[1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土 [M]. 北京: 科学出版社, 2000.
[2] GUO D, WANG H. CMIP5 permafrost degradation projection:A comparison among different regions[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4499-4517.
[3] HANSSON K, ŠIMŮNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil[J]. Vadose Zone Journal, 2004, 3(2): 527-533.
[4] YANG D, KANE D L, HINZMAN L D, et al. Siberian Lena River hydrologic regime and recent change[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D23): ACL 14-11-ACL 14-10.
[5] GE S, MCKENZIE J, VOSS C, et al. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation[J]. Geophysical Research Letters, 2011, 38(14): L14402.
[6] GUO L, ZHANG Z, WANG X, et al. Stability analysis of transmission tower foundations in permafrost equipped with thermosiphons and vegetation cover on the Qinghai-Tibet Plateau[J]. International Journal of Heat and Mass Transfer, 2018, 121: 367-376.
[7] 吴青柏, 牛富俊. 青藏高原多年冻土变化与工程稳定性 [J]. 科学通报, 2013, 58(2): 17-32.
[8] WILLIAMS P J, SMITH M W. The Frozen Earth [M]. New Yorl: Cambridge Unversity Press, 1989.
[9] ZHANG T, BARRY R G, KNOWLES K, et al. Distribution of seasonally and perenially frozen ground in the Northern Hemisphere; proceedings of the International Conference on Permafrost, 2003 [C].
[10] ZOU D, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017, 11(6): 2527-2542.
[11] IPCC. Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group I to the sixth sssessment report of the Intergovernmental Panel on Climate Change [R]. Cambridge: Cambridge University Press, 2022.
[12] COOK B I, MANKIN J S, MARVEL K, et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios[J]. Earth's Future, 2020, 8(6): e2019EF001461.
[13] ZHAO D, WU S. Projected changes in permafrost active layer thickness over the Qinghai‐Tibet Plateau under climate change[J]. Water Resources Research, 2019, 55(9): 7860-7875.
[14] QIN Y, YANG D, GAO B, et al. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China[J]. Science of the Total Environment, 2017, 605-606: 830-841.
[15] 李林, 王振宇, 徐维新, 等. 青藏高原典型高寒草甸生态系统对气候冻土环境变化的响应 [J]. 青海气象, 2010, 01: 15-22.
[16] 郭正刚, 牛富俊, 湛虎, 等. 青藏高原北部多年冻土退化过程中生态系统的变化特征 [J]. 生态学报, 2007, 27(8): 3294-3301.
[17] 王根续, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应 [J]. 冰川冻土, 2007, 29(5): 671-379.
[18] MU C, ZHANG T, WU Q, et al. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau[J]. The Cryosphere, 2015, 9(2): 479-486.
[19] 吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系 [J]. 冰川冻土, 2003, 25(3): 250-255.
[20] WALVOORD M A, KURYLYK B L. Hydrologic impacts of thawing permafrost—a review[J]. Vadose Zone Journal, 2016, 15(6).
[21] JIN H, HE R, CHENG G, et al. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts[J]. Environmental Research Letters, 2009, 4(4): 045206.
[22] 秦越. 青藏高原东北部典型流域冻土退化及其生态水文效应研究 [D]. 北京: 清华大学, 2018:1-2.
[23] CHENG G, JIN H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21(1): 5-23.
[24] 罗栋梁, 金会军, 吕兰芝, 等. 黄河源区多年冻土活动层和季节冻土冻融过程时空特征 [J]. 科学通报, 2014, 59(14): 1327-1336.
[25] 吴盼. 考虑冻土退化的黄河源区径流变化机理研究 [D]. 北京: 中国地质大学(北京), 2019:1-2.
[26] QIN Y, CHEN J, YANG D, et al. Estimating seasonally frozen ground depth from historical climate data and site measurements using a bayesian model[J]. Water Resources Research, 2018, 54(7): 4361-4375.
[27] EVANS S G, GE S. Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes[J]. Geophysical Research Letters, 2017, 44(4): 1803-1813.
[28] 鲁嘉濠, 程花, 牛富俊, 等. 青藏铁路沿线热喀斯特湖易发程度的区划评价 [J]. 灾害学, 2012, 27(4): 60-64.
[29] SHIKLOMANOV N I. Non-climatic factors and long-term, continental-scale changes in seasonally frozen ground[J]. Environmental Research Letters, 2012, 7(1): 011003.
[30] 杜军, 建军, 洪健昌, 等. 1961—2010年西藏季节性冻土对气候变化的响应 [J]. 冰川冻土, 2012, 34(3): 512-521.
