 1993, 7(10): 938-43.
[84] KUPERWASSER C, HURLBUT G, KITTRELL F, et al. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome [J]. The American journal of pathology, 2000, 157(6): 2151-9.
[85] LIU G, MCDONNELL T, MONTES DE OCA LUNA R, et al. High metastatic potential in mice inheriting a targeted p53 missense mutation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(8): 4174-9.
[86] LIU G, PARANT J, LANG G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice [J]. Nature genetics, 2004, 36(1): 63-8.
[87] OLIVE K, TUVESON D, RUHE Z, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome [J]. Cell, 2004, 119(6): 847-60.
[88] XIONG S, TU H, KOLLAREDDY M, et al. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(30): 11145-50.
[89] BERGHMANS S, MURPHEY R, WIENHOLDS E, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 407-12.
[90] IGNATIUS M, HAYES M, MOORE F, et al. tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish [J]. eLife, 2018, 7.
[91] PARANT J, GEORGE S, HOLDEN J, et al. Genetic modeling of Li-Fraumeni syndrome in zebrafish [J]. Disease models & mechanisms, 2010, 3: 45-56.
[92] NORIMURA T, NOMOTO S, KATSUKI M, et al. p53-dependent apoptosis suppresses radiation-induced teratogenesis [J]. Nature medicine, 1996, 2(5): 577-80.
[93] STANCHEVA I, HENSEY C, MEEHAN R. Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus embryos [J]. The EMBO journal, 2001, 20(8): 1963-73.
[94] HASLAM I, ROUBOS E, MANGONI M, et al. From frog integument to human skin: dermatological perspectives from frog skin biology [J]. Biological reviews of the Cambridge Philosophical Society, 2014, 89(3): 618-55.
[95] ZUASTI A, JIMéNEZ-CERVANTES C, GARCíA-BORRóN J, et al. The melanogenic system of Xenopus laevis [J]. Archives of histology and cytology, 1998, 61(4): 305-16.
[96] NEZOS A, LEMBESSIS P, SOURLA A, et al. Molecular markers detecting circulating melanoma cells by reverse transcription polymerase chain reaction: methodological pitfalls and clinical relevance [J]. Clin Chem Lab Med, 2009, 47(1): 1-11.
[97] RICHARDS M, POCH S. Quantitative analysis of gene expression by reverse transcription polymerase chain reaction and capillary electrophoresis with laser-induced fluorescence detection [J]. Molecular biotechnology, 2002, 21(1): 19-37.
[98] WAGNER S, WAGNER C, SCHULTEWOLTER T, et al. Analysis of Pmel17/gp100 expression in primary human tissue specimens: implications for melanoma immuno- and gene-therapy [J]. Cancer immunology, immunotherapy : CII, 1997, 44(4): 239-47.
[99] GELMI M, HOUTZAGERS L, STRUB T, et al. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance [J]. International journal of molecular sciences, 2022, 23(11).
[100] KAUFMAN C, MOSIMANN C, FAN Z, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation [J]. Science (New York, NY), 2016, 351(6272): aad2197.
[101] MCGILL G, HORSTMANN M, WIDLUND H, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability [J]. Cell, 2002, 109(6): 707-18.
[102] SENSI M, CATANI M, CASTELLANO G, et al. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase [J]. The Journal of investigative dermatology, 2011, 131(12): 2448-57.
[103] CARAMEL J, PAPADOGEORGAKIS E, HILL L, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma [J]. Cancer cell, 2013, 24(4): 466-80.
[104] BAKER S, FEARON E, NIGRO J, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas [J]. Science (New York, NY), 1989, 244(4901): 217-21.
[105] JACKS T, REMINGTON L, WILLIAMS B, et al. Tumor spectrum analysis in p53-mutant mice [J]. Current biology : CB, 1994, 4(1): 1-7.
[106] SHIVE H, WEST R, EMBREE L, et al. BRCA2 and TP53 collaborate in tumorigenesis in zebrafish [J]. PloS one, 2014, 9(1): e87177.
[107] TUNA M, KNUUTILA S, MILLS G B. Uniparental disomy in cancer [J]. Trends Mol Med, 2009, 15(3): 120-8.
