[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, "State-of-the-art in artificial neural network applications: A survey," Heliyon, vol. 4, no. 11, p. e00938,2018. [Online]. Available: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC6260436 /pdf/main.pdf.
[2] H. Cho, H. Son, K. Seong, B. Kim, H. J. Park, and J. Y. Sim, "An On-Chip Learning Neuromorphic Autoencoder With Current-Mode Transposable Memory Read and Virtual Lookup Table," IEEE Trans Biomed Circuits Syst, vol. 12, no. 1, pp. 161-170, Feb 2018, doi: 10.1109/TBCAS.2017.2762002.
[3] H. E. Lee et al., "Novel Electronics for Flexible and Neuromorphic Computing," Advanced Functional Materials, vol. 28, no. 32, 2018, doi: 10.1002/adfm.201801690.
[4] S. W. Cho, S. M. Kwon, Y.-H. Kim, and S. K. Park, "Recent Progress in Transistor‐Based Optoelectronic Synapses: From Neuromorphic Computing to Artificial Sensory System," Advanced Intelligent Systems, vol. 3, no. 6, 2021, doi: 10.1002/aisy.202000162.
[5] W.-M. Kang et al., "Hardware-Based Spiking Neural Network Using a TFT-Type AND Flash Memory Array Architecture Based on Direct Feedback Alignment," IEEE Access, vol. 9, pp. 73121-73132, 2021, doi: 10.1109/access.2021.3080310.
[6] S. Park et al., "Effect of the Gate Dielectric Layer of Flexible InGaZnO Synaptic Thin-Film Transistors on Learning Behavior," ACS Applied Electronic Materials, vol. 3, no. 9, pp. 3972-3979, 2021, doi: 10.1021/acsaelm.1c00517.
[7] H. Tan, Y. Zhou, Q. Tao, J. Rosen, and S. van Dijken, "Bioinspired multisensory neural network with crossmodal integration and recognition," Nat Commun, vol. 12, no. 1, p. 1120, Feb 18, 2021, doi: 10.1038/s41467-021-21404-z.
[8] C. Choi, H. Seung, and D.-H. Kim, "Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision," IEEE Journal on Flexible Electronics, vol. 1, no. 2, pp. 76-87, 2022, doi: 10.1109/jflex.2022.3162169.
[9] C. Wang et al., "Thin-film transistors for emerging neuromorphic electronics: fundamentals, materials, and pattern recognition," Journal of Materials Chemistry C, vol. 9, no. 35, pp. 11464-11483, 2021, doi: 10.1039/d1tc01660a.
[10] D. O. Hebb, The Organization of Behavior. 2005.
[11] V. Castellucci, H. Pinsker, I. Kupfermann, and E. R. Kandel, "Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia," Science, vol. 167, no. 3926, pp. 1745-8, Mar 27,1970, doi: 10.1126/science.167.3926.1745.
[12] V. F. Castellucci and E. R. Kandel, "A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia," Proc Natl Acad Sci U S A, vol. 71, no. 12, pp. 5004-8, Dec 1974, doi: 10.1073/pnas.71.12.5004.
[13] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-44, May 28, 2015, doi: 10.1038/nature14539.
[14] Sharma, Sagar, Simone Sharma, and Anidhya Athaiya. "Activation functions in neural networks." towards data science 6.12 (2017): 310-316.
[15] N. Verma et al., "In-Memory Computing: Advances and Prospects," IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43-55, 2019, doi: 10.1109/mssc.2019.2922889.
[16] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, "DLAU: A Scalable Deep Learning Accelerator Unit on FPGA," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1-1, 2016, doi: 10.1109/tcad.2016.2587683.
[17] X. Sui, Q. Wu, J. Liu, Q. Chen, and G. Gu, "A Review of Optical Neural Networks," IEEE Access, vol. 8, pp. 70773-70783, 2020, doi: 10.1109/access.2020.2987333.