[31] GOUTTEVIN I, KRINNER G, CIAIS P, et al. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology[J]. The Cryosphere, 2012, 6(2): 407-430.
[32] RAWLINS M A, NICOLSKY D J, MCDONALD K C, et al. Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model[J]. Journal of Advances in Modeling Earth Systems, 2013, 5(4): 659-675.
[33] ZHANG Y, CHENG G, LI X, et al. Influences of frozen ground and climate change on hydrological processes in an alpine watershed: A case study in the upstream area of the Hei'he River, Northwest China[J]. Permafrost and Periglacial Processes, 2017, 28(2): 420-432.
[34] PROVOST A M, VOSS C I. SUTRA, a model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport—Documentation of generalized boundary conditions, a modified implementation of specified pressures and concentrations or temperatures, and the lake capability [R]. Reston, VA, 2019.
[35] ZHENG G, YANG Y, YANG D, et al. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016[J]. Remote Sensing of Environment, 2020, 247: 111927.
[36] STEFAN J. Ueber Die Theorie der Eisbildung, insbesondere über Die Eisbildung im Polarmeere[J]. Annalen der Physik, 1891, 278(2): 269-286.
[37] KUDRYAVTSEV V, GARAGULYA L, MELAMED V. Fundamentals of Frost Forecasting in Geological Engineering Investigations (Osnovy Merzlotnogo Prognoza pri Inzhenerno-Geologicheskikh Issledovaniyakh) [M]. Cold Regions Research and Engineering Laborary, 1977.
[38] JUMIKIS A R. Thermal Geotechnics [M]. New Brunswick, New Jersey: Rutgers University Press, 1977.
[39] PENG X, ZHANG T, FRAUENFELD O W, et al. Response of seasonal soil freeze depth to climate change across China[J]. The Cryosphere, 2017, 11(3): 1059-1073.
[40] XU S, LIU D, LI T, et al. Spatiotemporal evolution of the maximum freezing depth of seasonally frozen ground and permafrost continuity in historical and future periods in Heilongjiang Province, China[J]. Atmospheric Research, 2022, 274: 106195.
[41] QIN Y, LEI H, YANG D, et al. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau[J]. Journal of Hydrology, 2016, 542: 204-221.
[42] BISKABORN B K, LANCKMAN J P, LANTUIT H, et al. The new database of the Global Terrestrial Network for Permafrost (GTN-P)[J]. Earth System Science Data, 2015, 7(2): 245-259.
[43] ROMANOVSKY V E, SMITH S L, CHRISTIANSEN H H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis[J]. Permafrost and Periglacial Processes, 2010, 21(2): 106-116.
[44] BISKABORN B K, SMITH S L, NOETZLI J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 264.
[45] HARRIS C, HAEBERLI W, VONDER MUHLL D, et al. Permafrost monitoring in the high mountains of Europe: The PACE project in its global context[J]. Permafrost and Periglacial Processes, 2001, 12(1): 3-11.
[46] HARRIS C, ARENSON L U, CHRISTIANSEN H H, et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3-4): 117-171.
[47] ETZELMULLER B, GUGLIELMIN M, HAUCK C, et al. Twenty years of European mountain permafrost dynamics-the PACE legacy[J]. Environmental Research Letters, 2020, 15(10): 104070.
[48] VIEIRA G, BOCKHEIM J, GUGLIELMIN M, et al. Thermal State of Permafrost and Active-layer Monitoring in the Antarctic: Advances During the International Polar Year 2007-2009[J]. Permafrost and Periglacial Processes, 2010, 21(2): 182-197.
[49] ZHAO L, WU Q, MARCHENKO S S, et al. Thermal state of permafrost and active layer in Central Asia during the international polar year[J]. Permafrost and Periglacial Processes, 2010, 21(2): 198-207.
[50] SMITH S L, O’NEILL H B, ISAKSEN K, et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment, 2022, 3(1): 10-23.
[51] 中国科学院兰州冰川冻土研究所. 青藏冻土研究论文集 [M]. 北京: 科学出版社, 1983.
[52] 赵林, 郭东信, 李述训. 青藏高原综合观测研究站的回顾与展望 [J]. 冰川冻土, 1998, 20(3): 288-293.
[53] 赵林, 吴通华, 谢昌卫, 等. 多年冻土调查和监测为青藏高原地球科学研究、环境保护和工程建设提供科学支撑 [J]. 中国科学院院刊, 2017, 32(10): 1159-1168.
