[1] JOHNSTONE I M, TITTERINGTON D M. Statistical challenges of high-dimensional data[J]. Philosophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences, 2009, 367(1906): 4237-4253.
[2] FANJ,LVJ. Aselectiveoverviewofvariableselectioninhighdimensionalfeaturespace[J]. Statistica Sinica, 2010, 20(1): 101-148.
[3] FAN J, HAN F, LIU H. Challenges of big data analysis[J]. National Science Re-view, 2014, 1(2): 293-314.
[4] 智林. 大数据时代的机遇与挑战[J]. 中国工会财会, 2017, 1(5): 59-60.
[5] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal ofthe Royal Statistical Society: Series B (Statistical Methodology), 1996, 58(1): 267-288.
[6] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its ora-cle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360.
[7] 闫莉, 陈夏. 高维广义线性模型的惩罚拟似然 SCAD 估计[J]. 武汉大学学报 (理学版), 2018, 64(6): 66-72.
[8] ZHANG C H. Nearly unbiased variable selection under minimax concave penalty [J]. Annals of Statistics, 2010, 38(2): 894-942.
[9] BATTEY H, FAN J, LIU H, et al. Distributed testing and estimation under sparsehigh dimensional models[J]. Annals of Statistics, 2018, 46(3): 1352-1382.
[10] FAN J, GONG W, ZHU Z. Generalized high-dimensional trace regression via nuclear norm regularization[J]. Journal of Econometrics, 2019, 212(1): 177-202.
[11] FAN J, LI R, ZHANG C H, et al. Statistical foundations of data science[M]. Boca Raton: Chapman and Hall/CRC, 2020.
[12] FAN J, MA C, WANG K. Comment on “A tuning-free robust and efficient ap-proach to high-dimensional regression”[J]. Journal of the American Statistical Association, 2020, 115(532): 1720-1725.
[13] FAN J, LV J. Nonconcave penalized likelihood with NP-dimensionality[J]. IEEETransactions on Information Theory, 2011, 57(8): 5467-5484.
[14] SHI C, SONG R, CHEN Z, et al. Linear hypothesis testing for high dimensionalgeneralized linear models[J]. Annals of Statistics, 2019, 47(5): 2671-2703.
[15] FAN J, LV J. Sure independence screening for ultrahigh dimensional feature space [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(5): 849-911.
[16] WANG H. Forward regression for ultra-high dimensional variable screening[J]. Journal of the American Statistical Association, 2009, 104(488): 1512-1524.
[17] WANGX,LENGC. Highdimensionalordinaryleastsquaresprojectionforscreen-ing variables[J]. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 2016, 78(3): 589-611.
[18] ZHOU T, ZHU L, XU C, et al. Model-free forward screening via cumulative divergence[J]. Journal of the American Statistical Association, 2020, 115(531): 1393-1405.
[19] FRANKLE,FRIEDMANJH. Astatisticalviewofsomechemometricsregressiontools[J]. Technometrics, 1993, 35(2): 109-135.
[20] BREIMAN L. Better subset regression using the nonnegative garrote[J]. Technometrics, 1995, 37(4): 373-384.
[21] FAN J, PENG H. Nonconcave penalized likelihood with a diverging number of parameters[J]. Annals of Statistics, 2004, 32(3): 928-961.
[22] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429.
[23] WANG H, LI R, TSAI C L. Tuning parameter selectors for the smoothly clipped absolute deviation method[J]. Biometrika, 2007, 94(3): 553-568.
[24] ZOU H, LI R. One-step sparse estimates in nonconcave penalized likelihood models[J]. Annals of Statistics, 2008, 36(4): 1509-1533.
[25] HUANG J, HOROWITZ J L, MA S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models[J]. Annals of Statistics, 2008, 36(2): 587-613.
[26] ZOU H, ZHANG H H. On the adaptive elastic-net with a diverging number ofparameters[J]. Annals of Statistics, 2009, 37(4): 1733-1751.
[27] MEINSHAUSEN N, BÜHLMANN P. High-dimensional graphs and variable se-lection with the lasso[J]. Annals of Statistics, 2006, 34(3): 1436-1462.
[28] ZHAO P, YU B. On model selection consistency of lasso[J]. Journal of Machine Learning Research, 2006, 7(90): 2541-2563.
[29] ZHANG C H, HUANG J. The sparsity and bias of the lasso selection in high-dimensional linear regression[J]. Annals of Statistics, 2008, 36(4): 1567-1594.