[108] THIAGALINGAM S, FOY R, CHENG K, et al. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence [J]. Current opinion in oncology, 2002, 14(1): 65-72.
[109] CONCORDET J-P, HAEUSSLER M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens [J]. Nucleic Acids Research, 2018, 46(W1): W242-W5.
[110] MCBRIDE K, BALLINGER M, KILLICK E, et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management [J]. Nature reviews Clinical oncology, 2014, 11(5): 260-71.
[111] MIAO J, LI R, WETTERE A, et al. Cancer spectrum in TP53-deficient golden Syrian hamsters: A new model for Li-Fraumeni syndrome [J]. Journal of carcinogenesis, 2021, 20: 18.
[112] ZHOU R, XU A, GINGOLD J, et al. Li-Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53 [J]. Trends in pharmacological sciences, 2017, 38(10): 908-27.
[113] LE LOARER F, BAUD J, AZMANI R, et al. Advances in the classification of round cell sarcomas [J]. Histopathology, 2022, 80(1): 33-53.
[114] NEESSE A, ALGüL H, TUVESON D, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm [J]. Gut, 2015, 64(9): 1476-84.
[115] MING Z, LIM S, RIZOS H. Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression [J]. Biomolecules, 2020, 10(10).
[116] KIM W, SHARPLESS N. The regulation of INK4/ARF in cancer and aging [J]. Cell, 2006, 127(2): 265-75.
[117] CHIN L, POMERANTZ J, DEPINHO R. The INK4a/ARF tumor suppressor: one gene--two products--two pathways [J]. Trends in biochemical sciences, 1998, 23(8): 291-6.
[118] GIL J, PETERS G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all [J]. Nature reviews Molecular cell biology, 2006, 7(9): 667-77.
[119] ZENG H, JORAPUR A, SHAIN A H, et al. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation [J]. Cancer Cell, 2018, 34(1): 56-68 e9.
[120] MCNEAL A S, LIU K, NAKHATE V, et al. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma [J]. Cancer Discov, 2015, 5(10): 1072-85.
[121] SERRANO M, LEE H, CHIN L, et al. Role of the INK4a locus in tumor suppression and cell mortality [J]. Cell, 1996, 85(1): 27-37.
[122] KAMIJO T, ZINDY F, ROUSSEL M, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF [J]. Cell, 1997, 91(5): 649-59.
[123] KRIMPENFORT P, QUON K, MOOI W, et al. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice [J]. Nature, 2001, 413(6851): 83-6.
[124] KRIMPENFORT P, IJPENBERG A, SONG J, et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a [J]. Nature, 2007, 448(7156): 943-6.
[125] SHARPLESS N, ALSON S, CHAN S, et al. p16(INK4a) and p53 deficiency cooperate in tumorigenesis [J]. Cancer research, 2002, 62(10): 2761-5.
[126] REGNERI J, KLOTZ B, WILDE B, et al. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka [J]. Pigment cell & melanoma research, 2019, 32(2): 248-58.
[127] TANAKA T, OCHI H, TAKAHASHI S, et al. Genes coding for cyclin-dependent kinase inhibitors are fragile in Xenopus [J]. Developmental biology, 2017, 426(2): 291-300.
[128] WALKER G, HAYWARD N. Pathways to melanoma development: lessons from the mouse [J]. The Journal of investigative dermatology, 2002, 119(4): 783-92.
[129] MA S A, O'DAY C P, DENTCHEV T, et al. Expression of p15 in a spectrum of spitzoid melanocytic neoplasms [J]. J Cutan Pathol, 2019, 46(5): 310-6.
[130] TAYLOR L A, O'DAY C, DENTCHEV T, et al. p15 Expression Differentiates Nevus from Melanoma [J]. Am J Pathol, 2016, 186(12): 3094-9.
[131] LI J, MAHAJAN A, TSAI M. Ankyrin repeat: a unique motif mediating protein-protein interactions [J]. Biochemistry, 2006, 45(51): 15168-78.
[132] HOEFLICH K P, GRAY D C, EBY M T, et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models [J]. Cancer Res, 2006, 66(2): 999-1006.
[133] ACKERMANN J, FRUTSCHI M, KALOULIS K, et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background [J]. Cancer research, 2005, 65(10): 4005-11.