[54] YANG M, WANG X, PANG G, et al. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 2019, 190: 353-369.
[55] DUCHESNE C, CHARTRAND J, SMITH S L. Report on 2018 field activities and collection of ground-thermal and active-layer data in the Mackenzie Corridor, Northwest Territorie [R]: Natural Resources Canada, 2020.
[56] DERKSEN C, BURGESS D, DUGUAY C, et al. in Canada’s Changing Climate Report Ch. 5 (eds Bush, E. & Lemmen, D. S.) [R]: Government of Canada, 2019.
[57] ALLARD M, SARRAZIN D, L’HéRAULT E. Borehole and near-surface ground temperatures in Northeastern Canada [DS]. 2020.
[58] SMITH S L, DUCHESNE C, LEWKOWICZ A G. In cold regions engineering 2019 (eds Bilodeau, J. P., Nadeau, D. F., Fortier, D. & Conciatori, D.) [R]: American Society of Civil Engineers, 2019.
[59] BLUNDEN J, ARNDT D S. State of the climate in 2019[J]. Bulletin of the American Meteorological Society, 2020, 101(8): Si–S429.
[60] VASILIEV A A, DROZDOV D S, GRAVIS A G, et al. Permafrost degradation in the Western Russian Arctic[J]. Environmental Research Letters, 2020, 15(4): 045001.
[61] CHENG G, ZHAO L, LI R, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
[62] HU G, ZHAO L, LI R, et al. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products[J]. Geoderma, 2019, 337: 893-905.
[63] ZHENG M, WAN C, DU M, et al. Application of Rn-222 isotope for the interaction between surface water and groundwater in the Source Area of the Yellow River[J]. Hydrology Research, 2016, 47(6): 1253-1262.
[64] WU Q, ZHANG T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113(D13): D13108.
[65] ZHAO L, ZOU D, HU G, et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau[J]. Permafrost and Periglacial Processes, 2020, 31(3): 396-405.
[66] DUCHESNE C, SMITH S L, EDNIE M, et al. In Proc. 68th Canadian geotechnical conf. 7th Canadian permafrost conf., 2015 [C]. Canadian Geotechnical Society.
[67] STRAND S M, CHRISTIANSEN H H, JOHANSSON M, et al. Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic[J]. Permafrost and Periglacial Processes, 2020, 32(1): 47-58.
[68] ZHAO L, HU G, ZOU D, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246.
[69] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021) [M]. 北京: 科学出版社, 2021.
[70] SMITH M W, RISEBOROUGH D W. Permafrost monitoring and detection of climate change[J]. Permafrost and Periglacial Processes, 1996, 7(4): 301-309.
[71] OBU J, WESTERMANN S, BARTSCH A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km(2) scale[J]. Earth-Science Reviews, 2019, 193: 299-316.
[72] 王之夏, 南卓铜, 赵林. MODIS地表温度产品在青高原冻土模拟中的适用性评价 [J]. 冰川冻土, 2011, 33(1): 132-143.
[73] 洪涛, 梁四海, 孙禹, 等. 黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用 [J]. 冰川冻土, 2013, 35(4): 824-833.
[74] PENG X, ZHANG T, FRAUENFELD O W, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1): 251-266.
[75] MASAKI H, NEIL G, L. Q W, et al. A simple heat‐conduction method for simulating the frost‐table depth in hydrological models[J]. Hydrological Prochydrological Processesrnesses, 2007, 21(19): 1-13.
[76] KURYLYK B L. Discussion of "A simple thaw-freeze algorithm for a multi-layered soil using the Stefan equation' by Xie and Gough (2013)[J]. Permafrost and Periglacial Processes, 2015, 26(2): 200-206.
[77] WOO M K, ARAIN M A, MOLLINGA M, et al. A two-directional freeze and thaw algorithm for hydrologic and land surface modelling[J]. Geophysical Research Letters, 2004, 31(12): L12501.
[78] KURYLYK B L, MCKENZIE J M, MACQUARRIE K T B, et al. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw with conduction and advection[J]. Advances in Water Resources, 2014, 70(aug.): 172-184.
[79] KURYLYK B L, HAYASHI M, QUINTON W L, et al. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow[J]. Water Resources Research, 2016, 52(2): 1286-1305.
[80] ROMANOVSKY V E, OSTERKAMP T E. Thawing of the active layer on the coastal plain of the Alaskan Arctic[J]. Permafrost & Periglacial Processes, 1997, 8(1): 1-22.