[18] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, "Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification," Sci Rep, vol. 8, no. 1, p. 12324, Aug 17, 2018, doi: 10.1038/s41598-018-30619-y.
[19] X. Lin et al., "All-optical machine learning using diffractive deep neural networks," Science, vol. 361, no. 6406, pp. 1004-1008, Sep 7, 2018, doi: 10.1126/science.aat8084.
[20] Chen, Huaijin G., et al. "ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[21] L. Chua, "Memristor-The missing circuit element," IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971, doi: 10.1109/tct.1971.1083337.
[22] J. Zhu et al., "An Artificial Spiking Nociceptor Integrating Pressure Sensors and Memristors," IEEE Electron Device Letters, vol. 43, no. 6, pp. 962-965, 2022, doi: 10.1109/led.2022.31674 21.
[23] T. Chang, Y. Yang, and W. Lu, "Building Neuromorphic Circuits with Memristive Devices," IEEE Circuits and Systems Magazine, vol. 13, no. 2, pp. 56-73, 2013, doi: 10.1109/mcas.2013. 2256260.
[24] Z. Wang et al., "Fully memristive neural networks for pattern classification with unsupervised learning," Nature Electronics, vol. 1, no. 2, pp. 137-145, 2018, doi: 10.1038/s41928-018-0023-2.
[25] Q. Zhang et al., "Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems," Neural Netw, vol. 108, pp. 217-223, Dec 2018, doi: 10.1016/j.neunet.2018.08.012.
[26] A. Mehonic, D. Joksas, W. H. Ng, M. Buckwell, and A. J. Kenyon, "Simulation of Inference Accuracy Using Realistic RRAM Devices," Front Neurosci, vol. 13, p. 593, 2019, doi: 10.3389/fnins.2019.00593.
[27] M. Rahimi Azghadi et al., "Complementary Metal‐Oxide Semiconductor and Memristive Hardware for Neuromorphic Computing," Advanced Intelligent Systems, vol. 2, no. 5, 2020, doi: 10.1002/aisy.201900189.
[28] F. Moro et al., "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nat Commun, vol. 13, no. 1, p. 3506, Jun 18, 2022, doi: 10.1038/s41467-022-31157-y.
[29] G. S. Snider, "Spike-timing-dependent learning in memristive nanodevices," presented at the 2008 IEEE International Symposium on Nanoscale Architectures, 2008.
[30] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett, vol. 10, no. 4, pp. 1297-301, Apr 14, 2010, doi: 10.1021/nl904092h.
[31] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-4, May 7, 2015, doi: 10.1038/nature14441.
[32] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, "Memristor-based memory: The sneak paths problem and solutions," Microelectronics Journal, vol. 44, no. 2, pp. 176-183, 2013, doi: 10.1016/j.mejo.2012.10.001.
[33] P. Yao et al., "Face classification using electronic synapses," Nat Commun, vol. 8, p. 15199, May 12, 2017, doi: 10.1038/ncomms15199.
[34] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and D. Strukov, "Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits," Nat Commun, vol. 9, no. 1, p. 2331, Jun 13, 2018, doi: 10.1038/s41467-018-04482-4.
[35] L. Danial et al., "Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing," Nature Electronics, vol. 2, no. 12, pp. 596-605, 2019, doi: 10.1038/s41928-019-0331-1.
[36] K. H. Kim et al., "A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications," Nano Lett, vol. 12, no. 1, pp. 389-95, Jan 11, 2012, doi: 10.1021/nl203687n.
[37] P. Feng et al., "Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin-Film Transistors," Advanced Functional Materials, vol. 27, no. 5, 2017, doi: 10.1002/adfm.2016044 47.
[38] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo, "Organic electronics for neuromorphic computing," Nature Electronics, vol. 1, no. 7, pp. 386-397, 2018, doi: 10.1038/s41928-018-0103-3.
