Title | ENGINEERING THE DYNAMIC MAGNETIC PROPERTIES IN CYANIDE-BRIDGED COORDINATION CLUSTERS |
Author | |
Name pinyin | You Maolin
|
School number | 11855005
|
Degree | 博士
|
Discipline | chemistry
|
Supervisor | |
Mentor unit | 化学系
|
Publication Years | 2022-08-01
|
Submission date | 2023-01-09
|
University | 新加坡国立大学
|
Place of Publication | 新加坡
|
Abstract | Among the myriad of functional supramolecular assemblies, molecules with dynamic magnetic properties, for example spin crossover (SCO) and charge transfer (CT), have been recognized as promising candidates for the development of next-generation molecular devices. In this thesis, we focused on homometallic FeIII-CN-FeII complexes which may either show the most prevalent SCO behavior according to the HS-LS transition of Fe(II) centers or the metal-to-metal charge transfer (MMCT) between the [FeIII-CN-FeII] and [FeII-CN-FeIII] electronic states. Firstly, we described the rarely observed MMCT behavior in two cubic [FeIII4FeII4] compounds. The solely CT process without spin transition involved is different with those previous reported heterometallic [Fe-CN-Co] system. Secondly, the finely manipulating of transition temperature (T1/2) of SCO was demonstrated in three isostructural [FeIII2FeII2] molecular squares by introducing NCE- co-ligands. Lastly, we discussed an atypical SCO behavior of a [AuI(CN)2]-armed [FeIII2FeII2] square compound in which reverible symmetric-breaking phase transition occures in a synergetic way with SCO. |
Keywords | |
Language | English
|
Training classes | 联合培养
|
Enrollment Year | 2018
|
Year of Degree Awarded | 2022-12
|
References List | 1. O. Kahn, Molecular Magnetism, VCH, Weinheim, 1993. 7. M. N. Leuenberger, and D. Loss. Nature 2001, 410, 789–739. 19. R. Jeon Ie, J. G. Park, D. J. Xiao, and T. D. Harris. J. Am. Chem. Soc. 2013, 135, 16845–16848. 32. A. B. Gaspar, V. Ksenofontov, M. Seredyuk, and P. Gütlich. Coord. Chem. Rev. 2005, 249, 2661–2676. 33. O. Sato. Nat. Chem. 2016, 8, 644–656. 34. K. Senthil Kumar, and M. Ruben. Coord. Chem. Rev. 2017, 346, 176–205. 35. V. Jornet-Molla, Y. Duan, C. Gimenez-Saiz, Y.-Y. Tang, P.-F. Li, F. M. Romero, and R.-G. Xiong. Angew. Chem. Int. Ed. 2017, 56, 14052–14056. 36. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer. Chem. Rev. 2012, 112, 4016–4093. 37. A. V. Akimov, A. J. Neukirch, and O. V. Prezhdo. Chem. Rev. 2013, 113, 4496–4565. 38. S. Horiuchi, Y. Okimoto, R. Kumai, and Y. Tokura. Science 2003, 299, 229–232. 39. D. Aguilà, Y. Prado, E. S. Koumousi, C. Mathonière, and R. Clérac. Chem. Soc. Rev. 2016, 45, 203–224. 40. A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, and M. Verdaguer. J. Am. Chem. Soc. 2000, 122, 6648–6652. 41. V. Escax, A. Bleuzen, C. Cartier dit Moulin, F. Villain, A. Goujon, F. Varret, and M. Verdaguer. J. Am. Chem. Soc. 2001, 123, 12536–12543. 42. J. D. Cafun, G. Champion, M. A. Arrio, C. Cartier dit Moulin, and A.Bleuzen. J. Am. Chem. Soc. 2010, 132, 11552–11559. 43. C. Avendano, M. G. Hilfiger, A. Prosvirin, C. Sanders, D. Stepien, and K.R. Dunbar. J. Am. Chem. Soc. 2010, 132, 13123–13125. 