[81] 刘文惠, 谢昌卫, 刘海瑞, 等. Stefan方程在土壤冻融过程模拟中的应用 [J]. 冰川冻土, 2022, 44(1): 327-339.
[82] 李新, 程国栋. 冻土-气候关系模型评述 [J]. 冰川冻土, 2007, 3: 315-321.
[83] FLERCHINGER G N, SAXTON K E. simultaneous heat and water model f a freezing snow-residue-soil system.1. theory and development[J]. Transactions of the Asae, 1989, 32(2): 565-571.
[84] 周剑, 王根续, 李新, 等. 高寒冻土地区草甸草地生态系统的能量-水分平衡分析 [J]. 冰川冻土, 2008, 30(3): 399-407.
[85] ZHOU J, KINZELBACH W, CHENG G, et al. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai–Tibetan Plateau of China[J]. Cold Regions Science and Technology, 2013, 90-91: 38-52.
[86] XU X, WU Q, ZHANG Z. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change (in Chinese)[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8.
[87] WANG T, YANG D, YANG Y, et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau[J]. Science Advances, 2020, 6(19): eaaz3513.
[88] GAO Y, LI X, RUBY LEUNG L, et al. Aridity changes in the Tibetan Plateau in a warming climate[J]. Environmental Research Letters, 2015, 10(3): 034013.
[89] YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
[90] ZHANG W, ZHOU T, ZHANG L. Wetting and greening Tibetan Plateau in early summer in recent decades[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(11): 5808-5822.
[91] ZHONG L, SU Z, MA Y, et al. Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change[J]. Journal of Climate, 2011, 24(24): 6540-6550.
[92] ZHOU C, ZHAO P, CHEN J. The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J]. Journal of Climate, 2019, 32(13): 4103-4119.
[93] GAO Y, XIAO L, CHEN D, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1285-1297.
[94] EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958.
[95] CLAYTON L K, SCHAEFER K, BATTAGLIA M J, et al. Active layer thickness as a function of soil water content[J]. Environmental Research Letters, 2021, 16(5): 055028.
[96] LU Y, LU S, HORTON R, et al. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density[J]. Soil Science Society of America Journal, 2014, 78(6): 1859-1868.
[97] LI X, LONG D, HAN Z, et al. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing[J]. Water Resources Research, 2019, 55(11): 8608–8630.
[98] YAO T, XUE Y, CHEN D, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[99] JI F, FAN L F, ANDREWS C B, et al. Dynamics of seasonally frozen ground in the Yarlung Zangbo River Basin on the Qinghai-Tibet Plateau: historical trend and future projection[J]. Environmental Research Letters, 2020, 15(10): 104081.
[100] IMMERZEEL W W, BEEK L P H V, BIERKENS M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328(5984): 1382-1385.
[101] ZHANG Y S, OHATA T, KADOTA T. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau[J]. Journal of Hydrology, 2003, 283(1-4): 41-56.
[102] ZHANG Y, LIU C, TANG Y, et al. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12): D12110.
[103] YIN Y, WU S, ZHAO D, et al. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(2): 195-207.
[104] SONG L, ZHUANG Q, YIN Y, et al. Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010[J]. Environmental Research Letters, 2017, 12(1): 014011.
[105] FENG Y, KUANG X, LIANG S, et al. A simple and efficient method for correction of basin-scale evapotranspiration on the Tibetan Plateau[J]. Remote Sensing, 2021, 13(19): 3958.
[106] IWATA H, HARAZONO Y, UEYAMA M. The role of permafrost in water exchange of a black spruce forest in Interior Alaska[J]. Agricultural and Forest Meteorology, 2012, 161: 107-115.
[107] ORGOGOZO L, PROKUSHKIN A S, POKROVSKY O S, et al. Water and energy transfer modeling in a permafrost‐dominated, forested catchment of Central Siberia: The key role of rooting depth[J]. Permafrost and Periglacial Processes, 2019, 30(2): 75-89.
[108] WANG G, LIN S, HU Z, et al. Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(3): e2019JD031799.
[109] JIN X, JIN H, IWAHANA G, et al. Impacts of climate-induced permafrost degradation on vegetation: A review[J]. Advances in Climate Change Research, 2021, 12(1): 29-47.
[110] WANG R, DONG Z B, ZHOU Z C. Effect of decreasing soil frozen depth on vegetation growth in the source region of the Yellow River for 1982–2015[J]. Theoretical and Applied Climatology, 2020, 140(3-4): 1185-1197.
[111] 徐冉. 雅鲁藏布江径流形成和演变规律的模型解析研究 [D]. 北京: 清华大学, 2019:2-3.
