中文版 | English
Title

基于发光聚合物纳米颗粒的葡萄糖传感器及活体监测研究

Alternative Title
IN VIVO DYNAMIC MONITORING OF BLOOD GLUCOSE WITH LUMINESCENT POLYMER NANOPARTICLE TRANSDUCER
Author
Name pinyin
LIU Siyang
School number
11849594
Degree
博士
Discipline
083100 生物医学工程
Subject category of dissertation
08 工学
Supervisor
吴长锋
Mentor unit
生物医学工程系
Publication Years
2022-11-03
Submission date
2023-01-03
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

糖尿病是一种以持续的高血糖水平为疾病特征的代谢类疾病。长期的高血糖会导致如心脏病、高血压、肾衰竭和失明等多种并发症。因此,严格的血糖控制成为糖尿病治疗中最为关键的一环。指尖采血法是临床上应用最广泛的葡萄糖检测方法。虽然检测精度较高,但仅能间歇性地提供葡萄糖浓度信息。相比之下,连续监测血糖技术可实时测量血糖的变化,并在血糖异常时及时发出警告,有助于使患者在饮食和用药方面做出更明智的决策。

目前市售的连续血糖监测设备多为植入皮下的电化学传感器,虽能够量化组织液中葡萄糖的浓度,但其电极在生理环境中容易退化导致灵敏度下降,造成传感器需频繁更换,对患者造成了更大的经济负担和更高的感染风险。近些年,光学传感器由于其高灵敏度与良好的生物相容性等优点,在生命科学与临床研究中表现出极大的应用潜力,为开发新型的连续血糖监测技术提供了全新的视野。

聚合物纳米颗粒(Polymer nanoparticles,NPs)具有高荧光亮度、良好的稳定性和优异的生物相容性,近年来被广泛应用于生物医学领域。本论文开发了一类基于聚合物纳米颗粒的光学葡萄糖传感器,用于小鼠体内葡萄糖水平的连续监测。具体成果如下:

本文首先设计了一种在近红外区发射的光学聚合物纳米颗粒葡萄糖传感器,该传感器能够在实现体内葡萄糖连续监测的同时,实现小鼠的脑部葡萄糖摄取的定量检测。使用尼罗红(Nile Red)和铂卟啉染料构建氧敏感磷光探针,随后将该探针与葡萄糖氧化酶(Glucose oxidase,GOx)共价结合,产生对葡萄糖浓度高度敏感的近红外磷光。该葡萄糖传感器不仅在体内长期连续血糖监测中具有较好的检测准确度,其平均绝对相对差值(Mean absolute relative difference,MARD)达到10.7%,而且能够量化小鼠脑部葡萄糖的摄取率,检测转基因脑瘤小鼠脑部葡萄糖代谢的异常,实现正常小鼠与脑瘤小鼠的区分。

为了提高葡萄糖传感器的稳定性和制备可重复性,进一步开发了卟啉共价的聚合物纳米颗粒葡萄糖传感器进行体内连续血糖监测研究。与传统的染料掺杂的方式不同,该传感器中金属卟啉被共价连接在聚合物骨架中。该方法可以提高粒子内能量转移效率,同时克服聚合物纳米颗粒制备和贮存过程中染料聚集的问题。与金属卟啉掺杂的纳米颗粒相比,金属卟啉共价连接的纳米颗粒具有更小的批次间差异,更高的磷光量子效率和更好的稳定性。金属卟啉共价连接的纳米颗粒传感器在小鼠体内的长期连续血糖监测中也表现出了更高的葡萄糖检测准确度,其MARD值达到4.4%。

对葡萄糖氧化酶催化过程中的副产物过氧化氢对传感器性能的影响进行了探究。验证了过氧化氢对传感器的发光猝灭作用,同时能够降低葡萄糖氧化酶的催化效率,进而影响传感器的性能。对偶联的过氧化氢酶(Catalase,CAT)的活性及长期稳定性进行了表征。细胞毒性实验的结果表明,同时偶联葡萄糖氧化酶和过氧化氢酶可以显著提高纳米颗粒传感器的生物相容性。系统探究了葡萄糖、氧气和激光对传感器细胞毒性的影响。最后,证明与未偶联过氧化氢酶的葡萄糖传感器相比,过氧化氢酶可以大幅提高传感器在长期连续血糖监测中的灵敏度。偶联过氧化氢的葡萄糖传感器在植入小鼠体内28天后其灵敏度与未偶联过氧化氢的传感器相比提高了1.8倍。

综上所述,本研究首先制备了一种具有较大穿透深度的光学纳米颗粒葡萄糖传感器,用于体内长期葡萄糖连续监测和小鼠脑部葡萄糖摄取的动态成像和定量分析。为了进一步改善传感器的光学性能,将卟啉染料共价连接在共轭聚合物骨架中以提升传感器的稳定性和制备可重复性。随后系统研究了过氧化氢对基于葡萄糖氧化酶的葡萄糖传感系统的影响。证实了过氧化氢酶的偶联能够通过分解过氧化氢从而大幅提高传感器的稳定性、灵敏度和生物相容性,最终实现更优异的体内长期连续血糖监测性能。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] ZIMMET P, ALBERTI K, SHAW J. Global and Societal Implications of the Diabetes Epidemic [J]. Nature, 2001, 414(6865): 782-787.