44. A. Bordage, R. Moulin, E. Fonda, G. Fornasieri, E. Riviere, and A. Bleuzen. J. Am. Chem. Soc. 2018, 140, 10332–10343. 45. S. F. Jafri, E. S. Koumousi, M. A. Arrio, A. Juhin, D. Mitcov, M. Rouzières, P. Dechambenoit, D. Li, E. Otero, F. Wilhelm, A. Rogalev, L. Joly, J. P. Kappler, C. Cartier Dit Moulin, C. Mathonière, R. Clérac, and P. Sainctavit. J. Am. Chem. Soc. 2019, 141, 3470–3479. 46. M. Cammarata, S. Zerdane, L. Balducci, G. Azzolina, S. Mazerat, C. Exertier, M. Trabuco, M. Levantino, R. Alonso–Mori, J. M. Glownia, S. Song, L. Catala, T. Mallah, S. F. Matar, and E. Collet. Nat. Chem. 2021, 13, 10–14. 47. L. M. Beltran, and J. R. Long. Acc. Chem. Res. 2005, 38, 325–334. 48. D. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris, and S. M. Holmes. J. Am. Chem. Soc. 2008, 130, 252–258. 49. Z.-Y. Zhang, D. Li, R. Clérac, M. Kalisz, C. Mathonière, and S. M. Holmes. Angew. Chem. Int. Ed. 2010, 49, 3752–3756. 50. E. S. Koumousi, R. Jeon Ie, Q. Gao, P. Dechambenoit, D. N. Woodruff, P. Merzeau, L. Buisson, X. Jia, D. Li, F. Volatron, C. Mathonière, and R. Clérac. J. Am. Chem. Soc. 2014, 136, 15461–15464. 51. R. A. Marcus. Chem. Phys. Lett. 1987, 133, 471–477. 52. Y.-Z. Zhang, P. Ferko, D. Siretanu, R. Ababei, N. P. Rath, M. J. Shaw, R. Clérac, C. Mathonière, and S. M. Holmes. J. Am. Chem. Soc. 2014, 136, 16854–16864. 53. M. Nihei, Y. Sekine, N. Suganami, K. Nakazawa, A. Nakao, H. Nakao, Y. Murakami, and H. Oshio. J. Am. Chem. Soc. 2011, 133, 3592–3600. 54. D. Siretanu, D. Li, L. Buisson, D. M. Bassani, S. M. Holmes, C. Mathoniere, and R. Clérac. Chem. Eur. J. 2011, 17, 11704–11708. 55. C.-Q. Jiao, Y.-S. Meng, Y. Yu, W.-J. Jiang, W. Wen, H. Oshio, Y. Luo, C.- Y. Duan, and T. Liu. Angew. Chem. Int. Ed. 2019, 58, 17009–17015. 56. M. Nihei, Y. Yanai, I. J. Hsu, Y. Sekine, and H. Oshio. Angew. Chem. Int. Ed. 2017, 56, 591–594. 57. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto. Science 1996, 272, 704–705. 58. M. Nihei, Y. Okamoto, Y. Sekine, N. Hoshino, T. Shiga, I. P. Liu, and H. Oshio. Angew. Chem. Int. Ed. 2012, 51, 6361–6364. 59. T. Liu, Y.-J. Zhang, S. Kanegawa, and O. Sato. J. Am. Chem. Soc. 2010, 132, 8250–8251. 60. S. I. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, and K. Hashimoto. J. Am. Chem. Soc. 2006, 128, 5320–5321. 61. P. Gütlich, A. Hauser, and H. Spiering. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. 62. L. Cambi, and L. Szegö, Ber. Deutsch. Chem. Ges. 1931, 64, 167. 63. A. H. Ewald, R. L. Martin, I. G. Ross, A. H. White. Proc. R. Soc. A 1964, 280:235. 64. H. H. Jaffe. Chem. Rev. 1953, 53, 191–261. 65. K. Takahashi, Y. Hasegawa, R. Sakamoto, M. Nishikawa, S. Kume, E. Nishibori, and H. Nishihara. Inorg. Chem. 2012, 51, 5188–5198. 66. L. J. Kershaw Cook, R. Kulmaczewski, R. Mohammed, S. Dudley, S. A. Barrett, M. A. Little, R. J. Deeth, and M. A. Halcrow. Angew. Chem. Int. Ed. 2016, 55, 4327–4331. 67. L. Bondì, S. Rodríguez-Jiménez, H. L. C. Feltham, A. L. Garden, and S. Brooker. Inorg. Chem. Front. 2021, 8, 4846–4857. 68. B. Fei, X.-Q. Chen, Y.