[134] PAWLIKOWSKI J, MCBRYAN T, VAN TUYN J, et al. Wnt signaling potentiates nevogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 16009-14.
[135] KRIMPENFORT P, SNOEK M, LAMBOOIJ J, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis [J]. Nature communications, 2019, 10(1): 1425.
[136] SALDANA-CABOVERDE A, KOS L. Roles of endothelin signaling in melanocyte development and melanoma [J]. Pigment cell & melanoma research, 2010, 23(2): 160-70.
[137] YEH I, LANG U, DURIEUX E, et al. Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi [J]. Nature communications, 2017, 8(1): 644.
[138] MILLER A, MIHM M. Melanoma [J]. The New England journal of medicine, 2006, 355(1): 51-65.
[139] LAVOIE H, THERRIEN M. Regulation of RAF protein kinases in ERK signalling [J]. Nature reviews Molecular cell biology, 2015, 16(5): 281-98.
[140] MATALLANAS D, BIRTWISTLE M, ROMANO D, et al. Raf family kinases: old dogs have learned new tricks [J]. Genes & cancer, 2011, 2(3): 232-60.
[141] DAVIES H, BIGNELL G, COX C, et al. Mutations of the BRAF gene in human cancer [J]. Nature, 2002, 417(6892): 949-54.
[142] KAROULIA Z, GAVATHIOTIS E, POULIKAKOS P. New perspectives for targeting RAF kinase in human cancer [J]. Nature reviews Cancer, 2017, 17(11): 676-91.
[143] SHAIN A H, YEH I, KOVALYSHYN I, et al. The Genetic Evolution of Melanoma from Precursor Lesions [J]. N Engl J Med, 2015, 373(20): 1926-36.
[144] SHAIN A, JOSEPH N, YU R, et al. Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution [J]. Cancer cell, 2018, 34(1): 45-55.e4.
[145] POLLOCK P, HARPER U, HANSEN K, et al. High frequency of BRAF mutations in nevi [J]. Nature genetics, 2003, 33(1): 19-20.
[146] MICHALOGLOU C, VREDEVELD L, SOENGAS M, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi [J]. Nature, 2005, 436(7051): 720-4.
[147] TRAVNICKOVA J, PATTON E E. Deciphering Melanoma Cell States and Plasticity with Zebrafish Models [J]. J Invest Dermatol, 2021, 141(6): 1389-94.
[148] FRANTZ W T, CEOL C J. From Tank to Treatment: Modeling Melanoma in Zebrafish [J]. Cells, 2020, 9(5).
[149] RICHARDS J R, YOO J H, SHIN D, et al. Mouse models of uveal melanoma: Strengths, weaknesses, and future directions [J]. Pigment Cell Melanoma Res, 2020, 33(2): 264-78.
[150] PEREZ-GUIJARRO E, DAY C P, MERLINO G, et al. Genetically engineered mouse models of melanoma [J]. Cancer, 2017, 123(S11): 2089-103.
[151] KUZU O F, NGUYEN F D, NOORY M A, et al. Current State of Animal (Mouse) Modeling in Melanoma Research [J]. Cancer Growth Metastasis, 2015, 8(Suppl 1): 81-94.
[152] DHOMEN N, REIS-FILHO J S, DA ROCHA DIAS S, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice [J]. Cancer Cell, 2009, 15(4): 294-303.
[153] PATTON E, WIDLUND H, KUTOK J, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma [J]. Current biology : CB, 2005, 15(3): 249-54.
[154] GOEL V, IBRAHIM N, JIANG G, et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice [J]. Oncogene, 2009, 28(23): 2289-98.
[155] TATARAKIS D, CANG Z, WU X, et al. Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development [J]. Cell reports, 2021, 37(12): 110140.
[156] LENCER E, PREKERIS R, ARTINGER K. Single-cell RNA analysis identifies pre-migratory neural crest cells expressing markers of differentiated derivatives [J]. eLife, 2021, 10.
[157] SCHARTL M, WILDE B, LAISNEY J, et al. A mutated EGFR is sufficient to induce malignant melanoma with genetic background-dependent histopathologies [J]. The Journal of investigative dermatology, 2010, 130(1): 249-58.
[158] ABDULSAHIB S, BOSWELL W T, BOSWELL M G, et al. Transcriptional background effects on a tumor driver gene in a transgenic medaka melanoma model [J]. bioRxiv, 2022.