[112] CHEN X, LONG D, HONG Y, et al. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?[J]. Water Resources Research, 2017, 53(3): 2431-2466.
[113] 刘金平. 雅鲁藏布江流域气候变化和下垫面变化特征及其径流效应研究 [D]. 北京: 中国科学院大学, 2019:81-134.
[114] WANG Y, WANG L, ZHOU J, et al. Vanishing glaciers at Southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo[J]. Geophysical Research Letters, 2021, 48(21): e2021GL094651.
[115] BENSE V F, KOOI H, FERGUSON G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03036.
[116] DUAN L, MAN X, KURYLYK B L, et al. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China[J]. Hydrological Processes, 2017, 31(10): 1938-1951.
[117] CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): F02S03.
[118] NIU L, YE B, DING Y, et al. Response of hydrological processes to permafrost degradation from 1980 to 2009 in the Upper Yellow River Basin, China[J]. Hydrology Research, 2016, 47(5): 1014-1024.
[119] WANG T, YANG H, YANG D, et al. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J]. Journal of Hydrology, 2018, 558: 301-313.
[120] KUANG X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geographysical Research: Atmospheres, 2016, 121(8): 3979-4007.
[121] YAO T, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3: 52-64.
[122] WIEDER W. Regridded Harmonized World Soil Database v1.2 [DS]. 2014.
[123] ZHENG D. The system of physico‐geographical regions of the Qinghai‐Xizang (Tibet) Plateau[J]. Science in China series D: Earth Sciences, 1996, 39(4): 410-417.
[124] ZENG C, ZHANG F, LU X, et al. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau)[J]. Catena, 2018, 160: 201-211.
[125] ZHONG L, MA Y, FU Y, et al. Assessment of soil water deficit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images[J]. Remote Sensing of Environment, 2014, 142: 1-8.
[126] YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1-2): 1-131.
[127] 西藏地勘局地热勘查院. 西藏自治区地热资源区划(内部报告) [M]. 1991.
[128] 刘湘伟. 雅鲁藏布江流域水文气象特性分析 [D]. 清华大学, 2015
[129] 洛珠尼玛, 王建群, 徐幸仪. 雅鲁藏布江流域径流变化特征及趋势分析 [J]. 水文, 2011, 31(5): 76-80.
[130] HANKS R J. Applied Soil Physics 2nd edn [M]. Berlin: Springer, 1992
[131] HU G, ZHAO L, WU X, et al. New Fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux[J]. International Journal of Heat and Mass Transfer, 2016, 95: 815-823.
[132] RODELL M, HOUSER P R, JAMBOR U, et al. The Global Land Data Assimilation System [M]. 2003.
[133] BENSE V F, READ T, VERHOEF A. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux[J]. Agricultural and Forest Meteorology, 2016, 220: 207-215.
[134] LUO D, JIN H, MARCHENKO S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85.
[135] MOSS R H, EDMONDS J A, HIBBARD K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282): 747-756.
[136] ZHANG Y, CHENG G, LI X, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrological Processes, 2013, 27(25): 3762-3776.
[137] WOO M-K, MOLLINGA M, SMITH S L. Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley[J]. Canadian Journal of Earth Sciences, 2007, 44: 733-743.
[138] HRBáČEK F, UXA T. The evolution of a near‐surface ground thermal regime and modeled active‐layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006–2016[J]. Permafrost and Periglacial Processes, 2019, 31(1): 141-155.
[139] XIE C, GOUGH W A. A simple thaw-freeze algorithm for a multi-layered soil using the Stefan equation[J]. Permafrost and Periglacial Processes, 2013, 24(3): 252-260.
[140] WOO M-K. Permafrost Hydrology [M]. Berlin Heidelberg, Germany: Springer-Verlag, 2012.
[141] LI X, KOIKE T. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J]. Cold Regions Science and Technology, 2003, 36(1-3): 165-182.
[142] WU Q, HOU Y, YUN H, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015, 124: 149-155.
[143] CAO B, ZHANG T, PENG X, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(15): 7935-7949.
[144] CHEN H, NAN Z, ZHAO L, et al. Noah modelling of the permafrost distribution and characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2015, 26(2): 160-174.
[145] CHEN J, ZHAO L, SHENG Y, et al. Some characteristics of permafrost and its distribution in the Gaize Area on the Qinghai—Tibet Plateau, China[J]. Arctic, Antarctic, and Alpine Research, 2016, 48(2): 395-409.