[39] S. Dai et al., "Recent Advances in Transistor‐Based Artificial Synapses," Advanced Functional Materials, vol. 29, no. 42, 2019, doi: 10.1002/adfm.201903700.
[40] X. Yan, J. H. Qian, V. K. Sangwan, and M. C. Hersam, "Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems," Adv Mater, p. e2108025, Nov 23, 2021, doi: 10.1002/adma.202108025.
[41] L. R. Gan, Y. R. Wang, L. Chen, H. Zhu, and Q. Q. Sun, "A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications," Micromachines (Basel), vol. 10, no. 9, Aug 23, 2019, doi: 10.3390/mi10090558.
[42] T. Kim, K. Park, T. Jang, M.-H. Baek, Y. S. Song, and B.-G. Park, "Input-modulating adaptive neuron circuit employing asymmetric floating-gate MOSFET with two independent control gates," Solid-State Electronics, vol. 163, 2020, doi: 10.1016/j.sse.2019.107667.
[43] J. Park, Y. Jang, J. Lee, and S.-Y. Lee, "Charge Trap‐Based Synaptic Transistor Employing In‐Ga‐Zn‐O as Channel and Trap Layers for Bio‐Inspired Neuromorphic Computing," SID Symposium Digest of Technical Papers, vol. 53, no. 1, pp. 1092-1095, 2022, doi: 10.1002/ sdtp.15690.
[44] K. Ni et al., "SoC Logic Compatible Multi-Bit FeMFET Weight Cell for Neuromorphic Applications," (in English), Int El Devices Meet, 2018, doi: 10.1109/IEDM.2018.8614496.
[45] K. Lee, J.-H. Bae, S. Kim, J.-H. Lee, B.-G. Park, and D. Kwon, "Ferroelectric-Gate Field-Effect Transistor Memory With Recessed Channel," IEEE Electron Device Letters, vol. 41, no. 8, pp. 1201-1204, 2020, doi: 10.1109/led.2020.3001129.
[46] M. Kim, K. Lee, S. Kim, J.-H. Lee, B.-G. Park, and D. Kwon, "Double-Gated Ferroelectric-Gate Field-Effect-Transistor for Processing in Memory," IEEE Electron Device Letters, vol. 42, no. 11, pp. 1607-1610, 2021, doi: 10.1109/led.2021.3116797.
[47] H. Ling, D. A. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan, and P. Gkoupidenis, "Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing," Applied Physics Reviews, vol. 7, no. 1, 2020, doi: 10.1063/1.5122249.
[48] W. Huang et al., "Dielectric materials for electrolyte gated transistor applications," Journal of Materials Chemistry C, vol. 9, no. 30, pp. 9348-9376, 2021, doi: 10.1039/d1tc02271g.
[49] F. Torricelli et al., "Electrolyte-gated transistors for enhanced performance bioelectronics," Nat Rev Methods Primers, vol. 1, 2021, doi: 10.1038/s43586-021-00065-8.
[50] H. Park et al., "Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display," ACS Appl Mater Interfaces, vol. 12, no. 4, pp. 4749-4754, Jan 29, 2020, doi: 10.1021/acsami.9b18945.
[51] D. Liang, B.-j. Chen, B. Feng, Y. Ikuhara, H. J. Cho, and H. Ohta, "Optimization of Two-Dimensional Channel Thickness in Nanometer-Thick SnO2-Based Top-Gated Thin-Film Transistors Using Electric Field Thermopower Modulation: Implications for Flat-Panel Displays," ACS Applied Nano Materials, vol. 3, no. 12, pp. 12427-12432, 2020, doi: 10.1021/ acsanm.0c03069.
[52] Y. Chen et al., "Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors," Adv Mater, vol. 31, no. 4, p. e1805082, Jan 2019, doi: 10.1002/adma.201805082.