[159] DESIDERI E, CAVALLO A, BACCARINI M. Alike but Different: RAF Paralogs and Their Signaling Outputs [J]. Cell, 2015, 161(5): 967-70.
[160] DAS THAKUR M, STUART D. Molecular pathways: response and resistance to BRAF and MEK inhibitors in BRAF(V600E) tumors [J]. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014, 20(5): 1074-80.
[161] COOK F, COOK S. Inhibition of RAF dimers: it takes two to tango [J]. Biochemical Society transactions, 2021, 49(1): 237-51.
[162] LIN J, FISHER D. Melanocyte biology and skin pigmentation [J]. Nature, 2007, 445(7130): 843-50.
[163] MORT R, JACKSON I, PATTON E. The melanocyte lineage in development and disease [J]. Development (Cambridge, England), 2015, 142(4): 620-32.
[164] FUKUZAWA T. A wide variety of Mitf transcript variants are expressed in the Xenopus laevis periodic albino mutant [J]. Genes Cells, 2018.
[165] KAWASAKI A, KUMASAKA M, SATOH A, et al. Mitf contributes to melanosome distribution and melanophore dendricity [J]. Pigment Cell Melanoma Res, 2008, 21(1): 56-62.
[166] KUMASAKA M, SATO S, YAJIMA I, et al. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf [J]. Dev Dyn, 2005, 234(3): 523-34.
[167] RUSSO R, CHIARAMONTE M, LAMPIASI N, et al. MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus [J]. Genetica, 2019, 147(5-6): 369-79.
[168] LISTER J, ROBERTSON C, LEPAGE T, et al. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate [J]. Development (Cambridge, England), 1999, 126(17): 3757-67.
[169] CURRAN K, RAIBLE D, LISTER J. Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf [J]. Developmental biology, 2009, 332(2): 408-17.
[170] PARICHY D, RANSOM D, PAW B, et al. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio [J]. Development (Cambridge, England), 2000, 127(14): 3031-44.
[171] BROMBIN A, SIMPSON D, TRAVNICKOVA J, et al. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential [J]. Cell reports, 2022, 38(2): 110234.
[172] TRAVNICKOVA J, MUISE S, WOJCIECHOWSKA S, et al. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish [J]. Disease models & mechanisms, 2022.
[173] MA X, LI H, CHEN Y, et al. The transcription factor MITF in RPE function and dysfunction [J]. Progress in retinal and eye research, 2019, 73: 100766.
[174] RAYMOND S, JACKSON I. The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina [J]. Current biology : CB, 1995, 5(11): 1286-95.
[175] FUHRMANN S, ZOU C, LEVINE E. Retinal pigment epithelium development, plasticity, and tissue homeostasis [J]. Experimental eye research, 2014, 123: 141-50.
[176] HECQUET C, LEFEVRE G, VALTINK M, et al. Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation [J]. Investigative ophthalmology & visual science, 2002, 43(9): 3091-8.
[177] GALY A, NéRON B, PLANQUE N, et al. Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina [J]. Developmental biology, 2002, 248(2): 251-64.
[178] GRIGORYAN E N, MARKITANTOVA Y V. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo [J]. Russian Journal of Developmental Biology, 2021, 52(4): 220-43.
[179] DE VILLARTAY J, POINSIGNON C, DE CHASSEVAL R, et al. Human and animal models of V(D)J recombination deficiency [J]. Current opinion in immunology, 2003, 15(5): 592-8.
[180] KIM Y, KIM J, CHE J, et al. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies [J]. Pharmaceutics, 2021, 13(2).
[181] SHULTZ L, BREHM M, GARCIA-MARTINEZ J, et al. Humanized mice for immune system investigation: progress, promise and challenges [J]. Nature reviews Immunology, 2012, 12(11): 786-98.
[182] IWANAMI N. Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency [J]. Experimental hematology, 2014, 42(8): 697-706.
[183] IQBAL M, HONG K, KIM J, et al. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines [J]. BMB reports, 2019, 52(11): 625-34.
[184] BANACH M, ROBERT J. XenopusTumor immunology viewed from alternative animal models-the story [J]. Current pathobiology reports, 2017, 5(1): 49-56.