-D. Cai, J.-K. Fang, M.-L. Tong, J. Tucek, and X. Bao. Inorg. Chem. Front. 2018, 5, 1671–1676. 69. S. Brooker. Chem. Soc. Rev. 2015, 44, 2880–2892. 70. T. Buchen, P. Gütlich, K. H. Sugiyarto, and H. A. Goodwin. Eur. J. Inorg. Chem. 1996, 2, 1134–1138. 71. M. B. Bushuev, V. A. Daletsky, D. P. Pishchur, Y. V. Gatilov, I. V. Korolkov, E. B. Nikolaenkova, and V. P. Krivopalov. Dalton Trans. 2014, 43, 3906–3910. 72. Y. Han, and H. V. Huynh. Dalton Trans. 2011, 40, 2141–2147. 73. B. Weber, W. Bauer, and J. Obel. Angew. Chem. Int. Ed. 2008, 47, 10098– 10101. 74. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J. F. Létard, Y. Bouhedja, and O. Kahn. Chem. Phys. Lett. 1998, 294, 545–553. 75. Z.-J. Zhong, J.-Q. Tao, Z. Yu, C.-Y. Dun, Y.-J. Liu, and X.-Z. You. Dalton Trans.1998, 3, 327–328. 76. F. J. Munoz Lara, A. B. Gaspar, D. Aravena, E. Ruiz, M. C. Munoz, M. Ohba, R. Ohtani, S. Kitagawa, and J. A. Real. Chem. Commun. 2012, 48, 4686–4688. 77. C. F. Herold, S. I. Shylin, and E. Rentschler. Inorg. Chem. 2016, 55, 6414– 6419. 78. C. F. Herold, L. M. Carrella, and E. Rentschler. Eur. J. Inorg. Chem. 2015, 2015, 3632–3636. 79. R. Kulmaczewski, J. Olguin, J. A. Kitchen, H. L. Feltham, G. N. Jameson, J. L. Tallon, and S. Brooker. J. Am. Chem. Soc. 2014, 136, 878–881. 80. M. Nihei, M. Ui, M. Yokota, L. Han, A. Maeda, H. Kishida, H. Okamoto, and H. Oshio. Angew. Chem. 2005, 117, 6642–6645. 81. X.-H. Zhao, D. Shao, J.-T. Chen, D.-X. Gan, J. Yang, and Y.-Z. Zhang. Sci. China Chem. 2022, 65, 532–538. 82. G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion. Science 2002, 298, 1762–1765. 83. Z.-P. Ni, J.-L. Liu, M. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, and M.-L. Tong. Coord. Chem. Rev. 2017, 335, 28–43. 84. J. E. Clements, J. R. Price, S. M. Neville, and C. J. Kepert. Angew. Chem. Int. Ed. 2016, 55, 15105–15109. 85. W. Liu, Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, M. N. Hoque, Z.-P. Ni, X.-M. Chen, and M.-L. Tong. Angew. Chem. Int. Ed. 2017, 56, 14982–14986. 86. M. J. Murphy, K. A. Zenere, F. Ragon, P. D. Southon, C. J. Kepert, and S. M. Neville. J. Am. Chem. Soc. 2017, 139, 1330–1335. 87. S. Decurtins, P. Gütlich, C. P. Köhler, H. Spiering, and A. Hauser. Chem. Phys. Lett. 1984, 105, 1–4. 88. J.-F. Létard. J. Mater. Chem. 2006, 16, 2550–2559. 89. A. Hauser, Coord. Chem. Rev., 1991, 111, 275–290. 90. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro. Nat. Chem. 2011, 3, 564–569. 91. L. Zhao, Y. S. Meng, Q. Liu, O. Sato, Q. Shi, H. Oshio, and T. Liu. Nat. Chem. 2021, 13, 698–704. 2.5 References 1. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto. Science 1996, 272, 704–705. 2. C. P. Berlinguette, A. Dragulescu-Andrasi, A. Sieber, H.U. Güdel, C. Achim, and K. R. Dunbar. J. Am. Chem. Soc. 2005, 127, 6766–6779. 3. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, and K. Hashimoto. J. Phys. Chem. B 1997, 101, 3903–3095. 4. M. Reczyński, D. Pinkowicz, K. Nakabayashi, C. Näther, J. Stanek, M. Kozieł J. Kalinowska-Tłuścik, B. Sieklucka, S.-I. Ohkoshi, and B. Nowicka. Angew. Chem. Int. Ed. 2021, 60, 2330–2338. 