[30] 金立斌, 许王莉, 朱利平, 等. 偏正态混合模型的惩罚极大似然估计[J]. 中国科学: 数学, 2019, 49(9): 1225-1250.
[31] CANDES E, TAO T. The Dantzig selector: Statistical estimation when p is much larger than n[J]. Annals of Statistics, 2007, 35(6): 2313-2351.
[32] BREHENY P J. Marginal false discovery rates for penalized regression models[J]. Biostatistics, 2019, 20(2): 299-314.
[33] HONDA T, ING C K, WU W Y. Adaptively weighted group lasso for semipara-metric quantile regression models[J]. Bernoulli, 2019, 25(4B): 3311-3338.
[34] LI X, WANG L, NETTLETON D. Additive partially linear models for ultra-high-dimensional regression[J]. Stat, 2019, 8(1): 223.
[35] WANG M, KANG X, TIAN G L. Modified adaptive group lasso forhigh-dimensional varying coefficient models[J]. Communications in Statistics-Simulation and Computation, 2020, 0(0): 1-16.
[36] HONDA T. The de-biased group lasso estimation for varying coefficient models [J]. Annals of the Institute of Statistical Mathematics, 2021, 73(1): 3-29.
[37] 张韵祺, 张春明, 唐年胜. 带有组结构的稀疏模型的参数估计和变量选择方法[J]. 应用数学学报, 2022, 45(1): 31-46.
[38] HALL P, TITTERINGTON D, XUE J H. Tilting methods for assessing the in-fluence of components in a classifier[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2009, 71(4): 783-803.
[39] FAN J, SONG R. Sure independence screening in generalized linear models with NP-dimensionality[J]. Annals of Statistics, 2010, 38(6): 3567-3604.
[40] FANJ,FENGY,SONGR. Nonparametricindependencescreeninginsparseultra-high-dimensional additive models[J]. Journal of the American Statistical Associ-ation, 2011, 106(494): 544-557.
[41] FAN J, MA Y, DAI W. Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models[J]. Journal of the American Statisti-cal Association, 2014, 109(507): 1270-1284.
[42] LIUY,ZHANGJ,ZHAOX. Anewnonparametricscreeningmethodforultrahigh-dimensional survival data[J]. Computational Statistics & Data Analysis, 2018, 119(C): 74-85.
[43] ZHANGJ,YING,LIUY,etal. Censoredcumulativeresidualindependentscreen-ing for ultrahigh-dimensional survival data[J]. Lifetime Data Analysis, 2018, 24(2): 273-292.
[44] CHENX,CHENX,WANGH. Robustfeaturescreeningforultra-highdimensionalright censored data via distance correlation[J]. Computational Statistics & DataAnalysis, 2018, 119(C): 118-138.
[45] ZHANG S, ZHAO P, LI G, et al. Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data[J]. Journal of Multivariate Analysis, 2019, 171(C): 37-52.
[46] PAN J, ZHANG S, ZHOU Y. Variable screening for ultrahigh dimensional cen-sored quantile regression[J]. Journal of Statistical Computation and Simulation,2019, 89(3): 395-413.
[47] HU Q, ZHU L, LIU Y, et al. Nonparametric screening and feature selection forultrahigh-dimensional Case II interval-censored failure time data[J]. BiometricalJournal, 2020, 62(8): 1909-1925.
[48] ZHANG J, LIU Y. Model-free slice screening for ultrahigh-dimensional survival data[J]. Journal of Applied Statistics, 2021, 48(10): 1755-1774.
[49] ZHANGJ,LIUY,CUIH. Model-freefeaturescreeningviadistancecorrelationforultrahigh dimensional survival data[J]. Statistical Papers, 2021, 62(6): 2711-2738.
[50] ZHONG W, WANG J, CHEN X. Censored mean variance sure independencescreening for ultrahigh dimensional survival data[J]. Computational Statistics &Data Analysis, 2021, 159(C): 107206.
[51] ZHOU Y, ZHU L. Model-free feature screening for ultrahigh dimensional datathrough a modified blum-kiefer-rosenblatt correlation[J]. Statistica Sinica, 2018,28(3): 1351-1370.
[52] CHENGMY,HONDAT,ZHANGJT. Forwardvariableselectionforsparseultra-highdimensionalvaryingcoefficientmodels[J]. JournaloftheAmericanStatisticalAssociation, 2016, 111(515): 1209-1221.
[53] HONDA T, LIN C T. Forward variable selection for sparse ultra-high-dimensional generalized varying coefficient models[J]. Japanese Journal of Statistics and Data Science, 2021, 4(1): 151-179.