[53] E. J. Fuller et al., "Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing," Science, vol. 364, no. 6440, pp. 570-574, May 10, 2019, doi: 10.1126/science.aaw5581.
[54] D. Li, "The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012, doi: 10.1109/msp.2012.2211477.
[55] Y. He et al., "IGZO-based floating-gate synaptic transistors for neuromorphic computing," Journal of Physics D: Applied Physics, vol. 53, no. 21, 2020, doi: 10.1088/1361-6463/ab7bb4.
[56] H. Mulaosmanovic, E. T. Breyer, S. Dunkel, S. Beyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric field-effect transistors based on HfO2: a review," Nanotechnology, vol. 32, no. 50, Sep 22, 2021, doi: 10.1088/1361-6528/ac189f.
[57] S. T. Yang et al., "High‐Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry," Advanced Functional Materials, vol. 32, no. 35, 2022, doi: 10.1002/adfm.202202366.
[58] X. Bu, H. Xu, D. Shang, Y. Li, H. Lv, and Q. Liu, "Ion‐Gated Transistor: An Enabler for Sensing and Computing Integration," Advanced Intelligent Systems, vol. 2, no. 12, 2020, doi: 10.1002/aisy.202000156.
[59] Y. Li et al., "Oxide-Based Electrolyte-Gated Transistors for Spatiotemporal Information Processing," Adv Mater, vol. 32, no. 47, p. e2003018, Nov 2020, doi: 10.1002/adma. 202003018.
[60] R. A. John et al., "Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing," Small, vol. 13, no. 32, Aug 2017, doi: 10.1002/smll.201701193.
[61] Y. He, S. Nie, R. Liu, S. Jiang, Y. Shi, and Q. Wan, "Spatiotemporal Information Processing Emulated by Multiterminal Neuro-Transistor Networks," Adv Mater, vol. 31, no. 21, p. e1900903, May 2019, doi: 10.1002/adma.201900903.
[62] T. Kim et al., "Spiking Neural Network (SNN) With Memristor Synapses Having Non-linear Weight Update," Front Comput Neurosci, vol. 15, p. 646125, 2021, doi: 10.3389/fncom.2021. 646125.
[63] S. Oh et al., "Spiking Neural Networks With Time-to-First-Spike Coding Using TFT-Type Synaptic Device Model," IEEE Access, vol. 9, pp. 78098-78107, 2021, doi: 10.1109/access. 2021.3083056.
[64] K. Khan et al., "Recent developments in emerging two-dimensional materials and their applications," Journal of Materials Chemistry C, vol. 8, no. 2, pp. 387-440, 2020, doi: 10.1039 /c9tc04187g.
[65] J. Jiang et al., "2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems," Small, vol. 13, no. 29, Aug 2017, doi: 10.1002/smll.201700933.
[66] H. S. Lee et al., "Dual‐Gated MoS2 Memtransistor Crossbar Array," Advanced Functional Materials, vol. 30, no. 45, 2020, doi: 10.1002/adfm.202003683.
[67] S. Ma et al., "An artificial neural network chip based on two-dimensional semiconductor," Science Bulletin, vol. 67, no. 3, pp. 270-277, 2022, doi: 10.1016/j.scib.2021.10.005.
[68] D. Ryu, T.-H. Kim, T. Jang, J. Yu, J.-H. Lee, and B.-G. Park, "Double-Gated Asymmetric Floating-Gate-Based Synaptic Device for Effective Performance Enhancement Through Online Learning," IEEE Access, vol. 8, pp. 217735-217743, 2020, doi: 10.1109/access.2020. 3041734.
[69] T. K. Ho et al., "73.2: A Novel TFT Pixel and Driving Scheme of Electrically- Suppressed-Helix FLC for Active-Matrix Flat Panel Display," SID Symposium Digest of Technical Papers, vol. 46, no. 1, pp. 1077-1080, 2015, doi: 10.1002/sdtp.10407.