5. Y. Arimoto, S. Ohkoshi, Z. J. Zhong, H. Seino, Y. Mizobe, and K. Hashimoto. J. Am. Chem. Soc. 2003, 125, 9240–9241. 6. N. Ozaki, H. Tokoro,Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, and S.Ohkoshi. Adv. Funct. Mater. 2012, 22, 2089–2093. 7. T. Mahfoud, G. Molnár, S. Bonhommeau, S. Cobo, L. Salmon, P. Demont, H. Tokoro, S. Ohkoshi, K. Boukheddaden, and A. Bousseksou. J. Am. Chem. Soc. 2009, 131, 15049–15054. 8. S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, and K. Hashimoto. Angew. Chem., Int. Ed. 2007, 46, 3238–3241. 9. J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, and C. Mathonière. Angew. Chem. Int. Ed. 2004, 43, 5468–5471. 10. S. Ohkoshi, H. Tokoro, T. Hozumi, Y. Zhang, K. Hashimoto, C. MathoniHre, I. Bord, G. Rombaut, M. Verelst, C. Cartier dit Moulin, and F. Villain. J. Am. Chem. Soc. 2006, 128, 270–277. 11. B. L. Feringa, and W. R. Browne. Molecular switches, 2nd ed. WileyVCH, Weinheim, 2011. 12. O. Sato, J. Tao, and Y.-Z. Zhang. Angew. Chem. Int. Ed. 2007, 46, 2152–2187. 13. C. Sim𝑎̃o, M. Mas-Torrent, N. Crivillers, V. Lloveras, J. M. Artés, P. Gorostiza, J. Veciana, and C. Rovira. Nat. Chem. 2011, 3, 359–364. 14. F. Prins, M. Monrabal-Capilla, E. A. Osorio, E. Coronado, and H. S. J. van der Zant. Adv. Mater. 2011, 23, 1545–1549. 15. T. Liu, H. Zheng, S. Kang, Y. Shiota, S. Hayami, M. Mito, and C.-Y. Duan. Nat. Commun. 2013, 4, 1–7. 16. H. Zheng, Y.-S. Meng, G.-L. Zhou, C.-Y. Duan, O. Sato, S. Hayami, Y. Luo, and Liu T. Angew. Chem. Int. Ed. 2018, 57, 8468–8472. 17. D. Garnier, J. R. Jiménez, Y. Li, J. Von Bardeleben, Y. Journaux, T. Augenstein, E. M. Moos, M. T. Gamer, F. Breher, and R. Lescouëzec. Chem. Sci. 2016, 7, 4825–4831. 18. A. Mondal, Y. Li, M. Seuleiman, M. Julve, L. Toupet, M. Buron-Le Cointe, R. Lescouëzec. J. Am. Chem. Soc. 2013, 135, 1653–1656. 19. Y.-S. M, O. Sato, and T. Liu, Angew. Chem. Int. Ed. 2018, 57, 12216– 12226. 20. D.-F. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris and S. M. Holmes, J. Am. Chem. Soc. 2008, 130, 252–258. 21. J.-R. Jiménez, J. Glatz, A. Benchohra, G. Gontard, L.-M. Chamoreau, J.-F. Meunier, A. Bousseksou and R. Lescouëzec, Angew. Chem., Int. Ed., 2020, 59, 8089–8093. 22. M. B. Robin, Inorg. Chem., 1962, 1, 337–342. 23. R. G. Walker and Kenneth O. Watkins, Inorg. Chem., 1968, 7, 885-888. 24. T. Ozeki, I. Watanbe and S. Ikeda, J. Electroanal. Chem. Interfacial Electrochem., 1987, 236, 209–218. 25. A. Mondal, Y. Li, P. Herson, M. Seuleiman, M.-L. Boillot, E. Riviere, M. Julve, L. Rechignat, A. Bousseksou, and R. Lescouëzec, Chem. Commun., 2012, 48, 5653–5655. 26. J.-T. Chen, X.-H. Zhao, and Y.-Z. Zhang. Dalton Trans. 2020, 49, 5949–5956. 27. J.-X. Hu, Y.-S. Meng, L. Zhao, H.-L. Zhu, L. Liu, Q. Liu, C.-Q. Jiao, and T. Liu. Chem. Eur. J. 2017, 23,15930–15936. 28. K. Zhang, S. Kang, Z.-S. Yao, K. Nakamura, T. Yamamoto, Y. Einaga, N. Azuma, Y. Miyazaki, M. Nakano, S. Kanegawa, and O. Sato. Angew. Chem. Int. Ed. 2016, 55, 6047–6050. 29. W. Wen, Y.-S. Meng, C.-Q. Jiao, Q. Liu, H.-L. Zhu, Y.