[2] WALDRON-LYNCH F, HEROLD K C. Continuous Glucose Monitoring: Long Live the Revolution! [J]. Nature Clinical Practice Endocrinology & Metabolism, 2009, 5(2): 82-83.
[3] TAMBORLANE W V, BECK R W, BODE B W, et al. Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes [J]. New England Journal of Medicine, 2008, 359(14): 1464-1476.
[4] KLONOFF D C. Continuous Glucose Monitoring: Roadmap for 21st Century Diabetes Therapy [J]. Diabetes Care, 2005, 28(5): 1231-1239.
[5] MARATHE P H, GAO H X, CLOSE K L. American Diabetes Association Standards of Medical Care in Diabetes 2017 [J]. Journal of Diabetes, 2017, 9(4): 320-324.
[6] PICKUP J C. Management of Diabetes Mellitus: Is the Pump Mightier than the Pen? [J]. Nature Reviews Endocrinology, 2012, 8(7): 425-433.
[7] YU J C, ZHANG Y Q, YE Y Q, et al. Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles Provide Fast Glucose-Responsive Insulin Delivery [J]. Proceedings of the National Academy of Sciences, 2015, 112(27): 8260-8265.
[8] CLARK L C, LYONS C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery [J]. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45.
[9] UPDIKE S J, HICKS G P. The Enzyme Electrode [J]. Nature, 1967, 214(5092): 986-988.
[10] FREW J E, HILL H A O. Electrochemical Biosensors [J]. Analytical Chemistry, 1987, 59(15): 933A-944A.
[11] ZHANG S X, WANG N, YU H J, et al. Covalent Attachment of Glucose Oxidase to an Au Electrode Modified with Gold Nanoparticles for Use as Glucose Biosensor [J]. Bioelectrochemistry, 2005, 67(1): 15-22.
[12] ALONSO B, ARMADA P G, LOSADA J, et al. Amperometric Enzyme Electrodes for Aerobic and Anaerobic Glucose Monitoring Prepared by Glucose Oxidase Immobilized in Mixed Ferrocene-Cobaltocenium Dendrimers [J]. Biosensors and Bioelectronics, 2004, 19(12): 1617-1625.
[13] BAI Y, SUN Y Y, SUN C Q. Pt-Pb Nanowire Array Electrode for Enzyme-Free Glucose Detection [J]. Biosensors and Bioelectronics, 2008, 24(4): 579-585.
[14] WANG J J C R. Electrochemical Glucose Biosensors [J]. Chemical Reviews, 2008, 108(2): 814-825.
[15] ALBISSER A M, LEIBEL B S, EWART T G, et al. Clinical Control of Diabetes by Artificial Pancreas [J]. Diabetes, 1974, 23(5): 397-404.
[16] SHICHIRI M, KAWAMORI R, YAMASAKI Y, et al. Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor [J]. The Lancet, 1982, 320(8308): 1129-1131.
[17] BINDRA D S, ZHANG Y N, WILSON G S, et al. Design and Invitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring [J]. Analytical Chemistry, 1991, 63(17): 1692-1696.
[18] GOUGH D A, KUMOSA L S, ROUTH T L, et al. Function of an Implanted Tissue Glucose Sensor for More than 1 Year in Animals [J]. Science Translational Medicine, 2010, 2(42): 42ra53-42ra53.
[19] MIRZAJANI H, ABBASIASL T, MIRLOU F, et al. An Ultra-Compact and Wireless Tag for Battery-Free Sweat Glucose Monitoring [J]. Biosensors and Bioelectronics, 2022, 213, 114450.
[20] LIU Y R, WU Z L, KOLLIPARA P S, et al. Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes [J]. ACS Nano, 2021, 15(4): 6448-6456.
[21] OHAYON D, NIKIFORIDIS G, SAVVA A, et al. Biofuel Powered Glucose Detection in Bodily Fluids with an N-Type Conjugated Polymer [J]. Nature Materials, 2020, 19(4): 456-463.
[22] KIM S K, LEE G H, JEON C, et al. Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Long-Term Robust Continuous Glucose Monitoring of Smart Contact Lens [J]. Advanced Materials, 2022, 34(18): 2110536.
[23] LEE H, CHOI T K, LEE Y B, et al. A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy [J]. Nature Nanotechnology, 2016, 11(6): 566-572.
[24] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis [J]. Nature, 2016, 529(7587): 509-514.
[25] PARK J, KIM J, KIM S Y, et al. Soft, Smart Contact Lenses with Integrations of Wireless Circuits, Glucose Sensors, and Displays [J]. Science Advances, 2018, 4(1): eaap9841.
[26] PU Z H, ZHANG X G, YU H X, et al. A Thermal Activated and Differential Self-Calibrated Flexible Epidermal Biomicrofluidic Device for Wearable Accurate Blood Glucose Monitoring [J]. Science Advances, 2021, 7(5): eabd0199.