[70] J. W. Park, B. H. Kang, and H. J. Kim, "A Review of Low‐Temperature Solution‐Processed Metal Oxide Thin‐Film Transistors for Flexible Electronics," Advanced Functional Materials, vol. 30, no. 20, 2019, doi: 10.1002/adfm.201904632.
[71] R. Chen and L. Lan, "Solution-processed metal-oxide thin-film transistors: a review of recent developments," Nanotechnology, vol. 30, no. 31, p. 312001, Aug 2, 2019, doi: 10.1088/1361-6528/ab1860.
[72] M. Miyakawa, M. Nakata, H. Tsuji, and Y. Fujisaki, "Simple and reliable direct patterning method for carbon-free solution-processed metal oxide TFTs," Sci Rep, vol. 8, no. 1, p. 12825, Aug 27, 2018, doi: 10.1038/s41598-018-31134-w.
[73] H. Kim, J. Park, T. Khim, S. Bak, J. Song, and B. Choi, "Threshold voltage instability and polyimide charging effects of LTPS TFTs for flexible displays," Sci Rep, vol. 11, no. 1, p. 8387, Apr 16, 2021, doi: 10.1038/s41598-021-87950-0.
[74] J. Lee, Y. Lee, T. Kang, H. Chu, and J. Kwag, "Alleviation of abnormal NBTI phenomenon in LTPS TFTs on polyimide substrate for flexible AMOLED," Journal of the Society for Information Display, vol. 28, no. 4, pp. 333-341, 2020, doi: 10.1002/jsid.883.
[75] C.-L. Lin, P.-C. Lai, J.-H. Chang, Y.-C. Chen, P.-C. Lai, and L.-W. Shih, "Reducing Leakage Current Using LTPS-TFT Pixel Circuit in AMOLED Smartwatch Displays," IEEE Transactions on Industrial Electronics, pp. 1-9, 2022, doi: 10.1109/tie.2022.3208593.
[76] L. Lu, J. Li, Z. Q. Feng, H.-S. Kwok, and M. Wong, "Elevated-Metal Metal-Oxide (EMMO) Thin-Film Transistor: Technology and Characteristics," IEEE Electron Device Letters, pp. 1-1, 2016, doi: 10.1109/led.2016.2552638.
[77] B. Liu, Q. Liu, J. Liu, F. Zhu, and H. Zhou, "A New Compensation Pixel Circuit Based on A-Si TFTs," presented at the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), 2020.
[78] J. Liu, J. Xiao, S. Zhang, X. He, Y. Yu, and B. Zhao, "Mechanism and Improvement on Horizontal Crosstalk in 8K a-Si TFT-LCD," presented at the 2021 IEEE 4th International Conference on Electronics Technology (ICET), 2021.
[79] Y.-H. Tai, C.-C. Tu, Y.-C. Yuan, Y.-J. Chang, P.-C. Wang, and Y.-W. Kuo, "The Photosensitive Mechanism of Gap-Type Amorphous Silicon TFT," IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6177-6181, 2021, doi: 10.1109/ted.2021.3120231.
[80] J. Kim, M. M. Billah, and J. Jang, "Ultra-Low Power, Emission Gate Driver With Pulse Width Modulation Using Low-Temperature Poly-Si Oxide Thin-Film Transistors," IEEE Electron Device Letters, vol. 43, no. 2, pp. 236-239, 2022, doi: 10.1109/led.2021.3137195.
[81] X. He et al., "Implementation of Fully Self-Aligned Homojunction Double-Gate a-IGZO TFTs," IEEE Electron Device Letters, vol. 35, no. 9, pp. 927-929, 2014, doi: 10.1109/led.2014. 2336232.
[82] Z. Xia et al., "Characteristics of Elevated-Metal Metal-Oxide Thin-Film Transistors Based on Indium-Tin-Zinc Oxide," IEEE Electron Device Letters, vol. 38, no. 7, pp. 894-897, 2017, doi: 10.1109/led.2017.2707090.