[146] WU Q, ZHANG T, LIU Y. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
[147] ZHAO L, SHENG Y. Permafrost and its changes in the Qinghai-Tibet Plateau [M]. Beijing: Science Press, 2019.
[148] MUñOZ SABATER J. ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [DS]. 2019.
[149] MUñOZ SABATER J. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [DS]. 2019.
[150] CAO B, GRUBER S, ZHENG D, et al. The ERA5-Land soil temperature bias in permafrost regions[J]. The Cryosphere, 2020, 14(8): 2581-2595.
[151] ORSOLINI Y, WEGMANN M, DUTRA E, et al. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations[J]. The Cryosphere, 2019, 13(8): 2221-2239.
[152] XIANG L, WANG H, JIANG L, et al. Glacier mass balance in High Mountain Asia inferred from a GRACE release-6 gravity solution for the period 2002–2016[J]. Journal of Arid Land, 2021, 13(3): 224-238.
[153] ZHANG P, ZHENG D, VAN DER VELDE R, et al. Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset[J]. Earth System Science Data, 2021, 13(6): 3075-3102.
[154] XING Z, FAN L, ZHAO L, et al. A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2021, 265: 112666.
[155] WU Q, NIU F. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2012, 58(10): 1079-1094.
[156] YIN G-A, NIU F-J, LIN Z-J, et al. Data-driven spatiotemporal projections of shallow permafrost based on CMIP6 across the Qinghai‒Tibet Plateau at 1 km2 scale[J]. Advances in Climate Change Research, 2021, 12(6): 814-827.
[157] BUDYKO M I. Climate and life [M]. New York: Academic Press, 1974.
[158] 傅抱璞. 论陆面蒸发的计算 [J]. 大气科学, 1981, 5(1): 23-31.
[159] LI D, PAN M, CONG Z, et al. Vegetation control on water and energy balance within the Budyko framework[J]. Water Resources Research, 2013, 49(2): 969-976.
[160] GAN G, LIU Y, SUN G. Understanding interactions among climate, water, and vegetation with the Budyko framework[J]. Earth-Science Reviews, 2021, 212: 103451.
[161] KOPPA A, ALAM S, MIRALLES D G, et al. Budyko-based long-term water and energy balance closure in global watersheds from earth observations[J]. Water Resources Research, 2021, 57(5): e2020WR028658.
[162] 张建云, 张成凤, 鲍振鑫, 等. 黄淮海流域植被覆盖变化对径流的影响 [J]. 水科学进展, 2021, 32(6): 813-823.
[163] GREVE P, ORLOWSKY B, MUELLER B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7(10): 716-721.
[164] YANG L, FENG Q, ADAMOWSKI J F, et al. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains[J]. Science of the Total Environment, 2021, 759: 143532.
[165] WILLIAMS C A, REICHSTEIN M, BUCHMANN N, et al. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers[J]. Water Resources Research, 2012, 48(6): W06523.
[166] MONTEITH J L. Evaporation and environment[J]. Symposia of the society for experimental biology, 1965, 19: 205-234.
[167] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper No. 56 [M]. Rome: Food and Agriculture Organization of the United Nations, 1998.
[168] DONOHUE R J, RODERICK M L, MCVICAR T R. Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko’s hydrological model[J]. Journal of Hydrology, 2012, 436-437: 35-50.
[169] YANG D, SHAO W, YEH P J F, et al. Impact of vegetation coverage on regional water balance in the nonhumid regions of China[J]. Water Resources Research, 2009, 45(7): W00A14.
[170] USDA. Soils [R]. Washington, DC, 1997.
[171] JI F, FAN L, KUANG X, et al. How does soil water content influence permafrost evolution on the Qinghai-Tibet Plateau under climate warming?[J]. Environmental Research Letters, 2022, 17(6): 064012.
[172] ZHENG H, WANG Q F, ZHU X J, et al. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes[J]. Plos One, 2014, 9(6): e98857.
[173] 李婧梅, 蔡海, 程茜, 等. 青海省三江源地区退化草地蒸散特征 [J]. 草业学报, 2012, 21(3): 223-233.
[174] HU Z Y, WANG G X, SUN X Y, et al. Spatial‐temporal patterns of evapotranspiration along an elevation gradient on mount Gongga, southwest China[J]. Water Resources Research, 2018, 54(6): 4180-4192.
[175] HAN C, MA Y, WANG B, et al. Long-term variations in actual evapotranspiration over the Tibetan Plateau[J]. Earth System Science Data, 2021, 13(7): 3513-3524.