[27] CHENG Y X, GONG X, YANG J, et al. A Touch-Actuated Glucose Sensor Fully Integrated with Microneedle Array and Reverse Iontophoresis for Diabetes Monitoring [J]. Biosensors and Bioelectronics, 2022, 203: 114026.
[28] LI X L, HUANG X S, MO J S, et al. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment [J]. Advanced Science, 2021, 8(16): 2100827.
[29] STEINER M S, DUERKOP A, WOLFBEIS O S. Optical Methods for Sensing Glucose [J]. Chemical Society Reviews, 2011, 40(9): 4805-4839.
[30] JO S M, KIM J, LEE J E, et al. Multimodal Enzyme-Carrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions [J]. Advanced Science, 2022, 9(10): 2104884.
[31] CAI J Y, LUO W, PAN J J, et al. Glucose-Sensing Photonic Nanochain Probes with Color Change in Seconds [J]. Advanced Science, 2022, 9(9): 2105239.
[32] PIRNSTILL C W, MALIK B H, GRESHAM V C, et al. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion [J]. Diabetes Technology & Therapeutics, 2012, 14(9): 819-827.
[33] DE PRETTO L R, YOSHIMURA T M, RIBEIRO M S, et al. Optical Coherence Tomography for blood glucose monitoring through signal attenuation [C]. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX. SPIE, 2016, 9697: 277-285.
[34] LIAKAT S, BORS K A, XU L, et al. Noninvasive In Vivo Glucose Sensing on Human Subjects using Mid-Infrared Light [J]. Biomedical Optics Express, 2014, 5(7): 2397-2404.
[35] SHIH W C, BECHTEL K L, REBEC M V. Noninvasive Glucose Sensing by Transcutaneous Raman Spectroscopy [J]. Journal of Biomedical Optics, 2015, 20(5): 051036.
[36] PANDEY R, PAIDI S K, VALDEZ T A, et al. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy [J]. Accounts of Chemical Research, 2017, 50(2): 264-272.
[37] REN Z, LIU G D, HUANG Z. Determination of Glucose Concentration Based on Pulsed Laser Induced Photoacoustic Technique and Least Square Fitting Algorithm [C]. 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing. SPIE, 2015, 9619: 137-144.
[38] 郭帅,苏杭,黄星灿,等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(06): 1235-48.
[39] SHIBATA H, HEO Y J, OKITSU T, et al. Injectable Hydrogel Microbeads for Fluorescence-Based In Vivo Continuous Glucose Monitoring [J]. Proceedings of the National Academy of Sciences, 2010, 107(42): 17894-17898
[40] WANG H, YI J H, YU Y Y, et al. NIR Upconversion Fluorescence Glucose Sensing and Glucose-Responsive Insulin Release of Carbon Dot-Immobilized Hybrid Microgels at Physiological pH [J]. Nanoscale, 2017, 9(2): 509-516.
[41] YANG X F, ZHOU Z D, XIAO D, et al. A Fluorescent Glucose Biosensor Based on Immobilized Glucose Oxidase on Bamboo Inner Shell Membrane [J]. Biosensors and Bioelectronics, 2006, 21(8): 1613-1620.
[42] WU X J, CHOI M M F. An Optical Glucose Biosensor Based on Entrapped-Glucose Oxidase in Silicate Xerogel Hybridised with Hydroxyethyl Carboxymethyl Cellulose [J]. Analytica Chimica Acta, 2004, 514(2): 219-226.
[43] WOLFBEIS O S, OEHME I, PAPKOVSKAYA N, et al. Sol-Gel Based Glucose Biosensors Employing Optical Oxygen Transducers, and A Method for Compensating for Variable Oxygen Background [J]. Biosensors and Bioelectronics, 2000, 15(1-2): 69-76.
[44] WU S, KONG X J, CEN Y, et al. Fabrication of A LRET-Based Upconverting Hybrid Nanocomposite for Turn-On Sensing of H2O2 and Glucose [J]. Nanoscale, 2016, 8(16): 8939-8946.
[45] LI N, THAN A, WANG X W, et al. Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots [J]. ACS Nano, 2016, 10(3): 3622-3629.
[46] WEI J F, QIANG L, REN J, et al. Fluorescence Turn-Off Detection of Hydrogen Peroxide and Glucose Directly Using Carbon Nanodots as Probes [J]. Analytical Methods, 2014, 6(6): 1922-1927.
[47] SHAN X Y, CHAI L J, MA J J, et al. B-doped Carbon Quantum Dots as A Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection [J]. Analyst, 2014, 139(10): 2322-2325.
[48] CHENG X, SUN L H, LI R F, et al. Organic Polymer Dot-Based Fluorometric Determination of the Activity of Horseradish Peroxidase and of the Concentrations of Glucose and the Insecticidal Protein Toxin Cry1Ab/Ac [J]. Microchimica Acta, 2019, 186(11): 1-7.
[49] MA J L, YIN B C, WU X, et al. Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles [J]. Analytical Chemistry, 2017, 89(2): 1323-1328.