-M. Li, H. Oshio, and T. Liu. Angew. Chem. Int. Ed. 2020, 59, 16393–16397. 30. M. Nihei, M. Ui, N. Hoshino, and H. Oshio. Inorg. Chem. 2008, 47, 6106–6108. 31. J. Glatz, L.-M. Chamoreau, A. Flambard, J.-F. Meunier, A. Bousseksou, and R. Lescouëzec. Chem. Commun. 2020, 56, 10950– 10953. 32. N. Shimamoto, Ohkoshi SI, Sato O, Hashimoto K. Inorg. Chem. 2002, 41, 678–684. 33. M. Itoi, T. Jike, D. Nishio-Hamane, S. Udagawa, T. Tsuda, S. Kuwabata, K. Boukheddaden, M. J. Andrus, and D. R. Talham. J. Am. Chem. Soc. 2015, 137, 14686–14693. 34. L. Cao, J. Tao, Q. Gao, T. Liu, Z. Xia, and D. Li. Chem. Commun. 2014, 50, 1665–1667. 35. S.-H. Liu, Y.-F. Deng, Z.-Y. Chen, L.-Y. Meng, X.-Y. Chang, Z.-P. Zheng, and Y.-Z. Zhang. CCS Chem. 2020, 2, 2530–2538. 36. Y. Chen, Z.-Y. Chen, K.-P. Xie, Y.-F. Deng, Y.-X. Jiang, Q. Liu, and Y.-Z. Zhang. Inorg. Chem. 2020, 59, 12, 8025–8033. 37. J. Yang, Y.-F. Deng, X.-Y. Zhang, X.-Y. Chang, Z.-P. Zheng, and Y.- Z. Zhang. Inorg. Chem. 2019, 58, 7127–7130. 38. D. L. Reger, T. C. Grattan, K. J. Brown, C. A. Little, J. J. S. Lamba, A. L. Rheingold, and R. D. J. Sommer. Organomet. Chem. 2000, 607, 120– 128. 39. Z.-G. Gu, W. Liu, Q.-F. Yang, X.-H. Zhou, J.-L. Zuo, and X.-Z. You. Inorg. Chem. 2007, 46, 3236–3244. 40. D.-F. Li, R. Clérac, S. Parkin, G.-B. Wang, G. T. Yee, and S. M. Holmes Inorg. Chem. 2006, 45, 5251–5253. 3.5 References 1. P. Gütlich, and H. A. Goodwin. Spin Crossover in Transition Metal Compounds I, II, and III, Springer-Verlag, Berlin, Germany, 2004. 2. M. A. Halcrow. Spin-crossover materials: properties and applications, John Wiley & Sons, 2013. 3. A. B. Gaspar, V. Ksenofontov, M. Seredyuk, and P. Gütlich. Coord. Chem. Rev. 2005, 249, 2661–2676. 4. Y.-S. Meng, and T. Liu. Acc. Chem. Res. 2019, 52, 1369–1379. 5. K. S. Murray, H. Oshio, and J. A. Real. Eds. Special Issue on SpinCrossover Complexes, Eur. J. Inorg. Chem. 2013, 5–6, 574–1067. 6. O. Kahn, and C. J. Martinez. Science 1998, 279, 44–48. 7. P. Gütlich, Y. Garcia, and T. Woike. Coord. Chem. Rev. 2001, 219, 839– 879. 8. B. Brachňaková, and I. Šalitroš, Chem. Pap. 2018, 72, 773–798. 9. I. Šalitroš, N. T. Madhu, R. Boča, J. Pavlik, and M. Ruben. Monatsh. Chem. 2009, 140, 695–733. 10. J. Krober, E. Codjovi, O. Kahn, F. Groliere, and C. Jay J. Am. Chem. Soc. 1993, 115, 9810–9811. 11. J. Tao, R. J. Wei, R. B. Huang, and L. S. Zheng. Chem. Soc. Rev. 2012, 41, 703–737. 12. Y.-F. Deng, Y.-N. Wang, X.-H. Zhao, and Y.-Z. Zhang CCS Chem. 2021, 3, 3277–3288. 13. I. Šalitroš, O. Fuhr, A. Eichhöfer, R. Kruk, J. Pavlik, L. Dlháň, R. Boča, and M. Ruben. Dalton Trans. 2012, 41, 5163–5171. 14. I. Šalistroš, O. Fuhr, and M. Ruben. Materials 2016, 9, 585–594. 15. H. Hagiwara, and S. Okada. Chem. Commun. 2016, 52, 815–818. 16. S.-H. Liu, Y.-F. Deng, Z.-Y. Chen, L.-Y. Meng, X.-Y. Chang, Z.-P. Zheng, and Y.-Z. Zhang. CCS Chem. 2020, 2, 2530–2538. 17. L.-Y. Meng, Y.-F. Deng, S.-H. Liu, Z.-P. Zheng, and Y.-Z. Zhang. Sci. China Chem. 2021, 64, 1340–1348. 18. S. Kang, H. Zheng, T. Liu, K. Hamachi, S. Kanegawa, K. Sugimoto, Y. Shiota, S. Hayami, M. Mito, T. Nakamura, M. Nakano, M. L. Baker, H. Nojiri, K. Yoshizawa, C.