[176] PHILIP J R. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil Science, 1957, 83: 345-357.
[177] LEHMANN P, ASSOULINE S, OR D. Characteristic lengths affecting evaporative drying of porous media[J]. Physical Review E, 2008, 77: 056309.
[178] LEHMANN P, MERLIN O, GENTINE P, et al. Soil texture effects on surface resistance to bare‐soil evaporation[J]. Geophysical Research Letters, 2018, 45(19): 10389-10405.
[179] OR D, LEHMANN P. Surface evaporative capacitance: How soil type and rainfall characteristics affect global‐scale surface evaporation[J]. Water Resources Research, 2019, 55(1): 519-539.
[180] SHAHRAEENI E, LEHMANN P, OR D. Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores[J]. Water Resources Research, 2012, 48(9): W09525.
[181] SHOKRI N, LEHMANN P, VONTOBEL P, et al. Drying front and water content dynamics during evaporation from sand delineated by neutron radiography[J]. Water Resources Research, 2008, 44(6): W06418.
[182] DECKER M, OR D, PITMAN A, et al. New turbulent resistance parameterization for soil evaporation based on a pore-scale model: Impact on surface fluxes in CABLE[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(1): 220-238.
[183] BRUTSAERT W. Daily evaporation from drying soil: Universal parameterization with similarity[J]. Water Resources Research, 2014, 50(4): 3206-3215.
[184] VAN GENUCHTEN M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[185] ASSOULINE S, OR D. The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics[J]. Water Resources Research, 2014, 50(6): 4787-4802.
[186] HAGHIGHI E, SHAHRAEENI E, LEHMANN P, et al. Evaporation rates across a convective air boundary layer are dominated by diffusion[J]. Water Resources Research, 2013, 49(3): 1602-1610.
[187] PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society A, 1948, 193(1032): 120–146.
[188] PRIESTLEY C, TAYLOR R. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2): 81–92.
[189] JENSEN M E, HAISE H R. Estimating evapotranspiration from solar radiation [J]. Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage Division, 1963, 89: 15-41.
[190] RITCHIE J T. Model for predicting evaporation from a row crop with incomplete cover[J]. Water Resources Research, 1972, 8(5): 1204-1213.
[191] MERLIN O, STEFAN V G, AMAZIRH A, et al. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach[J]. Water Resources Research, 2016, 52(5): 3663-3684.
[192] LINK T E, UNSWORTH M, MARKS D. The dynamics of rainfall interception by a seasonal temperate rainforest[J]. Agricultural and Forest Meteorology, 2004, 124(3-4): 171-191.
[193] KEIM R F, SKAUGSET A E, WEILER M. Storage of water on vegetation under simulated rainfall of varying intensity[J]. Advances in Water Resources, 2006, 29(7): 974-986.
[194] TROMP-VAN MEERVELD H J, MCDONNELL J J. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale[J]. Advances in Water Resources, 2006, 29(2): 293-310.
[195] DAI Y, SHANGGUAN W, DUAN Q, et al. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling[J]. Journal of Hydrometeorology, 2013, 14(3): 869-887.
[196] PANG Q, ZHAO L, LI S, et al. Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change[J]. Environmental Earth Sciences, 2011, 66(3): 849-857.
[197] ZHAO L, PING C-L, YANG D, et al. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China[J]. Global and Planetary Change, 2004, 43(1-2): 19-31.
[198] TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498.
[199] BI H, MA J, ZHENG W, et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(6): 2658-2678.
[200] ZHU D, CIAIS P, KRINNER G, et al. Controls of soil organic matter on soil thermal dynamics in the northern high latitudes[J]. Nature Communications, 2019, 10(1): 3172.
[201] ZHANG T, BARRY R, GILICHINSKY D. Russian Historical Soil Temperature Data [DS]. 2009.
[202] BATJES N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61-68.
[203] HUGELIUS G, BOCKHEIM J G, CAMILL P, et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region[J]. Earth System Science Data, 2013, 5(2): 393-402.
[204] KöCHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 2015, 1(1): 351-365.
[205] LABAZHUOMA, CI Z, PUBUCIREN, et al. Snow cover variation and meteorological factor research in Yarlung Zangbo Basin of Tibet from 2002 to 2015[J]. Remote Sensing Technology and Application, 2018, 33(3): 508-519.
[206] THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3): 173-184.
[207] 方创琳, 李广东. 西藏新型城镇化发展的特殊性与渐进模式及对策建议 [J]. 中国科学院院刊, 2015, 30(3): 294-305.