[50] MA H, LIU X Y, WANG X D, et al. Sensitive Fluorescent Light-Up Probe for Enzymatic Determination of Glucose Using Carbon Dots Modified with MnO2 Nanosheets [J]. Microchimica Acta, 2017, 184(1): 177-185.
[51] GONZALES W V, MOBASHSHER A T, ABBOSH A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors [J]. Sensors, 2019, 19(4): 800.
[52] SAHA S, CANO-GARCIA H, SOTIRIOU L, et al. A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves Using Micro Strip Patch Antennas [J]. Scientific Reports, 2017(7), 6855.
[53] HANNA J, BTEICH M, TAWK Y, et al. Noninvasive, Wearable, and Tunable Electromagnetic Multisensing System for Continuous Glucose Monitoring, Mimicking Vasculature Anatomy [J]. Science Advances, 2020, 6(24): eaba5320.
[54] WANG Z R, MASCARENHAS C, JIA X F. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments [J]. Translational Stroke Research, 2020, 11(4): 628-642.
[55] KRAUSE B J, SCHWARZENBöCK S, SOUVATZOGLOU M. FDG PET and PET/CT[J]. Molecular Imaging in Oncology, 2013: 351-369.
[56] FOWLER J S, IDO T. Initial and Subsequent Approach for the Synthesis of (18)FDG [C]. Seminars in Nuclear Medicine. WB Saunders, 2002, 32(1): 6-12.
[57] DI CHIRO G, OLDFIELD E, WRIGHT D C, et al. Cerebral Necrosis After Radiotherapy and/or Intraarterial Chemotherapy for Brain Tumors: PET and Neuropathologic Studies [J]. American Journal of Roentgenology, 1988, 150(1): 189-197.
[58] CHEN W. Clinical Applications of PET in Brain Tumors [J]. Journal of Nuclear Medicine, 2007, 48(9): 1468-1481.
[59] WONG T Z, VAN DER WESTHUIZEN G J, COLEMAN R E. Positron Emission Tomography Imaging of Brain Tumors [J]. Neuroimaging Clinics, 2002, 12(4): 615-626.
[60] BENVENISTE H, HUTTEMEIER P C. Microdialysis-Theory and Application [J]. Prog Neurobiol, 1990, 35(3): 195-215.
[61] KRISHNAPPA I K, CONTANT C F, ROBERTSON C S. Regional Changes in Cerebral Extracellular Glucose and Lactate Concentrations Following Severe Cortical Impact Injury and Secondary Ischemia in Rats [J]. Journal of Neurotrauma, 1999, 16(3): 213-224.
[62] CHEFER V I, THOMPSON A C, ZAPATA A, et al. Overview of Brain Microdialysis[J]. Current Protocols in Neuroscience, 2009, 47(1): 7.1.1-7.1.28.
[63] WALKER-SAMUEL S, RAMASAWMY R, TORREALDEA F, et al. In Vivo Imaging of Glucose Uptake and Metabolism in Tumors [J]. Nature Medicine, 2013, 19(8): 1067-1072.
[64] HUANG J P, VAN ZIJL P C M, HAN X Q, et al. Altered D-glucose in Brain Parenchyma and Cerebrospinal Fluid of Early Alzheimer's Disease Detected by Dynamic Glucose-Enhanced MRI [J]. Science Advances, 2020, 6(20): eaba3884.
[65] COX B L, MACKIE T R, ELICEIRI K W, et al. The Sweet Spot: FDG and Other 2-Carbon Glucose Analogs for Multi-Modal Metabolic Imaging of Tumor Metabolism [J]. American Journal of Nuclear Medicine and Molecular Imaging, 2015, 5(1): 1.
[66] YOSHIOKA K, SAITO M, OH K B, et al. Intracellular Fate of 2-NBDG, a Fluorescent Probe for Glucose Uptake Activity, in Escherichia Coli Cells [J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(11): 1899-1901.
[67] CHENG Z, LEVI J, XIONG Z, et al. Near-Infrared Fluorescent Deoxyglucose Analogue for Tumor Optical Imaging in Cell Culture and Living Mice [J]. Bioconjugate Chemistry, 2006, 17(3): 662-669.
[68] GAROFALAKIS A, DUBOIS A, THéZé B, et al. Fusion of
[18F]FDG PET with Fluorescence Diffuse Optical Tomography to Improve Validation of Probes and Tumor Imaging [J]. Molecular Imaging and Biology, 2013, 15(3): 316-325.
[69] LUNDGAARD I, LI B M, XIE L L, et al. Direct Neuronal Glucose Uptake Heralds Activity-Dependent Increases in Cerebral Metabolism [J]. Nature Communications, 2015, 6(1): 1-12.
[70] KOVAR J L, VOLCHECK W, SEVICK-MURACA E, et al. Characterization and Performance of a Near-Infrared 2-Deoxyglucose Optical Imaging Agent for Mouse Cancer Models [J]. Analytical Biochemistry, 2009, 384(2): 254-262.
[71] MARIC T, MIKHAYLOV G, KHODAKIVSKYI P, et al. Bioluminescent-Based Imaging and Quantification of Glucose Uptake In Vivo [J]. Nature Methods, 2019, 16(6): 526-532.