[54] ZHONG W, DUAN S, ZHU L. Forward additive regression for ultrahigh-dimensional nonparametric additive models[J]. Statistica Sinica, 2020, 30(1): 175-192.
[55] LUJ,LINL. Model-freeconditionalscreeningviaconditionaldistancecorrelation[J]. Statistical Papers, 2020, 61(1): 225-244.
[56] WASSERMAN L, ROEDER K. High dimensional variable selection[J]. Annalsof Statistics, 2009, 37(5A): 2178-2201.
[57] MEINSHAUSEN N, MEIER L, BÜHLMANN P. P-values for high-dimensionalregression[J]. Journal of the American Statistical Association, 2009, 104(488):1671-1681.
[58] LOCKHART R, TAYLOR J, TIBSHIRANI R J, et al. A significance test for thelasso[J]. Annals of Statistics, 2014, 42(2): 413-468.
[59] TIBSHIRANI R J, TAYLOR J, LOCKHART R, et al. Exact post-selection infer-ence for sequential regression procedures[J]. Journal of the American StatisticalAssociation, 2016, 111(514): 600-620.
[60] LEE J D, SUN D L, SUN Y, et al. Exact post-selection inference, with application to the lasso[J]. Annals of Statistics, 2016, 44(3): 907-927.
[61] WANG S S, CUI H J. Partial penalized empirical likelihood ratio test under sparse case[J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33(2): 327-344.
[62] NING Y, ZHAO T, LIU H. A likelihood ratio framework for high-dimensionalsemiparametric regression[J]. Annals of Statistics, 2017, 45(6): 2299-2327.
[63] NING Y, LIU H. A general theory of hypothesis tests and confidence regions for sparse high dimensional models[J]. Annals of Statistics, 2017, 45(1): 158-195.
[64] FANGEX,NINGY,LIUH. Testingandconfidenceintervalsforhighdimensionalproportional hazards models[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 2017, 79(5): 1415-1437.
[65] ZHANG X, CHENG G. Simultaneous inference for high-dimensional linear models[J]. Journal of the American Statistical Association, 2017, 112(518): 757-768.
[66] VAN DE GEER S, BÜHLMANN P, RITOV Y, et al. On asymptotically optimalconfidence regions and tests for high-dimensional models[J]. Annals of Statistics,2014, 42(3): 1166-1202.
[67] NEYKOV M, NING Y, LIU J S, et al. A unified theory of confidence regions and testing for high-dimensional estimating equations[J]. Statistical Science, 2018, 33(3): 427-443.
[68] YU G, YIN L, LU S, et al. Confidence intervals for sparse penalized regressionwithrandomdesigns[J]. JournaloftheAmericanStatisticalAssociation,2020,115(530): 794-809.
[69] ZHU Y, SHEN X, PAN W. On high-dimensional constrained maximum likelihood inference[J]. JournaloftheAmericanStatisticalAssociation,2020,115(529):217-230.
[70] FANG E X, NING Y, LI R. Test of significance for high-dimensional longitudinal data[J]. Annals of Statistics, 2020, 48(5): 2622-2645.
[71] FAN J, GUO S, HAO N. Variance estimation using refitted cross-validation inultrahighdimensionalregression[J]. JournaloftheRoyalStatisticalSociety:SeriesB (Statistical Methodology), 2012, 74(1): 37-65.
[72] SUN T, ZHANG C H. Sparse matrix inversion with scaled lasso[J]. Journal ofMachine Learning Research, 2013, 14(1): 3385-3418.
[73] CHENZ,FANJ,LIR. Errorvarianceestimationinultrahigh-dimensionaladditivemodels[J]. Journal of the American Statistical Association, 2018, 113(521): 315-327.
[74] CHANG J, CHEN S X, TANG C Y, et al. High-dimensional empirical likelihoodinference[J]. Biometrika, 2021, 108(1): 127-147.
[75] SHI C, SONG R, LU W, et al. Statistical inference for high-dimensional modelsvia recursive online-score estimation[J]. Journal of the American Statistical Asso-ciation, 2021, 116(535): 1307-1318.
[76] HE Y, XU G, WU C, et al. Asymptotically independent U-statistics in high-dimensional testing[J]. Annals of Statistics, 2021, 49(1): 154-181.
[77] FEI Z, ZHU J, BANERJEE M, et al. Drawing inferences for high-dimensionallinear models: A selection-assisted partial regression and smoothing approach[J].Biometrics, 2019, 75(2): 551-561.