-Y. Duan and O. Sato, Nat. Commun., 2015, 6, 1–6. 19. M. Nihei, M. Ui, and H. Oshio. Polyhedron 2009, 28, 1718–1721. 20. X.-H. Zhao, D. Shao, J.-T. Chen, M. Liu, T. Li, J. Yang, and Y.-Z. Zhang. Dalton Trans. 2021, 50, 9768–9774. 21. C. Zheng, J. Xu, F. Wang, J.Tao, and D. Li. Dalton Trans. 2016, 45, 17254–17263. 22. C. Zheng, S. Jia, Y. Dong, J. Xu, H. Sui, F. Wang, and D. Li. Inorg. Chem. 2019, 58, 14316–14324. 23. J. Glatz, L.-M. Chamoreau, A. Flambard, J.-F. Meunier, A. Bousseksou, and R. Lescouëzec. Chem. Commun. 2020, 56, 10950–10953. 24. Q. Liu, J.-X. Hu, Y.-S. Meng, W.-J. Jiang, J.-L. Wang, W. Wen, Q. Wu, H.-L. Zhu, L. Zhao, and T. Liu. Angew. Chem. Int. Ed. 2021, 133, 10631–10635. 25. J.-X. Hu, Y. Xu, Y.-S. Meng, L. Zhao, S. Hayami, O. Sato, and T. Liu. Angew. Chem. Int. Ed. 2017, 129, 13232–13235. 26. M. You, D.-X. Gan, Y.-F. Deng, D. Shao, Y.-S. Meng, X.-Y. Chang, and Y.-Z. Zhang. CCS Chem. 2021, 3, 2593–2600. 27. Y.-S. Ye, X.-Q. Chen, Y.-D. Cai, B. Fei, P. Dechambenoit, M. Rouzières, C. Mathonière, R. Clérac, and X. Bao. Angew. Chem. Int. Ed. 2019, 58, 18888–18891. 28. X.-Q. Chen, Y.-D. Cai, Y.-S. Ye, M.-L. Tong, and X. Bao. Inorg. Chem. Front. 2019, 6, 2194–2199. 29. W. Huang, X. Ma, O. Sato, and D. Wu. Chem. Soc. Rev. 2021, 50, 6832– 6870. 30. A. Sulaiman, Y.-Z. Jiang, M.-K. Javed, S. Q. Wu, Z.-Y. Li, and X.-H. Bu. Inorg. Chem. Front. 2022, 9, 241–248. 31. R. Ketkaew, Y. Tantirungrotechai, P. Harding, G. Chastanet, P. Guionneau, M. Marchivie, and D. J. Harding. Dalton Trans. 2021, 50, 1086–1096. 32. J. Cirera, E. Ruiz, and S. Alvarez. Organometallics 2005, 24, 1556– 1562. 33. A. Arroyave, A. Lennartson, A. Dragulescu-Andrasi, K. S. Pedersen, S. Piligkos, S. A. Stoian, S. M. Greer, C. Pak, O. Hietsoi, H. Phan, S. Hill, C. J. McKenzie, and M. Shatruk. Inorg. Chem. 2016, 55, 5904–5913. 34. D. Zhu, Y. Xu, Z. Yu, Z. Guo, H. Sang, T. Liu, and X. You. Chem. Mater. 2002, 14, 838–843. 35. X.-Y. Chen, R.-B. Huang, L.-S. Zheng, and J. Tao. Inorg. Chem. 2014, 53, 5246–5252. 36. J. Cirera, and E. Ruiz. Comments Inorg. Chem. 2019, 39, 216–241. 37. S.-G. Wu, M. N. Hoque, J.-Y. Zheng, G.-Z. Huang, N. V. Ha Anh, L. Ungur, W.-X. Zhang, Z.-P. Ni, and M.-L. Tong. CCS Chem. 2021, 3, 453–459. 38. J. Cirera, and F. Paesani. Inorg. Chem. 2012, 51, 8194–8201. 39. J. Cirera, and E. Ruiz. Inorg. Chem. 2018, 57, 702–709. 40. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. 41. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. 42. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627. 43. D. A. Pantazis and F. Neese, J. Chem. Theory Comput. 2009, 5, 2229– 2238. 44. D. Aravena, F. Neese and D. A. Pantazis, J. Chem. Theory Comput. 2016, 12, 1148–1156. 45. D. Li, S. Parkin, G. Wang, G.-T. Yee, and S. M. Holmes. Inorg. Chem. 2006, 45, 1951–1959. 46. T. Gneuß, M.-J. Leitl, L.-H. Finger, N. Rau, H. Yersin, and J. Sundermeyer. Dalton Trans. 2015, 44, 8506–8520. 4.5 References 1. M. Fujita, M. Tominaga, A. Hori, and B. Therrien. Acc. Chem. Res. 2005, 38, 369–378. 