[72] CHEN D D, WU I C, LIU Z H, et al. Semiconducting Polymer Dots with Bright Narrow-Band Emission at 800 nm for Biological Applications [J]. Chemical Science, 2017, 8(5): 3390-3398.
[73] LIU M H, ZHANG Z, YANG Y C, et al. Polymethine‐Based Semiconducting Polymer Dots with Narrow‐Band Emission and Absorption/Emission Maxima at NIR‐II for Bioimaging [J]. Angewandte Chemie, International Edition. 2021, 60(2): 983-989.
[74] LIU Y, LIU J F, CHEN D D, et al. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging [J]. Angewandte Chemie, International Edition, 2020, 59(47): 21049-21057.
[75] ZHANG Z, FANG X F, LIU Z H, et al. Semiconducting Polymer Dots with Dual-Enhanced NIR-IIa Fluorescence for Through-Skull Mouse-Brain Imaging [J]. Angewandte Chemie, International Edition, 2020, 59(9): 3691-3698.
[76] MA Y, XU L, YIN B, et al. Ratiometric Semiconducting Polymer Nanoparticle for Reliable Photoacoustic Imaging of Pneumonia-Induced Vulnerable Atherosclerotic Plaque In Vivo [J]. Nano Letters, 2021, 21(10): 4484-4493.
[77] ZENG W, WU L, SUN Y, et al. Ratiometric Imaging of MMP‐2 Activity Facilitates Tumor Detection Using Activatable Near‐Infrared Fluorescent Semiconducting Polymer Nanoparticles [J]. Small, 2021, 17(36): 2101924.
[78] LI Y X, SU S P, YANG C H, et al. Molecular Design of Ultrabright Semiconducting Polymer Dots with High NIR-II Fluorescence for 3D Tumor Mapping [J]. Advanced Healthcare Materials, 2021, 2100993.
[79] GUO B, CHEN J Q, CHEN N B, et al. High-Resolution 3D NIR-II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent [J]. Advanced Materials, 2019, 31(25): 1808355
[80] CHEN H B, YU J B, MEN X X, et al. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots [J]. Angewandte Chemie, International Edition, 2021, 60(21): 12114-12119.
[81] ZHANG Q, HU X X, DAI X M, et al. General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid [J]. ACS Nano, 2021, 15(8): 13633-13645.
[82] SUN J Y, LING P H, GAO F. A Mitochondria-Targeted Ratiometric Biosensor for pH Monitoring and Imaging in Living Cells with Congo-Red-Functionalized Dual-Emission Semiconducting Polymer Dots [J]. Analytical Chemistry, 2017, 89(21): 11703-11710.
[83] WANG Z, HE X W, YONG T Y, et al. Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells [J]. Journal of the American Chemical Society, 2020, 142(1): 512-519.
[84] QI W Z, LI T T, ZHANG C, et al. Light-Controlled Precise Delivery of NIR-Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability [J]. Advanced Functional Materials, 2021, 10(19): 2100569
[85] ZHEN X, PU K Y, JIANG X Q. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction [J]. Small, 2021, 17(6): 2004723
[86] LI J C, YU X R, JIANG Y Y, et al. Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy [J]. Advanced Materials, 2021, 33(4): 2003458
[87] KANG T, NI J-S, LI T, et al. Efficient and Precise Delivery of MicroRNA by Photoacoustic Force Generated from Semiconducting Polymer-Based Nanocarriers [J]. Biomaterials, 2021, 275, 120907.
[88] YIN C, ZHANG H, SUN B, et al. Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing A Weak Electron Donor for Improved NIR-II Phototheranostics [J]. Advanced Functional Materials, 2021, 31(47): 2106575.
[89] WANG X, WU M, LI H Z, et al. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor [J]. Advanced Science, 2022, 9(6): 2104125.
[90] LANDFESTER K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles [J]. Angewandte Chemie International Edition, 2009, 48(25): 4488-4507.
[91] TUNCEL D, DEMIR H V. Conjugated Polymer Nanoparticles [J]. Nanoscale, 2010, 2(4): 484-494.
[92] WU C F, CHIU D T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine [J]. Angewandte Chemie International Edition, 2013, 52(11): 3086-3109.
[93] WU C F, SZYMANSKI C, MCNEILL J. Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles [J]. Langmuir, 2006, 22(7): 2956-2960.
[94] WU C, HANSEN S J, HOU Q, et al. Design of Highly Emissive Polymer Dot Bioconjugates for In Vivo Tumor Targeting [J]. Angewandte Chemie International Edition, 2011, 123(15): 3492-3496.
[95] YE F, WU C, JIN Y, et al. A Compact and Highly Fluorescent Orange-Emitting Polymer Dot for Specific Subcellular Imaging [J]. Chemical Communications, 2012, 48(12): 1778-1780.
[96] SUN K, TANG Y, LI Q, et al. In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer [J]. ACS Nano, 2016, 10(7): 6769-6781.
[97] SUN K, YANG Y K, ZHOU H, et al. Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring via A Smartphone [J]. ACS Nano, 2018, 12(6): 5176-5184.