[78] CHAI H, ZHANG Q, HUANG J, et al. Inference for low-dimensional covariates in a high-dimensional accelerated failure time model[J]. Statistica Sinica, 2019, 29(2): 877-894.
[79] SURP,CANDÈSEJ. Amodernmaximum-likelihoodtheoryforhigh-dimensionallogisticregression[J]. ProceedingsoftheNationalAcademyofSciences,2019,116(29): 14516-14525.
[80] SUR P, CHEN Y, CANDÈS E J. The likelihood ratio test in high-dimensionallogistic regression is asymptotically a rescaled chi-square[J]. Probability Theoryand Related Fields, 2019, 175(1): 487-558.
[81] CANDÈS E J, SUR P. The phase transition for the existence of the maximumlikelihoodestimateinhigh-dimensionallogisticregression[J]. AnnalsofStatistics,2020, 48(1): 27-42.
[82] GREENWALD M B, KHANNA S. Power-conserving computation of order-statistics over sensor networks[C]Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: As-sociation for Computing Machinery, 2004: 275-285.
[83] GUHA S, MCGREGOR A. Stream order and order statistics: Quantile estimation inrandom-orderstreams[J]. SIAMJournalonComputing,2009,38(5):2044-2059.
[84] ZHANG Q, WANG W. A fast algorithm for approximate quantiles in high speed data streams[C]Proceedings of the 19th International Conference on Scientificand Statistical Database Management. NW Washington: IEEE Computer Society,2007: 29-29.
[85] LIR,LINDK,LIB. Statisticalinferenceinmassivedatasets[J]. AppliedStochas-tic Models in Business and Industry, 2013, 29(5): 399-409.
[86] JORDAN M I. On statistics, computation and scalability[J]. Bernoulli, 2013, 19(4): 1378-1390.
[87] MANN G, MCDONALD R, MOHRI M, et al. Efficient large-scale distributedtraining of conditional maximum entropy models[C]Proceedings of the 22nd InternationalConferenceonNeuralInformationProcessingSystems. NewYork:CurranAssociates Inc., 2009: 1231-1239.
[88] ZHANG Y, DUCHI J C, WAINWRIGHT M J. Communication-efficient algo-rithmsforstatisticaloptimization[J]. JournalofMachineLearningResearch,2013,14(1): 3321-3363.
[89] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine learning, 2011, 3(1): 1-122.
[90] MINSKER S. Geometric median and robust estimation in Banach spaces[J].Bernoulli, 2015, 21(4): 2308-2335.
[91] WANG X, PENG P, DUNSON D B. Median selection subset aggregation for parallel inference[C]Proceedings of the 27th International Conference on Neural In-formation Processing Systems. Cambridge MA: MIT Press, 2014: 2195-2203.
[92] WANG X, DUNSON D, LENG C. Decorrelated feature space partitioning for distributed sparse regression[C]Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 802-810.
[93] CHEN X, LIU W, ZHANG Y. Quantile regression under memory constraint[J].Annals of Statistics, 2019, 47(6): 3244-3273.
[94] VOLGUSHEV S, CHAO S K, CHENG G. Distributed inference for quantile re-gression processes[J]. Annals of Statistics, 2019, 47(3): 1634-1662.
[95] CHEN X, LIU W, MAO X, et al. Distributed high-dimensional regression under a quantile loss function[J]. Journal of Machine Learning Research, 2020, 21(182):1-43.
[96] TU J, LIU W, MAO X, et al. Variance reduced median-of-means estimator forbyzantine-robust distributed inference[J]. Journal of Machine Learning Research,2021, 22(84): 1-67.
[97] TU J, LIU W, MAO X. Byzantine-robust distributed sparse learning for m-estimation[J]. Machine Learning, 2021, 0(0): 1-32.
[98] 郭婧璇, 徐慧超, 祝婉晴, 等. 异质性大数据的分布式估计[J]. 统计研究,2021, 37(10): 104-114.
[99] LV S, ZHOU X. Discussion of: “A review of distributed statistical inference”[J]. Statistical Theory and Related Fields, 2021, 0(0): 1-3.
[100] MCCULLAGH P. Quasi-likelihood functions[J]. Annals of Statistics, 1983, 11(1): 59-67.
[101] MCCULLAGH P, NELDER J A. Generalized linear models[M]. London: Chap-man& Hall, 1989.
[102] ELDAR Y C, KUTYNIOK G. Compressed sensing: theory and applications[M].Cambridge England: Cambridge University Press, 2012.
[103] CHEN J, CHEN Z. Extended BIC for small-n-large-P sparse GLM[J]. StatisticaSinica, 2012, 22(2): 555-574.