[208] DOBINSKI W. Permafrost[J]. Earth-Science Reviews, 2011, 108(3-4): 158-169.
[209] CHENG G. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design[J]. Science in China Series D, 2004, 47(8): 704-709.
[210] KOVEN C D, RINGEVAL B, FRIEDLINGSTEIN P, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(36): 14769-14774.
[211] VONK J E, TANK S E, BOWDEN W B, et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems[J]. Biogeosciences, 2015, 12(23): 7129-7167.
[212] YANG Y, WU Q, JIN H, et al. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China[J]. Journal of Hydrology, 2019, 569: 359-372.
[213] YAO Y, ZHENG C, ANDREWS C B, et al. Role of groundwater in sustaining northern Himalayan rivers[J]. Geophysical Research Letters, 2021, 48(10): e2020GL092354.
[214] RAN Y, LI X, CHENG G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau[J]. The Cryosphere, 2018, 12(2): 595-608.
[215] EVANS S G, GE S, LIANG S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost[J]. Water Resources Research, 2015, 51(12): 9564-9576.
[216] LAWRENCE D M, SLATER A G. A projection of severe near-surface permafrost degradation during the 21st century[J]. Geophysical Research Letters, 2005, 32(24): L24401.
[217] CHEN J, BRISSETTE F P, LECONTE R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology[J]. Journal of Hydrology, 2011, 401(3-4): 190-202.
[218] CHEN J, XU C, GUO S, et al. Progress and challenge in statistically downscaling climate model outputs[J]. Journal of Water Resources Research, 2016, 05(04): 299-313.
[219] HU Q, HUA W, YANG K, et al. An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models[J]. Theoretical and Applied Climatology, 2022, 148: 223–236.
[220] CENTRE C C C. Blue Book on Climate Change in China (2021) [M]. Beijing: Science Press, 2021.
[221] LI X, CHE T, DUAN M, et al. Third pole of the Earth: outposts of global change [M]. Beijing: Science Press, 2021.
[222] MAMET S D, CHUN K P, KERSHAW G G L, et al. Recent increases in permafrost thaw rates and areal loss of palsas in the Western Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2017, 28(4): 619-633.
[223] JAFAROV E E, PARSEKIAN A D, SCHAEFER K, et al. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska[J]. Geoscience Data Journal, 2017, 4(2): 72-79.
[224] BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70.
[225] GUDMUNDSSON L, BOULANGE J, DO H X, et al. Globally observed trends in mean and extreme river flow attributed to climate change[J]. Science, 2021, 371(6534): 1159-1162.
[226] KONAPALA G, MISHRA A K, WADA Y, et al. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation[J]. Nature Communications, 2020, 11(1): 3044.
[227] MITCHARD E T A. The tropical forest carbon cycle and climate change[J]. Nature, 2018, 559(7715): 527-534.
[228] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[229] ARNOLD J D, SRINIVASAN R, MUTTIAH R S, et al. Large area hydrologic modeling and assessment Part I: Model development[J]. Journal of the American Water Resources Association, 1998, 34(1): 73-89.
[230] CUI M, WANG J, WANG S, et al. Temporal and spatial distribution of evapotranspiration and its influencing factors on Qinghai-Tibet Plateau from 1982 to 2014[J]. Journal of Resources and Ecology, 2019, 10(2): 213-224.
[231] MAILLET E. Mécanique et physique du globe, essais d'hydraulique souterraine et fluviale [M]. A. Hermann, 1905.
[232] 宣伟栋. 气候变化下基于半分布式水文模型的径流/成分模拟研究 [D]. 杭州: 浙江大学, 2019:77-82.
[233] 徐冉. 雅鲁藏布江径流形成和演变规律的模型解析研究 [D]. 北京: 清华大学, 2019:90-91.
[234] WANG J, CHEN X, GAO M, et al. Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2022, 26(14): 3901-3920.
[235] LAMONTAGNE-HALLé P, MCKENZIE J M, KURYLYK B L, et al. Changing groundwater discharge dynamics in permafrost regions[J]. Environmental Research Letters, 2018, 13(8): 084017.
[236] EVANS S G, YOKELEY B, STEPHENS C, et al. Potential mechanistic causes of increased baseflow across northern Eurasia catchments underlain by permafrost[J]. Hydrological Processes, 2020, 34(11): 2676-2690.
[237] ST. JACQUES J-M, SAUCHYN D J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada[J]. Geophysical Research Letters, 2009, 36(1): L01401.
Edit Comment