[98] SUN K, DING Z Y, ZHANG J C, et al. Enhancing the Long-Term Stability of A Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System [J]. Advanced Healthcare Materials, 2021, 10(4): 2001019.
[99] SUN K, LIU S Y, LIU J, et al. Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration [J]. Analytical Chemistry, 2021, 93(4): 2359-2366.
[100] LIU J, FANG X F, ZHANG Z, et al. Long-Term In Vivo Glucose Monitoring by Polymer-Dot Transducer in An Injectable Hydrogel Implant [J]. Analytical Chemistry, 2022, 94(4): 2195-2203.
[101] ZIERLER K. Whole body glucose metabolism [J]. American Journal of Physiology-Endocrinology and Metabolism, 1999, 276(3): E409-E426.
[102] HAY N J N R C. Reprogramming Glucose Metabolism in Cancer: Can It be Exploited for Cancer Therapy? [J]. Nature Reviews Cancer, 2016, 16(10): 635-649.
[103] MOMCILOVIC M, SHACKELFORD D B. Imaging Cancer Metabolism [J]. Biomolecules & Therapeutics, 2018, 26(1): 81.
[104] SZABLEWSKI L. Glucose Transporters in Brain: in Health and in Alzheimer’s Disease [J]. Journal of Alzheimer's Disease, 2017, 55(4): 1307-1320.
[105] WILDING J P H. The Role of the Kidneys in Glucose Homeostasis in Type 2 Diabetes: Clinical Implications and Therapeutic Significance Through Sodium Glucose Co-Transporter 2 Inhibitors [J]. Metabolism, 2014, 63(10): 1228-1237.
[106] KELLOFF G J, HOFFMAN J M, JOHNSON B, et al. Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development [J]. Clinical Cancer Research, 2005, 11(8): 2785-2808.
[107] BEN-HAIM S, ELL P. 18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response [J]. Journal of Nuclear Medicine, 2009, 50(1): 88-99.
[108] NORDBERG A, RINNE J O, KADIR A, et al. The Use of PET in Alzheimer Disease [J]. Nature Reviews Neurology, 2010, 6(2): 78-87.
[109] ROSLIN M, HENRIKSSON R, BERGSTRöM P, et al. Baseline Levels of Glucose Metabolites, Glutamate and Glycerol in Malignant Glioma Assessed by Stereotactic Microdialysis [J]. Journal of Neuro-Oncology, 2003, 61(2): 151-160.
[110] NASRALLAH F A, PAGèS G, KUCHEL P W, et al. Imaging Brain Deoxyglucose Uptake and Metabolism by GlucoCEST MRI [J]. Journal of Cerebral Blood Flow & Metabolism, 2013, 33(8): 1270-1278.
[111] JIN T, MEHRENS H, WANG P, et al. Glucose Metabolism-Weighted Imaging with Chemical Exchange-Sensitive MRI of 2-Deoxyglucose (2DG) in Brain: Sensitivity and Biological Sources [J]. Neuroimage, 2016, 143: 82-90.
[112] HEO Y J, SHIBATA H, OKITSU T, et al. Long-Term In Vivo Glucose Monitoring Using Fluorescent Hydrogel Fibers [J]. Proceedings of the National Academy of Sciences, 2011, 108(33): 13399-13403.
[113] MA J L, YIN B C, WU X, et al. Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles [J]. Analytical Chemistry, 2017, 89(2): 1323-1328.
[114] AKKAYA I, SELIM E, ALTINTAS M, et al. Power Spectral Density-Based Nearinfrared Sub-Band Detection for Noninvasive Blood Glucose Prediction in Both In-Vitro and In-Vivo Studies [J]. Journal of Innovative Optical Health Sciences, 2018, 11(06): 1850035.
[115] FLAVAHAN W A, WU Q, HITOMI M, et al. Brain Tumor Initiating Cells Adapt to Restricted Nutrition Through Preferential Glucose Uptake [J]. Nature Neuroscience, 2013, 16(10): 1373-1382.
[116] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain Energy Rescue: an Emerging Therapeutic Concept for Neurodegenerative Disorders of Ageing [J]. Nature Reviews Drug Discovery, 2020, 19(9): 609-633.
[117] TU T W, IBRAHIM W G, JIKARIA N, et al. On the Detection of Cerebral Metabolic Depression in Experimental Traumatic Brain Injury Using Chemical Exchange Saturation Transfer (CEST)-Weighted MRI [J]. Scientific Reports, 2018, 8(1): 1-12.
[118] LOZANO A, FRANCHI F, SEASTRES R J, et al. Glucose and Lactate Concentrations in Cerebrospinal Fluid After Traumatic Brain Injury [J]. Journal of Neurosurgical Anesthesiology, 2020, 32(2): 162-169.
[119] GRECO T, VESPA P M, PRINS M L. Alternative Substrate Metabolism Depends on Cerebral Metabolic State Following Traumatic Brain Injury [J]. Experimental Neurology, 2020, 329: 113289.