2. R. W. Hogue, S. Singh, and S. Brooker. Chem. Soc. Rev. 2018, 47, 7303– 7338. 3. D. W. Zhang, T. K. Ronson, and J. R. Nitschke. Acc. Chem. Res. 2018, 51, 2423−2436. 4. M. L. Saha, X. Yan, and P. J. Stang. Acc. Chem. Res. 2016, 49, 2527–2539. 5. Y.-S. M, O. Sato, and T. Liu. Angew. Chem. Int. Ed. 2018, 57, 12216–12226. 6. S. Goeb, and M. Sallé. Acc. Chem. Res. 2021, 54, 1043–1055. 7. S. I. Ohkoshi, and H. Tokoro. Acc. Chem. Res. 2012, 45, 1749–1758. 8. J. Olguín. Coord. Chem. Rev. 2020, 407, 213148. 9. M. A. Halcrow. Ed. Spin Crossover Materials: Properties and Applications. John Wiley & Sons Ltd. New York, 2013. 10. N. Hoshino, F. Iijima, H. Nojiri, A. Nakao, G. N. Newton, T. Shiga, N. Yoshida, R. Kumai, Y. Murakami, and H. Oshio. Nat. Chem. 2012, 4, 921– 926. 11. M. Nihei, Y. Yanai, I.-J. Hsu, Y. Sekine, and H. Oshio. Angew. Chem. Int. Ed. 2017, 56, 591–594. 12. L. Meng, Y.-F. Deng, S. Liu, Z. Zheng, and Y.-Z. Zhang. Sci. China Chem. 2021, 64, 1340–1348. 13. E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Ggtlich, E. Wegelius, and K. Rissanen. Angew. Chem. Int. Ed. 2000, 39, 2504–2507. 14. D.-Y. Wu, O. Sato, Y. Einaga, and C.-Y. Duan. Angew. Chem. Int. Ed. 2009, 48, 1475–1478. 15. B. Schneider, S. Demeshko, S. Dechert, and F. Meyer. Angew. Chem. Int. Ed. 2010, 49, 9274–9277. 16. Y.-T. Wang, S.-T. Li, S.-Q. Wu, A.-L. Cui, D.-Z. Shen, and H.-Z. Kou. J. Am. Chem. Soc. 2013, 135, 5942–5945. 17. T. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami, and H. Oshio. Nat. Commun. 2014, 5, 1–8. 18. S. Dhers, A. Mondal, D. Aguilà, J. Ramírez, S. Vela, P. Dechambenoit, M. Rouzières, J. R. Nitschke, R. Clérac, and J.-M. Lehn. J. Am. Chem. Soc. 2018, 140, 8218–8227. 19. R.-J. Wei, Q. Huo, J. Tao, R.-B. Huang, and L.-S. Zheng. Angew. Chem. Int. Ed. 2011, 50, 8940–8943. 20. Z.-Y. Li, J.-W. Dai, M. Damjanovic, T. Shiga, J.-H. Wang, J. Zhao, H. Oshio, M. Yamashita, and X.-H. Bu. Angew. Chem. Int. Ed. 2019, 58, 4339– 4344. 21. M. Nihei, T. Shiga, Y. Maeda, and H. Oshio. Coord. Chem. Rev. 2007, 251, 2606–2621. 22. H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, and P. Gütlich. Coord. Chem. Rev. 1999, 190, 629–647. 23. N. F. Sciortino, K. R. Scherl-Gruenwald, G. Chastanet, G. J. Halder, K. W. Chapman, J. F. Létard, and C. J. Kepert. Angew. Chem. 2012, 124, 10301– 10305. 24. K. Otsubo, T. Haraguchi, and H. Kitagawa. Coord. Chem. Rev. 2017, 346, 123–138. 25. Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, W. Liu, G.-Z. Huang, Z.-P. Ni, and M.- L. Tong. Inorg. Chem. Front. 2020, 7, 1685–1690. 26. K. P. Xie, Z. Y. Ruan, B. H. Lyu, X. X. Chen, X. W. Zhang, G. Z. Huang, Y. C. Chen, Z. P. Ni, and M.-L.Tong. Angew. Chem. Int. Ed. 2021, 60, 27144–27150. 27. S. Chorazy, T. Charytanowicz, D. Pinkowicz, J. Wang, K. Nakabayashi, S. Klimke, F. Renz, I. S. Ohkoshi, and B. Sieklucka. Angew. Chem. Int. Ed. 2020, 59, 15741–15749. 28. M.A. Halcrow. Coord. Chem. Rev. 2009, 253, 2493–2514. 29. H. S. Scott, R. W. Staniland, and P. E. Kruger. Coord. Chem. Rev. 2018, 362, 24–43. 30. T. Gebretsadik, Q. Yang, J. Wu, and J. Tang. Coord. Chem. Rev. 2021, 431, 213666. 