[83] G. Baek and J. Kanicki, "Modeling of current—voltage characteristics for double-gate a-IGZO TFTs and its application to AMLCDs," Journal of the Society for Information Display, vol. 20, no. 5, 2012, doi: 10.1889/jsid20.5.237.
[84] T. Lei, R. Shi, Y. Wang, Z. Xia, and M. Wong, "A Comparative Study on Inverters Built With Dual-Gate Thin-Film Transistors Based on Depletion- or Enhancement-Mode Technologies," IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3186-3191, 2022, doi: 10.1109 /ted.2022.3167940.
[85] F. Zeng et al., "Opportunity of the Lead-Free All-Inorganic Cs3Cu2I5 Perovskite Film for Memristor and Neuromorphic Computing Applications," ACS Appl Mater Interfaces, vol. 12, no. 20, pp. 23094-23101, May 20, 2020, doi: 10.1021/acsami.0c03106.
[86] V. A. Demin et al., "Hardware elementary perceptron based on polyaniline memristive devices," Organic Electronics, vol. 25, pp. 16-20, 2015, doi: 10.1016/j.orgel.2015.06.015.
[87] Y. P. Lin et al., "Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses," Sci Rep, vol. 6, p. 31932, Sep 7, 2016, doi: 10.1038/srep31932.
[88] X. Yang et al., "Mechanoplastic Tribotronic Floating‐Gate Neuromorphic Transistor," Advanced Functional Materials, vol. 30, no. 34, 2020, doi: 10.1002/adfm.202002506.
[89] Y. Hu, Y. Wang, T. Lei, F. Wang, and M. Wong, "Neuromorphic Implementation of Logic Functions Based on Parallel Dual-Gate Thin-Film Transistors," IEEE Electron Device Letters, vol. 43, no. 5, pp. 741-744, 2022, doi: 10.1109/led.2022.3164684.
[90] Wang, Y., Xia, Z., and Wong, M., “Characterization of the off-state current of an elevated-metal–metal-oxide thin-film transistor,” SID Symposium Digest of Technical Papers, vol. 52, pp. 413-416, Feb. 2021, doi: 10.1002/sdtp.14505.
[91] Y. Hu, T. Lei, Y. Wang, F. Wang, and M. Wong, "An Artificial Neural Network Implemented Using Parallel Dual-Gate Thin-Film Transistors," IEEE Transactions on Electron Devices, vol. 69, no. 10, pp. 5574-5579, 2022, doi: 10.1109/ted.2022.3201836.
[92] http://archive.ics.uci.edu/ml/datasets/Twin+gas+sensor+arrays.
[93] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backpropagation and the brain,” Nature Reviews Neuroscience, vol. 21, no. 6, pp. 335-346, Apr. 2020.
[94] R. Midya et al., "Artificial Neural Network (ANN) to Spiking Neural Network (SNN) Converters Based on Diffusive Memristors," Advanced Electronic Materials, vol. 5, no. 9, 2019, doi: 10.1002/aelm.201900060.
[95] H. Tan et al., "Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves," Nat Commun, vol. 11, no. 1, p. 1369, Mar 13, 2020, doi: 10.1038/s41467-020-15105-2.
[96] S. Y. Woo et al., "Implementation of homeostasis functionality in neuron circuit using double-gate device for spiking neural network," Solid-State Electronics, vol. 165, 2020, doi: 10.1016/ j.sse.2019.107741.
[97] C. Chen et al., "A Photoelectric Spiking Neuron for Visual Depth Perception," Adv Mater, vol. 34, no. 20, p. e2201895, May 2022, doi: 10.1002/adma.202201895.
[98] X. Lin et al., "Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding," Chinese Physics Letters, vol. 39, no. 6, 2022, doi: 10.1088/0256-307x/39/6/068501.
Edit Comment