[120] FRYKHOLM P, HILLERED L, LANGSTROM B, et al. Relationship Between Cerebral Blood Flow and Oxygen Metabolism, and Extracellular Glucose and Lactate Concentrations During Middle Cerebral Artery Occlusion and Reperfusion: A Microdialysis and Positron Emission Tomography Study in Nonhuman Primates [J]. Journal of Neurosurgery, 2005, 102(6): 1076-1084.
[121] WU C F, BULL B, CHRISTENSEN K, et al. Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging [J]. Angewandte Chemie International Edition, 2009, 121(15): 2779-2783.
[122] TAO Z, RAFFEL R A, SOUID A-K, GOODISMAN J. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination [J]. 2009, 96(7): 2977-2988.
[123] WU L, HUANG C, EMERY B P, et al. Förster Resonance Energy Transfer (FRET)-Based Small-Molecule Sensors and Imaging Agents [J]. Chemical Society Reviews, 2020, 49(15): 5110-5139.
[124] SHEN Y L, LIFANTE J, ZABALA-GUTIERREZ I, et al. Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence-Lifetime-Based Nanothermometry [J]. Advanced Materials, 2022, 34(7): 2107764.
[125] SHEN Y L, LIFANTE J, FERNANDEZ N, et al. In Vivo Spectral Distortions of Infrared Luminescent Nanothermometers Compromise Their Reliability [J]. ACS Nano, 2020, 14(4): 4122-4133.
[126] CARREAU A, HAFNY‐RAHBI B E, MATEJUK A, et al. Why Is the Partial Oxygen Pressure of Human Tissues A Crucial Parameter? Small Molecules and Hypoxia [J]. Journal of Cellular and Molecular Medicine, 2011, 15(6): 1239-1253.
[127] MIAN Z, HERMAYER K L, JENKINS A. Continuous Glucose Monitoring: Review of An Innovation In Diabetes Management [J]. 2019, 358(5): 332-339.
[128] HEIDEN M G V, CANTLEY L C, THOMPSON C B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J]. Science, 2009, 324(5930): 1029-1033.
[129] BONSU B K, HARPER M B. Differentiating Acute Bacterial Meningitis from Acute Viral Meningitis among Children with Cerebrospinal Fluid Pleocytosis: A Multivariable Regression Model [J]. The Pediatric Infectious Disease Journal, 2004, 23(6): 511-517.
[130] SPANOS A, HARRELL F E, DURACK D T. Differential Diagnosis of Acute Meningitis: An Analysis of the Predictive Value of Initial Observations [J]. Jama, 1989, 262(19): 2700-2707.
[131] PAPPAS C, KLINEDINST B S, LE S, et al. CSF Glucose Tracks Regional Tau Progression Based on Alzheimer's Disease Risk Factors [J]. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2020, 6(1): e12080.
[132] PASTUSZCZAK M, WOJAS-PELC A, JAWOREK A. Association of CSF Glucose Concentration with Neurosyphilis Diagnosis [J]. Open Medicine, 2013, 8(1): 48-51.
[133] WATANABE S, KAMIYAMA J, CHIGASAKI H, et al. Polyol Content of Cerebrospinal-Fluid in Brain-Tumor Patients [J]. Journal of Neurosurgery, 1989, 70(2): 183-189.
[134] NIGROVIC L E, KIMIA A A, SHAH S S, et al. Relationship Between Cerebrospinal Fluid Glucose and Serum Glucose [J]. New England Journal of Medicine, 2012, 366(6): 576-578.
[135] KLEPPER J, VOIT T. Facilitated Glucose Transporter Protein Type 1 (GLUT1) Deficiency Syndrome: Impaired Glucose Transport into Brain–A Review [J]. European Journal of Pediatrics, 2002, 161(6): 295-304.
[136] SEEHUSEN D A, REEVES M, FOMIN D. Cerebrospinal Fluid Analysis [J]. American Family Physician, 2003, 68(6): 1103-1108.
[137] VERBEEK M M, LEEN W G, WILLEMSEN M A, et al. Hourly Analysis of Cerebrospinal Fluid Glucose Shows Large Diurnal Fluctuations [J]. Journal of Cerebral Blood Flow & Metabolism, 2016, 36(5): 899-902.
[138] CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045 [J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281.
[139] GROSS T M, BODE B W, EINHORN D, et al. Performance Evaluation of the MiniMed® Continuous Glucose Monitoring System during Patient Home Use [J]. Diabetes Technology & Therapeutics, 2000, 2(1): 49-56.
[140] MIAN Z, HERMAYER K L, JENKINS A. Continuous Glucose Monitoring: Review of An Innovation in Diabetes Management [J]. The American Journal of the Medical Sciences, 2019, 358(5): 332-339.
[141] RODBARD D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities [J]. Diabetes Technology & Therapeutics, 2016, 18(S2): S2-3-S2-13.
[142] JIN X, LI G, XU T, et al. Fully Integrated Flexible Biosensor for Wearable Continuous Glucose Monitoring [J]. Biosensors and Bioelectronics, 2022, 196: 113760.
[143] TEYMOURIAN H, BARFIDOKHT A, WANG J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010-2020) [J]. Chemical Society Reviews, 2020, 49(21): 7671-7709.