[104] YANG W Z, HU S H, WANG X J. The bahadur representation for sample quantiles under dependent sequence[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(3): 521-531.
[105] WU Y, YU W, WANG X. The bahadur representation of sample quantiles for mixing random variables and its application[J]. Statistics, 2021, 55(2): 426-444.
[106] FONTANA R, SEMERARO P. Representation of multivariate bernoulli distributions with a given set of specified moments[J]. Journal of Multivariate Analysis,2018, 168(C): 290-303.
[107] SCHEETZ T E, KIM K Y A, SWIDERSKI R E, et al. Regulation of gene expres-sion in the mammalian eye and its relevance to eye disease[J]. Proceedings of the National Academy of Sciences, 2006, 103(39): 14429-14434.
[108] WILLE A, ZIMMERMANN P, VRANOVÁ E, et al. Sparse graphical gaussianmodeling of the isoprenoid gene network in arabidopsis thaliana[J]. Genome biol-ogy, 2004, 5(11): 1-13.
[109] CHEN Q, FAN D, WANG G. Heteromeric geranyl (geranyl) diphosphate synthase isinvolved in monoterpene biosynthesis in arabidopsis flowers[J]. MolecularPlant, 2015, 8(9): 1434-1437.
[110] ROMANO J P, LEHMANN E. Testing statistical hypotheses[M]. New York:Springer Berlin, 2005.
[111] BRADICJ,FANJ,JIANGJ. Regularizationforcox’sproportionalhazardsmodelwith np-dimensionality[J]. Annals of statistics, 2011, 39(6): 3092.
[112] BÜHLMANN P,VANDE GEER S. Statisticsforhigh-dimensional data: methods, theory and applications[M]. Springer: Science & Business Media, 2011.
[113] BELLONI A, CHERNOZHUKOV V. Least squares after model selection in high-dimensional sparse models[J]. Bernoulli, 2013, 19(2): 521-547.
[114] LI D, KE Y, ZHANG W. Model selection and structure specification in ultra-high dimensional generalised semi-varying coefficient models[J]. Annals of Statistics, 2015, 43(6): 2676-2705.
[115] BARTLETT M S. Some notes on insecticide tests in the laboratory and in the field[J]. SupplementtotheJournaloftheRoyalStatisticalSociety,1936,3(2):185-194.
[116] BENTKUS V. A lyapunov-type bound in 푅푑[J]. Theory of Probability & Its Applications, 2005, 49(2): 311-323.
[117] VAN’T VEER L J, DAI H, VAN DE VIJVER M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871): 530-536.
[118] XIA X, LI J. Copula-based partial correlation screening: A joint and robust approach[J]. Statistica Sinica, 2021, 31(1): 421-447.
[119] FAN J, FENG Y, JIANG J, et al. Feature augmentation via nonparametrics and selection (fans) in high-dimensional classification[J]. Journal of the American Statistical Association, 2016, 111(513): 275-287.
[120] HUANG R, XIANG L, HA I D. Frailty proportional mean residual life regression for clustered survival data: A hierarchical quasi-likelihood method[J]. Statistics in Medicine, 2019, 38(24): 4854-4870.
[121] LI B. Simultaneous confidence intervals of estimable functions based on quasi-likelihood in generalized linear models for over-dispersed data[J]. Journal of Statistical Computation and Simulation, 2021, 91(1): 108-127.
[122] YU L, SEVILIMEDU V, VOGEL R, et al. Quasi-Likelihood ratio tests for ho-moscedasticityinlinearregression[J]. JournalofModernAppliedStatisticalMeth-ods, 2020, 18(1): 2845.
[123] GUOG,SUNY,JIANGX. Apartitionedquasi-likelihoodfordistributedstatisticalinference[J]. Computational Statistics, 2020, 35(4): 1577-1596.
[124] YOUSIF A H, ALI O A. Proposing robust lad-atan penalty of regression model estimation for high dimensional data[J]. Baghdad Science Journal, 2020, 17(2):550-555.
[125] LI N, ZHANG H H. Sparse learning with non-convex penalty in multi-classification[J]. Journal of Data Science, 2021, 19(1): 56-74.
[126] HAMIDIEH K. A data-driven statistical model for predicting the critical temperaure of a superconductor[J]. ComputationalMaterialsScience,2018,154:346-354.
[127] SHI C, FAN A, SONG R, et al. High-dimensional a-learning for optimal dynamic treatment regimes[J]. Annals of statistics, 2018, 46(3): 925.
Edit Comment