[185] LEE Y, WILLIAMS A, HONG C, et al. Early development of the thymus in Xenopus laevis [J]. Developmental dynamics : an official publication of the American Association of Anatomists, 2013, 242(2): 164-78.
[186] NAKAI Y, NAKAJIMA K, ROBERT J, et al. Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis [J]. Genes to cells : devoted to molecular & cellular mechanisms, 2016, 21(3): 275-86.
[187] BANACH M, EDHOLM E, ROBERT J. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system [J]. Developmental biology, 2017, 426(2): 261-9.
[188] FUJIMORI A, ARAKI R, FUKUMURA R, et al. Identification of four highly conserved regions in DNA-PKcs [J]. Immunogenetics, 2000, 51(11): 965-73.
[189] DAZA P, REICHENBERGER S, GöTTLICH B, et al. Mechanisms of nonhomologous DNA end-joining in frogs, mice and men [J]. Biological chemistry, 1996, 377(12): 775-86.
[190] CHEN Y, LI Y, XIONG J, et al. Role of PRKDC in cancer initiation, progression, and treatment [J]. Cancer cell international, 2021, 21(1): 563.
[191] WU Q, LIANG S, OCHI T, et al. Understanding the structure and role of DNA-PK in NHEJ: How X-ray diffraction and cryo-EM contribute in complementary ways [J]. Progress in biophysics and molecular biology, 2019, 147: 26-32.
[192] JUNG I, CHUNG Y, JUNG D, et al. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model [J]. Neoplasia (New York, NY), 2016, 18(8): 468-79.
[193] SHULTZ L, ISHIKAWA F, GREINER D. Humanized mice in translational biomedical research [J]. Nature reviews Immunology, 2007, 7(2): 118-30.
[194] SPOLSKI R, GROMER D, LEONARD W. The γ family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response [J]. F1000Research, 2017, 6: 1872.
[195] ROCHMAN Y, SPOLSKI R, LEONARD W. New insights into the regulation of T cells by gamma(c) family cytokines [J]. Nature reviews Immunology, 2009, 9(7): 480-90.
[196] RUTKOWSKA-ZAPALA M, SZAFLARSKA A, KLUCZEWSKA A, et al. Novel IL2RG Gene Mutation in One of Dizygotic Twins Causing Profound Changes of Receptor Structure [J]. Front Pediatr, 2022, 10: 858166.
[197] HANSEN J, ZAPATA A. Lymphocyte development in fish and amphibians [J]. Immunological reviews, 1998, 166: 199-220.
[198] DU PASQUIER L, ROBERT J, COURTET M, et al. B-cell development in the amphibian Xenopus [J]. Immunological reviews, 2000, 175: 201-13.
[199] FOULKROD A, APPASAMY P. Expression of TCR genes in adult and larval Xenopus laevis [J]. Developmental and comparative immunology, 2019, 96: 78-82.
[200] HORTON J, HORTON T, DZIALO R, et al. T-cell and natural killer cell development in thymectomized Xenopus [J]. Immunological reviews, 1998, 166: 245-58.
[201] ROBERT J, GUIET C, COHEN N, et al. Effects of thymectomy and tolerance induction on tumor immunity in adult Xenopus laevis [J]. International journal of cancer, 1997, 70(3): 330-4.
[202] BASSING C, SWAT W, ALT F. The mechanism and regulation of chromosomal V(D)J recombination [J]. Cell, 2002: S45-55.
[203] NEDELKOVSKA H, ROBERT J. Comparative Study of Skin Graft Tolerance and Rejection in the Frog Xenopus Laevis [M]. 2011.
[204] COLLAZO A, BRONNER-FRASER M, FRASER S. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration [J]. Development (Cambridge, England), 1993, 118(2): 363-76.
[205] EPPIG J, DUMONT J. Oogenesis in Xenopus laevis (Daudin). II. The induction and subcellular localization of tyrosinase activity in developing oocytes [J]. Developmental biology, 1974, 36(2): 330-42.
[206] MADDIN H, ECKHART L, JAEGER K, et al. The anatomy and development of the claws of Xenopus laevis (Lissamphibia: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods [J]. Journal of anatomy, 2009, 214(4): 607-19.
Edit Comment