[144] JERNELV I L, MILENKO K, FUGLERUD S S, et al. A Review of Optical Methods for Continuous Glucose Monitoring [J]. Applied Spectroscopy Reviews, 2019, 54(7): 543-572.
[145] CHEN L, HWANG E, ZHANG J. Fluorescent Nanobiosensors for Sensing Glucose [J]. Sensors, 2018, 18(5): 1440.
[146] FREEMAN R, BAHSHI L, FINDER T, et al. Competitive Analysis of Saccharides or Dopamine by Boronic Acid-Functionalized CdSe-ZnS Quantum Dots [J]. Chemical Communications, 2009, (7): 764-766.
[147] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid [J]. Advanced Materials, 2017, 29(15): 1606380.
[148] SAWAYAMA J, TAKEUCHI S. Long-Term Continuous Glucose Monitoring Using A Fluorescence-Based Biocompatible Hydrogel Glucose Sensor [J]. Advanced Healthcare Materials, 2021, 10(3): 2001286.
[149] FANG X F, JU B, LIU Z H, et al. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging [J]. ChemBioChem, 2019, 20(4): 521-525.
[150] HENNEBICQ E, POURTOIS G, SCHOLES G D, et al. Exciton Migration in Rigid-Rod Conjugated Polymers: An Improved Förster Model [J]. Journal of the American Chemical Society, 2005, 127(13): 4744-4762.
[151] CHANG K, TANG Y, FANG X, et al. Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy [J]. Biomacromolecules, 2016, 17(6): 2128-2136.
[152] DEFRONZO R A, FERRANNINI E, GROOP L, et al. Type 2 Diabetes Mellitus [J]. Nature Reviews Disease Primers, 2015, 1(1): 1-22.
[153] WOLPERT H A. Continuous Glucose Monitoring: Coming of Age [J]. New England Journal of Medicine, 2010, 363(4): 383-384.
[154] KLONOFF D C, AHN D, DRINCIC A, et al. Continuous Glucose Monitoring: A Review of the Technology and Clinical Use [J]. Diabetes Research and Clinical Practice, 2017, 133: 178-192.
[155] HELLER A, FELDMAN B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management [J]. Chemical Reviews, 2008, 108(7): 2482-2505.
[156] KLONOFF D C. Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future [J]. Journal of Diabetes Science and Technology, 2012, 6(6): 1242-1250.
[157] GIORGIO M, TRINEI M, MIGLIACCIO E, et al. Hydrogen Peroxide: A Metabolic by-Product or A Common Mediator of Ageing Signals? [J]. Nature Reviews Molecular Cell Biology, 2007, 8(9): 722-728.
[158] GOUGH D, COTTER T J. Hydrogen Peroxide: A Jekyll and Hyde Signalling Molecule [J]. Cell Death & Disease, 2011, 2(10): e213-e213.
[159] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease [J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84.
[160] WEN M, OUYANG J, WEI C W, et al. Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIR-II Light [J]. Angewandte Chemie, International Edition, 2019, 58(48): 17425-17432.
[161] GRIMSDALE A C, LEOK CHAN K, MARTIN R E, et al. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices [J]. Chemical Reviews, 2009, 109(3): 897-1091.
[162] DANE E L, KING S B, SWAGER T M. Conjugated Polymers that Respond to Oxidation with Increased Emission [J]. Journal of the American Chemical Society, 2010, 132(22): 7758-7768.
[163] SCURLOCK R D, WANG B, OGILBY P R, et al. Singlet Oxygen as A Reactive Intermediate in the Photodegradation of An Electroluminescent Polymer [J]. Journal of the American Chemical Society, 1995, 117(41): 10194-10202.
[164] DAM N, SCURLOCK R D, WANG B J, et al. Singlet Oxygen as A Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers [J]. Chemistry of Materials, 1999, 11(5): 1302-1305.
[165] ROMANER L, POGANTSCH A, SCANDIUCCI DE FREITAS P, et al. The Origin of Green Emission in Polyfluorene‐based Conjugated Polymers: On‐chain Defect Fluorescence [J]. Advanced Functional Materials, 2003, 13(8): 597-601.
[166] CHO S Y, GRIMSDALE A C, JONES D J, et al. Polyfluorenes Without Monoalkylfluorene Defects [J]. Journal of the American Chemical Society, 2007, 129(39): 11910-11911.
[167] MOORE T C. Factors Influencing Enzyme Activity [M]. Research Experiences in Plant Physiology. Springer, Berlin, Heidelberg, 1974: 33-49.
[168] BAO J, FURUMOTO K, YOSHIMOTO M, et al. Competitive Inhibition by Hydrogen Peroxide Produced in Glucose Oxidation Catalyzed by Glucose Oxidase [J]. Biochemical Engineering Journal, 2003, 13(1): 69-72.

Academic Degree Assessment Sub committee
生物医学工程系
Domestic book classification number
O657.3
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/420608
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
刘斯洋. 基于发光聚合物纳米颗粒的葡萄糖传感器及活体监测研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849594-刘斯洋-生物医学工程系(11592KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘斯洋]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘斯洋]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘斯洋]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.