31. A. Bousseksou, G. Molnár, J. A. Real, and K. Tanaka. Coord. Chem. Rev. 2007, 251, 1822–1833. 32. K. Kaushik, S. Ghosh, S. Kamilya, M. Rouzieres, S. Mehta, and A. Mondal. Inorg. Chem. 2021, 60, 7545–7552. 33. D. Rosario-Amorin, P. Dechambenoit, A. Bentaleb, M. Rouzieres, C. Mathonière, and R. Clérac. J. Am. Chem. Soc. 2018, 140, 98–101. 34. R. Boča, M. Boča, H. Ehrenberg, H. Fuess, W. Linert, F. Renz, and I. Svoboda. Chem. Phys. 2003, 293, 375–395. 35. T. Fujigaya, D.-L. Jiang, and T. Aida. J. Am. Chem. Soc. 2003, 125, 14690– 14691. 36. C. Lochenie, W. Bauer, A. P. Railliet, S. Schlamp, Y. Garcia, and B. Weber. Inorg. Chem. 2014, 53, 11563–11572. 37. A. Benchohra, Y. Li, L. M. Chamoreau, B. Baptiste, E. Elkaim, N. Guillou, and R. Lescouëzec. Angew. Chem. Int. Ed. 2021, 60, 8803–8807. 38. M. Shatruk, H. Phan, B. A. Chrisostomo, and A. Suleimenova. Coord. Chem. Rev. 2015, 289, 62–73. 39. S. Xue, Y. Guo, and Y. Garcia. CrystEngComm. 2021, 23, 7899–7915. 40. S. Wang, X.-H. Ding, J.-L. Zuo, X.-Z. You, and W. Huang. Coord. Chem. Rev. 2011, 255, 1713–1732. 41. Y.-C. Chen, Y. Meng, Y.-J. Dong, X.-W. Song, G.-Z. Huang, C.-L. Zhang, and M.-L. Tong. Chem. Sci. 2020, 11, 3281–3289. 42. F. J. Valverde-Muñoz, M. C. Muñoz, S. Ferrer, C. BartualMurgui, and J. A. Real. Inorg. Chem. 2018, 57, 12195–12205. 43. L.-F. Wang, W.-M. Zhuang, G.-Z. Huang, Y.-C. Chen, J.-Z. Qiu, Z.-P. Ni, and M.-L. Tong. Chem. Sci. 2019, 10, 7496–7502 44. A. Dragulescu-Andrasi, O. Hietsoi, Ö. Üngör, P. W. Dunk, V. Stubbs, A. Arroyave, K. Kovnir, and M. Shatruk. Inorg. Chem. 2019, 58, 11920–11926. 45. Y.-R. Qiu, L. Cui, P.-Y. Cai, F. Yu, M. Kurmoo, C. F. Leong, D. M. D’Alessandro, and J.-L. Zuo. Chem. Sci. 2020, 11, 6229–6235. 46. A. Bousseksou, G. Molnar, P. Demont, and J. Menegotto. J. Mater.Chem. 2003, 13, 2069–2071. 47. M. Nakano, G.-e. Matsubayashi, and T. Matsuo. Phys. Rev. B 2002, 66, 212412. 48. S. Bonhommeau, T. Guillon, L. M. L. Daku, P. Demont, J. S. Costa, J. F. Létard, G. Molnár, and A. Bousseksou. Angew. Chem. Int. Ed. 2006, 45, 1625–1629. 49. D. S. Middlemiss, and R. J. Deeth. J. Chem. Phys. 2014, 140,144503. 50. T. Guillon, S. Bonhommeau, J. S. Costa, A. Zwick, J.-F.Létard, P. Demont, G. Molnµr, and A. Bousseksou. Phys .Status Solidi A 2006, 203, 2974–2980. 51. J.-L. Wang, Q. Liu, Y.-S. Meng, H. Zheng, H.-L. Zhu, Q. Shi, and T. Liu. Inorg. Chem. 2017, 56, 10674–10680. 52. Y. Zhang, U. P. Mallik, N. Rath, G. T. Yee, R. Clérac, and S. M. Holmes. Chem. Commun. 2010, 46, 4953–4955. 53. J. E. Park, S.-K. Kang, J. O. Woo, and K. Son, Dalton Trans. 2015, 44, 9964–9969.v |
Data Source | 人工提交
|
Document Type | Thesis |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/420671 |
Department | Department of Chemistry |
Recommended Citation GB/T 7714 |
You ML. ENGINEERING THE DYNAMIC MAGNETIC PROPERTIES IN CYANIDE-BRIDGED COORDINATION CLUSTERS[D]. 新加坡. 新加坡国立大学,2022.
|
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
11855005-游茂林-化学系.pdf(7557KB) | Restricted Access | -- | Fulltext Requests |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment