中文版 | English
Title

ENGINEERING THE DYNAMIC MAGNETIC PROPERTIES IN CYANIDE-BRIDGED COORDINATION CLUSTERS

Author
Name pinyin
You Maolin
School number
11855005
Degree
博士
Discipline
chemistry
Supervisor
张元竹
Mentor unit
化学系
Publication Years
2022-08-01
Submission date
2023-01-09
University
新加坡国立大学
Place of Publication
新加坡
Abstract

Among the myriad of functional supramolecular assemblies, molecules with dynamic magnetic properties, for example spin crossover (SCO) and charge transfer (CT), have been recognized as promising candidates for the development of next-generation molecular devices. In this thesis, we focused on homometallic FeIII-CN-FeII complexes which may either show the most prevalent SCO behavior according to the HS-LS transition of Fe(II) centers or the metal-to-metal charge transfer (MMCT) between the [FeIII-CN-FeII] and [FeII-CN-FeIII] electronic states. Firstly, we described the rarely observed MMCT behavior in two cubic [FeIII4FeII4] compounds. The solely CT process without spin transition involved is different with those previous reported heterometallic [Fe-CN-Co] system. Secondly, the finely manipulating of transition temperature (T1/2) of SCO was demonstrated in three isostructural [FeIII2FeII2] molecular squares by introducing NCE- co-ligands. Lastly, we discussed an atypical SCO behavior of a [AuI(CN)2]-armed [FeIII2FeII2] square compound in which reverible symmetric-breaking phase transition occures in a synergetic way with SCO.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

1. O. Kahn, Molecular Magnetism, VCH, Weinheim, 1993.
2. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature 1993, 365, 141–143.
3. B. Guennic, G. Chastanet, S. Pillet, and R. Clérac. Eur. J. Inorg. Chem. 2018, 2018, 212–214.
4. M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M. A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli. Nat. Mater. 2009, 8, 194–197.
5. M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli. Nature 2010, 468, 417–421.
6. S. Hill, R. S. Edwards, N. Aliaga-Alcalde, and G. Christou. Science 2003, 302, 1015–1018.

7. M. N. Leuenberger, and D. Loss. Nature 2001, 410, 789–739.
8. D. Gatteschi, and R. Sessoli. Angew. Chem. Int. Ed. 2003, 42, 268−297.
9. C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P Perlepes, G. Christou, and E. K. Brechin. J. Am. Chem. Soc. 2007, 129, 2754–2755.
10. M. Murugesu, M. Habrych, W. Wernsdorfer, K. A. Abboud, and G. Christou. J. Am. Chem. Soc. 2004, 126, 4766–4767.
11. A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, and G. Christou. Angew. Chem. 2004, 116, 2169–2173.
12. A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clérac, W. Wernsdorfer, C. E. Anson, and A. K. Powell. Angew. Chem. 2006, 118, 5048–5051.
13. F. Neese and D. A. Pantazis. Faraday Discuss. 2011, 148, 229–238.
14. N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara, and Y. Kaizu. J. Am. Chem. Soc. 2003, 125, 8694–8695.
15. D. N. Woodruff, R. E. Winpenny, and R. A. Layfield. Chem. Rev. 2013, 113, 5110–5148.
16. F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R. A. Layfield. Science 2018, 362, 1400–1403.
17. C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, and D. P. Mills. Nature 2017, 548, 439–442.
18. K. Liu, W. Shi, and P. Cheng. Coord. Chem. Rev. 2015, 289, 74–122.

19. R. Jeon Ie, J. G. Park, D. J. Xiao, and T. D. Harris. J. Am. Chem. Soc. 2013, 135, 16845–16848.
20. K. S. Pedersen, A. M. Ariciu, S. McAdams, H. Weihe, J. Bendix, F. Tuna, and S. Piligkos. J. Am. Chem. Soc. 2016, 138, 5801–5804.
21. A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito. Nat. Mater. 2005, 4, 335–339.
22. M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake. Chem. Rev. 2014, 114, 12174–12277.
23. H. M. Bandara, and S. C. Burdette. Chem. Soc. Rev. 2012, 41, 1809–1825.
24. A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath. Acc. Chem. Res. 2001, 34, 433–444.
25. J. M. Lehn. Science 2002, 295, 2400–2403.
26. J. R. Nitschke. Nature 2009, 462, 736–738.
27. A. Bousseksou, G. Molnar, L. Salmon, and W. Nicolazzi. Chem. Soc. Rev. 2011, 40, 3313–3335.
28. C. Mathonière. Eur. J. Inorg. Chem. 2017, 2018, 248–258.
29. O. Sato, A. Cui, R. Matsuda, J. Tao, and S. Hayami. Acc. Chem. Res. 2007, 40, 361–369.
30. P. Gütlich, Y. Garcia, and H. A. Goodwin. Chem. Soc. Rev. 2000, 29, 419– 427. 31. M. A. Halcrow. Chem. Soc. Rev. 2011, 40, 4119–4142.

32. A. B. Gaspar, V. Ksenofontov, M. Seredyuk, and P. Gütlich. Coord. Chem. Rev. 2005, 249, 2661–2676. 33. O. Sato. Nat. Chem. 2016, 8, 644–656. 34. K. Senthil Kumar, and M. Ruben. Coord. Chem. Rev. 2017, 346, 176–205. 35. V. Jornet-Molla, Y. Duan, C. Gimenez-Saiz, Y.-Y. Tang, P.-F. Li, F. M. Romero, and R.-G. Xiong. Angew. Chem. Int. Ed. 2017, 56, 14052–14056. 36. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer. Chem. Rev. 2012, 112, 4016–4093. 37. A. V. Akimov, A. J. Neukirch, and O. V. Prezhdo. Chem. Rev. 2013, 113, 4496–4565. 38. S. Horiuchi, Y. Okimoto, R. Kumai, and Y. Tokura. Science 2003, 299, 229–232. 39. D. Aguilà, Y. Prado, E. S. Koumousi, C. Mathonière, and R. Clérac. Chem. Soc. Rev. 2016, 45, 203–224. 40. A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, and M. Verdaguer. J. Am. Chem. Soc. 2000, 122, 6648–6652. 41. V. Escax, A. Bleuzen, C. Cartier dit Moulin, F. Villain, A. Goujon, F. Varret, and M. Verdaguer. J. Am. Chem. Soc. 2001, 123, 12536–12543. 42. J. D. Cafun, G. Champion, M. A. Arrio, C. Cartier dit Moulin, and A.Bleuzen. J. Am. Chem. Soc. 2010, 132, 11552–11559.

43. C. Avendano, M. G. Hilfiger, A. Prosvirin, C. Sanders, D. Stepien, and K.R. Dunbar. J. Am. Chem. Soc. 2010, 132, 13123–13125. 44. A. Bordage, R. Moulin, E. Fonda, G. Fornasieri, E. Riviere, and A. Bleuzen. J. Am. Chem. Soc. 2018, 140, 10332–10343. 45. S. F. Jafri, E. S. Koumousi, M. A. Arrio, A. Juhin, D. Mitcov, M. Rouzières, P. Dechambenoit, D. Li, E. Otero, F. Wilhelm, A. Rogalev, L. Joly, J. P. Kappler, C. Cartier Dit Moulin, C. Mathonière, R. Clérac, and P. Sainctavit. J. Am. Chem. Soc. 2019, 141, 3470–3479. 46. M. Cammarata, S. Zerdane, L. Balducci, G. Azzolina, S. Mazerat, C. Exertier, M. Trabuco, M. Levantino, R. Alonso–Mori, J. M. Glownia, S. Song, L. Catala, T. Mallah, S. F. Matar, and E. Collet. Nat. Chem. 2021, 13, 10–14. 47. L. M. Beltran, and J. R. Long. Acc. Chem. Res. 2005, 38, 325–334. 48. D. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris, and S. M. Holmes. J. Am. Chem. Soc. 2008, 130, 252–258. 49. Z.-Y. Zhang, D. Li, R. Clérac, M. Kalisz, C. Mathonière, and S. M. Holmes. Angew. Chem. Int. Ed. 2010, 49, 3752–3756. 50. E. S. Koumousi, R. Jeon Ie, Q. Gao, P. Dechambenoit, D. N. Woodruff, P. Merzeau, L. Buisson, X. Jia, D. Li, F. Volatron, C. Mathonière, and R. Clérac. J. Am. Chem. Soc. 2014, 136, 15461–15464. 51. R. A. Marcus. Chem. Phys. Lett. 1987, 133, 471–477.

52. Y.-Z. Zhang, P. Ferko, D. Siretanu, R. Ababei, N. P. Rath, M. J. Shaw, R. Clérac, C. Mathonière, and S. M. Holmes. J. Am. Chem. Soc. 2014, 136, 16854–16864. 53. M. Nihei, Y. Sekine, N. Suganami, K. Nakazawa, A. Nakao, H. Nakao, Y. Murakami, and H. Oshio. J. Am. Chem. Soc. 2011, 133, 3592–3600. 54. D. Siretanu, D. Li, L. Buisson, D. M. Bassani, S. M. Holmes, C. Mathoniere, and R. Clérac. Chem. Eur. J. 2011, 17, 11704–11708. 55. C.-Q. Jiao, Y.-S. Meng, Y. Yu, W.-J. Jiang, W. Wen, H. Oshio, Y. Luo, C.- Y. Duan, and T. Liu. Angew. Chem. Int. Ed. 2019, 58, 17009–17015. 56. M. Nihei, Y. Yanai, I. J. Hsu, Y. Sekine, and H. Oshio. Angew. Chem. Int. Ed. 2017, 56, 591–594. 57. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto. Science 1996, 272, 704–705. 58. M. Nihei, Y. Okamoto, Y. Sekine, N. Hoshino, T. Shiga, I. P. Liu, and H. Oshio. Angew. Chem. Int. Ed. 2012, 51, 6361–6364. 59. T. Liu, Y.-J. Zhang, S. Kanegawa, and O. Sato. J. Am. Chem. Soc. 2010, 132, 8250–8251. 60. S. I. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, and K. Hashimoto. J. Am. Chem. Soc. 2006, 128, 5320–5321. 61. P. Gütlich, A. Hauser, and H. Spiering. Angew. Chem. Int. Ed. 1994, 33, 2024–2054.

62. L. Cambi, and L. Szegö, Ber. Deutsch. Chem. Ges. 1931, 64, 167. 63. A. H. Ewald, R. L. Martin, I. G. Ross, A. H. White. Proc. R. Soc. A 1964, 280:235. 64. H. H. Jaffe. Chem. Rev. 1953, 53, 191–261. 65. K. Takahashi, Y. Hasegawa, R. Sakamoto, M. Nishikawa, S. Kume, E. Nishibori, and H. Nishihara. Inorg. Chem. 2012, 51, 5188–5198. 66. L. J. Kershaw Cook, R. Kulmaczewski, R. Mohammed, S. Dudley, S. A. Barrett, M. A. Little, R. J. Deeth, and M. A. Halcrow. Angew. Chem. Int. Ed. 2016, 55, 4327–4331. 67. L. Bondì, S. Rodríguez-Jiménez, H. L. C. Feltham, A. L. Garden, and S. Brooker. Inorg. Chem. Front. 2021, 8, 4846–4857. 68. B. Fei, X.-Q. Chen, Y.-D. Cai, J.-K. Fang, M.-L. Tong, J. Tucek, and X. Bao. Inorg. Chem. Front. 2018, 5, 1671–1676. 69. S. Brooker. Chem. Soc. Rev. 2015, 44, 2880–2892. 70. T. Buchen, P. Gütlich, K. H. Sugiyarto, and H. A. Goodwin. Eur. J. Inorg. Chem. 1996, 2, 1134–1138. 71. M. B. Bushuev, V. A. Daletsky, D. P. Pishchur, Y. V. Gatilov, I. V. Korolkov, E. B. Nikolaenkova, and V. P. Krivopalov. Dalton Trans. 2014, 43, 3906–3910. 72. Y. Han, and H. V. Huynh. Dalton Trans. 2011, 40, 2141–2147.

73. B. Weber, W. Bauer, and J. Obel. Angew. Chem. Int. Ed. 2008, 47, 10098– 10101. 74. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J. F. Létard, Y. Bouhedja, and O. Kahn. Chem. Phys. Lett. 1998, 294, 545–553. 75. Z.-J. Zhong, J.-Q. Tao, Z. Yu, C.-Y. Dun, Y.-J. Liu, and X.-Z. You. Dalton Trans.1998, 3, 327–328. 76. F. J. Munoz Lara, A. B. Gaspar, D. Aravena, E. Ruiz, M. C. Munoz, M. Ohba, R. Ohtani, S. Kitagawa, and J. A. Real. Chem. Commun. 2012, 48, 4686–4688. 77. C. F. Herold, S. I. Shylin, and E. Rentschler. Inorg. Chem. 2016, 55, 6414– 6419. 78. C. F. Herold, L. M. Carrella, and E. Rentschler. Eur. J. Inorg. Chem. 2015, 2015, 3632–3636. 79. R. Kulmaczewski, J. Olguin, J. A. Kitchen, H. L. Feltham, G. N. Jameson, J. L. Tallon, and S. Brooker. J. Am. Chem. Soc. 2014, 136, 878–881. 80. M. Nihei, M. Ui, M. Yokota, L. Han, A. Maeda, H. Kishida, H. Okamoto, and H. Oshio. Angew. Chem. 2005, 117, 6642–6645. 81. X.-H. Zhao, D. Shao, J.-T. Chen, D.-X. Gan, J. Yang, and Y.-Z. Zhang. Sci. China Chem. 2022, 65, 532–538. 82. G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion. Science 2002, 298, 1762–1765.

83. Z.-P. Ni, J.-L. Liu, M. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, and M.-L. Tong. Coord. Chem. Rev. 2017, 335, 28–43. 84. J. E. Clements, J. R. Price, S. M. Neville, and C. J. Kepert. Angew. Chem. Int. Ed. 2016, 55, 15105–15109. 85. W. Liu, Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, M. N. Hoque, Z.-P. Ni, X.-M. Chen, and M.-L. Tong. Angew. Chem. Int. Ed. 2017, 56, 14982–14986. 86. M. J. Murphy, K. A. Zenere, F. Ragon, P. D. Southon, C. J. Kepert, and S. M. Neville. J. Am. Chem. Soc. 2017, 139, 1330–1335. 87. S. Decurtins, P. Gütlich, C. P. Köhler, H. Spiering, and A. Hauser. Chem. Phys. Lett. 1984, 105, 1–4. 88. J.-F. Létard. J. Mater. Chem. 2006, 16, 2550–2559. 89. A. Hauser, Coord. Chem. Rev., 1991, 111, 275–290. 90. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro. Nat. Chem. 2011, 3, 564–569. 91. L. Zhao, Y. S. Meng, Q. Liu, O. Sato, Q. Shi, H. Oshio, and T. Liu. Nat. Chem. 2021, 13, 698–704.

2.5 References 1. O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto. Science 1996, 272, 704–705. 2. C. P. Berlinguette, A. Dragulescu-Andrasi, A. Sieber, H.U. Güdel, C. Achim, and K. R. Dunbar. J. Am. Chem. Soc. 2005, 127, 6766–6779. 3. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, and K. Hashimoto. J. Phys. Chem. B 1997, 101, 3903–3095. 4. M. Reczyński, D. Pinkowicz, K. Nakabayashi, C. Näther, J. Stanek, M. Kozieł J. Kalinowska-Tłuścik, B. Sieklucka, S.-I. Ohkoshi, and B. Nowicka. Angew. Chem. Int. Ed. 2021, 60, 2330–2338. 5. Y. Arimoto, S. Ohkoshi, Z. J. Zhong, H. Seino, Y. Mizobe, and K. Hashimoto. J. Am. Chem. Soc. 2003, 125, 9240–9241. 6. N. Ozaki, H. Tokoro,Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, and S.Ohkoshi. Adv. Funct. Mater. 2012, 22, 2089–2093. 7. T. Mahfoud, G. Molnár, S. Bonhommeau, S. Cobo, L. Salmon, P. Demont, H. Tokoro, S. Ohkoshi, K. Boukheddaden, and A. Bousseksou. J. Am. Chem. Soc. 2009, 131, 15049–15054. 8. S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, and K. Hashimoto. Angew. Chem., Int. Ed. 2007, 46, 3238–3241. 9. J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, and C. Mathonière. Angew. Chem. Int. Ed. 2004, 43, 5468–5471.

10. S. Ohkoshi, H. Tokoro, T. Hozumi, Y. Zhang, K. Hashimoto, C. MathoniHre, I. Bord, G. Rombaut, M. Verelst, C. Cartier dit Moulin, and F. Villain. J. Am. Chem. Soc. 2006, 128, 270–277. 11. B. L. Feringa, and W. R. Browne. Molecular switches, 2nd ed. WileyVCH, Weinheim, 2011. 12. O. Sato, J. Tao, and Y.-Z. Zhang. Angew. Chem. Int. Ed. 2007, 46, 2152–2187. 13. C. Sim𝑎̃o, M. Mas-Torrent, N. Crivillers, V. Lloveras, J. M. Artés, P. Gorostiza, J. Veciana, and C. Rovira. Nat. Chem. 2011, 3, 359–364. 14. F. Prins, M. Monrabal-Capilla, E. A. Osorio, E. Coronado, and H. S. J. van der Zant. Adv. Mater. 2011, 23, 1545–1549. 15. T. Liu, H. Zheng, S. Kang, Y. Shiota, S. Hayami, M. Mito, and C.-Y. Duan. Nat. Commun. 2013, 4, 1–7. 16. H. Zheng, Y.-S. Meng, G.-L. Zhou, C.-Y. Duan, O. Sato, S. Hayami, Y. Luo, and Liu T. Angew. Chem. Int. Ed. 2018, 57, 8468–8472. 17. D. Garnier, J. R. Jiménez, Y. Li, J. Von Bardeleben, Y. Journaux, T. Augenstein, E. M. Moos, M. T. Gamer, F. Breher, and R. Lescouëzec. Chem. Sci. 2016, 7, 4825–4831. 18. A. Mondal, Y. Li, M. Seuleiman, M. Julve, L. Toupet, M. Buron-Le Cointe, R. Lescouëzec. J. Am. Chem. Soc. 2013, 135, 1653–1656.

19. Y.-S. M, O. Sato, and T. Liu, Angew. Chem. Int. Ed. 2018, 57, 12216– 12226. 20. D.-F. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris and S. M. Holmes, J. Am. Chem. Soc. 2008, 130, 252–258. 21. J.-R. Jiménez, J. Glatz, A. Benchohra, G. Gontard, L.-M. Chamoreau, J.-F. Meunier, A. Bousseksou and R. Lescouëzec, Angew. Chem., Int. Ed., 2020, 59, 8089–8093. 22. M. B. Robin, Inorg. Chem., 1962, 1, 337–342. 23. R. G. Walker and Kenneth O. Watkins, Inorg. Chem., 1968, 7, 885-888. 24. T. Ozeki, I. Watanbe and S. Ikeda, J. Electroanal. Chem. Interfacial Electrochem., 1987, 236, 209–218. 25. A. Mondal, Y. Li, P. Herson, M. Seuleiman, M.-L. Boillot, E. Riviere, M. Julve, L. Rechignat, A. Bousseksou, and R. Lescouëzec, Chem. Commun., 2012, 48, 5653–5655. 26. J.-T. Chen, X.-H. Zhao, and Y.-Z. Zhang. Dalton Trans. 2020, 49, 5949–5956. 27. J.-X. Hu, Y.-S. Meng, L. Zhao, H.-L. Zhu, L. Liu, Q. Liu, C.-Q. Jiao, and T. Liu. Chem. Eur. J. 2017, 23,15930–15936. 28. K. Zhang, S. Kang, Z.-S. Yao, K. Nakamura, T. Yamamoto, Y. Einaga, N. Azuma, Y. Miyazaki, M. Nakano, S. Kanegawa, and O. Sato. Angew. Chem. Int. Ed. 2016, 55, 6047–6050.

29. W. Wen, Y.-S. Meng, C.-Q. Jiao, Q. Liu, H.-L. Zhu, Y.-M. Li, H. Oshio, and T. Liu. Angew. Chem. Int. Ed. 2020, 59, 16393–16397. 30. M. Nihei, M. Ui, N. Hoshino, and H. Oshio. Inorg. Chem. 2008, 47, 6106–6108. 31. J. Glatz, L.-M. Chamoreau, A. Flambard, J.-F. Meunier, A. Bousseksou, and R. Lescouëzec. Chem. Commun. 2020, 56, 10950– 10953. 32. N. Shimamoto, Ohkoshi SI, Sato O, Hashimoto K. Inorg. Chem. 2002, 41, 678–684. 33. M. Itoi, T. Jike, D. Nishio-Hamane, S. Udagawa, T. Tsuda, S. Kuwabata, K. Boukheddaden, M. J. Andrus, and D. R. Talham. J. Am. Chem. Soc. 2015, 137, 14686–14693. 34. L. Cao, J. Tao, Q. Gao, T. Liu, Z. Xia, and D. Li. Chem. Commun. 2014, 50, 1665–1667. 35. S.-H. Liu, Y.-F. Deng, Z.-Y. Chen, L.-Y. Meng, X.-Y. Chang, Z.-P. Zheng, and Y.-Z. Zhang. CCS Chem. 2020, 2, 2530–2538. 36. Y. Chen, Z.-Y. Chen, K.-P. Xie, Y.-F. Deng, Y.-X. Jiang, Q. Liu, and Y.-Z. Zhang. Inorg. Chem. 2020, 59, 12, 8025–8033. 37. J. Yang, Y.-F. Deng, X.-Y. Zhang, X.-Y. Chang, Z.-P. Zheng, and Y.- Z. Zhang. Inorg. Chem. 2019, 58, 7127–7130.

38. D. L. Reger, T. C. Grattan, K. J. Brown, C. A. Little, J. J. S. Lamba, A. L. Rheingold, and R. D. J. Sommer. Organomet. Chem. 2000, 607, 120– 128. 39. Z.-G. Gu, W. Liu, Q.-F. Yang, X.-H. Zhou, J.-L. Zuo, and X.-Z. You. Inorg. Chem. 2007, 46, 3236–3244. 40. D.-F. Li, R. Clérac, S. Parkin, G.-B. Wang, G. T. Yee, and S. M. Holmes Inorg. Chem. 2006, 45, 5251–5253.

3.5 References 1. P. Gütlich, and H. A. Goodwin. Spin Crossover in Transition Metal Compounds I, II, and III, Springer-Verlag, Berlin, Germany, 2004. 2. M. A. Halcrow. Spin-crossover materials: properties and applications, John Wiley & Sons, 2013. 3. A. B. Gaspar, V. Ksenofontov, M. Seredyuk, and P. Gütlich. Coord. Chem. Rev. 2005, 249, 2661–2676. 4. Y.-S. Meng, and T. Liu. Acc. Chem. Res. 2019, 52, 1369–1379. 5. K. S. Murray, H. Oshio, and J. A. Real. Eds. Special Issue on SpinCrossover Complexes, Eur. J. Inorg. Chem. 2013, 5–6, 574–1067. 6. O. Kahn, and C. J. Martinez. Science 1998, 279, 44–48. 7. P. Gütlich, Y. Garcia, and T. Woike. Coord. Chem. Rev. 2001, 219, 839– 879. 8. B. Brachňaková, and I. Šalitroš, Chem. Pap. 2018, 72, 773–798. 9. I. Šalitroš, N. T. Madhu, R. Boča, J. Pavlik, and M. Ruben. Monatsh. Chem. 2009, 140, 695–733.

10. J. Krober, E. Codjovi, O. Kahn, F. Groliere, and C. Jay J. Am. Chem. Soc. 1993, 115, 9810–9811. 11. J. Tao, R. J. Wei, R. B. Huang, and L. S. Zheng. Chem. Soc. Rev. 2012, 41, 703–737. 12. Y.-F. Deng, Y.-N. Wang, X.-H. Zhao, and Y.-Z. Zhang CCS Chem. 2021, 3, 3277–3288. 13. I. Šalitroš, O. Fuhr, A. Eichhöfer, R. Kruk, J. Pavlik, L. Dlháň, R. Boča, and M. Ruben. Dalton Trans. 2012, 41, 5163–5171. 14. I. Šalistroš, O. Fuhr, and M. Ruben. Materials 2016, 9, 585–594. 15. H. Hagiwara, and S. Okada. Chem. Commun. 2016, 52, 815–818. 16. S.-H. Liu, Y.-F. Deng, Z.-Y. Chen, L.-Y. Meng, X.-Y. Chang, Z.-P. Zheng, and Y.-Z. Zhang. CCS Chem. 2020, 2, 2530–2538. 17. L.-Y. Meng, Y.-F. Deng, S.-H. Liu, Z.-P. Zheng, and Y.-Z. Zhang. Sci. China Chem. 2021, 64, 1340–1348. 18. S. Kang, H. Zheng, T. Liu, K. Hamachi, S. Kanegawa, K. Sugimoto, Y. Shiota, S. Hayami, M. Mito, T. Nakamura, M. Nakano, M. L. Baker, H. Nojiri, K. Yoshizawa, C.-Y. Duan and O. Sato, Nat. Commun., 2015, 6, 1–6. 19. M. Nihei, M. Ui, and H. Oshio. Polyhedron 2009, 28, 1718–1721. 20. X.-H. Zhao, D. Shao, J.-T. Chen, M. Liu, T. Li, J. Yang, and Y.-Z. Zhang. Dalton Trans. 2021, 50, 9768–9774.

21. C. Zheng, J. Xu, F. Wang, J.Tao, and D. Li. Dalton Trans. 2016, 45, 17254–17263. 22. C. Zheng, S. Jia, Y. Dong, J. Xu, H. Sui, F. Wang, and D. Li. Inorg. Chem. 2019, 58, 14316–14324. 23. J. Glatz, L.-M. Chamoreau, A. Flambard, J.-F. Meunier, A. Bousseksou, and R. Lescouëzec. Chem. Commun. 2020, 56, 10950–10953. 24. Q. Liu, J.-X. Hu, Y.-S. Meng, W.-J. Jiang, J.-L. Wang, W. Wen, Q. Wu, H.-L. Zhu, L. Zhao, and T. Liu. Angew. Chem. Int. Ed. 2021, 133, 10631–10635. 25. J.-X. Hu, Y. Xu, Y.-S. Meng, L. Zhao, S. Hayami, O. Sato, and T. Liu. Angew. Chem. Int. Ed. 2017, 129, 13232–13235. 26. M. You, D.-X. Gan, Y.-F. Deng, D. Shao, Y.-S. Meng, X.-Y. Chang, and Y.-Z. Zhang. CCS Chem. 2021, 3, 2593–2600. 27. Y.-S. Ye, X.-Q. Chen, Y.-D. Cai, B. Fei, P. Dechambenoit, M. Rouzières, C. Mathonière, R. Clérac, and X. Bao. Angew. Chem. Int. Ed. 2019, 58, 18888–18891. 28. X.-Q. Chen, Y.-D. Cai, Y.-S. Ye, M.-L. Tong, and X. Bao. Inorg. Chem. Front. 2019, 6, 2194–2199. 29. W. Huang, X. Ma, O. Sato, and D. Wu. Chem. Soc. Rev. 2021, 50, 6832– 6870.

30. A. Sulaiman, Y.-Z. Jiang, M.-K. Javed, S. Q. Wu, Z.-Y. Li, and X.-H. Bu. Inorg. Chem. Front. 2022, 9, 241–248. 31. R. Ketkaew, Y. Tantirungrotechai, P. Harding, G. Chastanet, P. Guionneau, M. Marchivie, and D. J. Harding. Dalton Trans. 2021, 50, 1086–1096. 32. J. Cirera, E. Ruiz, and S. Alvarez. Organometallics 2005, 24, 1556– 1562. 33. A. Arroyave, A. Lennartson, A. Dragulescu-Andrasi, K. S. Pedersen, S. Piligkos, S. A. Stoian, S. M. Greer, C. Pak, O. Hietsoi, H. Phan, S. Hill, C. J. McKenzie, and M. Shatruk. Inorg. Chem. 2016, 55, 5904–5913. 34. D. Zhu, Y. Xu, Z. Yu, Z. Guo, H. Sang, T. Liu, and X. You. Chem. Mater. 2002, 14, 838–843. 35. X.-Y. Chen, R.-B. Huang, L.-S. Zheng, and J. Tao. Inorg. Chem. 2014, 53, 5246–5252. 36. J. Cirera, and E. Ruiz. Comments Inorg. Chem. 2019, 39, 216–241. 37. S.-G. Wu, M. N. Hoque, J.-Y. Zheng, G.-Z. Huang, N. V. Ha Anh, L. Ungur, W.-X. Zhang, Z.-P. Ni, and M.-L. Tong. CCS Chem. 2021, 3, 453–459. 38. J. Cirera, and F. Paesani. Inorg. Chem. 2012, 51, 8194–8201. 39. J. Cirera, and E. Ruiz. Inorg. Chem. 2018, 57, 702–709. 40. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78.

41. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. 42. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627. 43. D. A. Pantazis and F. Neese, J. Chem. Theory Comput. 2009, 5, 2229– 2238. 44. D. Aravena, F. Neese and D. A. Pantazis, J. Chem. Theory Comput. 2016, 12, 1148–1156. 45. D. Li, S. Parkin, G. Wang, G.-T. Yee, and S. M. Holmes. Inorg. Chem. 2006, 45, 1951–1959. 46. T. Gneuß, M.-J. Leitl, L.-H. Finger, N. Rau, H. Yersin, and J. Sundermeyer. Dalton Trans. 2015, 44, 8506–8520.

4.5 References 1. M. Fujita, M. Tominaga, A. Hori, and B. Therrien. Acc. Chem. Res. 2005, 38, 369–378. 2. R. W. Hogue, S. Singh, and S. Brooker. Chem. Soc. Rev. 2018, 47, 7303– 7338. 3. D. W. Zhang, T. K. Ronson, and J. R. Nitschke. Acc. Chem. Res. 2018, 51, 2423−2436. 4. M. L. Saha, X. Yan, and P. J. Stang. Acc. Chem. Res. 2016, 49, 2527–2539. 5. Y.-S. M, O. Sato, and T. Liu. Angew. Chem. Int. Ed. 2018, 57, 12216–12226. 6. S. Goeb, and M. Sallé. Acc. Chem. Res. 2021, 54, 1043–1055. 7. S. I. Ohkoshi, and H. Tokoro. Acc. Chem. Res. 2012, 45, 1749–1758. 8. J. Olguín. Coord. Chem. Rev. 2020, 407, 213148. 9. M. A. Halcrow. Ed. Spin Crossover Materials: Properties and Applications. John Wiley & Sons Ltd. New York, 2013. 10. N. Hoshino, F. Iijima, H. Nojiri, A. Nakao, G. N. Newton, T. Shiga, N. Yoshida, R. Kumai, Y. Murakami, and H. Oshio. Nat. Chem. 2012, 4, 921– 926. 11. M. Nihei, Y. Yanai, I.-J. Hsu, Y. Sekine, and H. Oshio. Angew. Chem. Int. Ed. 2017, 56, 591–594. 12. L. Meng, Y.-F. Deng, S. Liu, Z. Zheng, and Y.-Z. Zhang. Sci. China Chem. 2021, 64, 1340–1348.

13. E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Ggtlich, E. Wegelius, and K. Rissanen. Angew. Chem. Int. Ed. 2000, 39, 2504–2507. 14. D.-Y. Wu, O. Sato, Y. Einaga, and C.-Y. Duan. Angew. Chem. Int. Ed. 2009, 48, 1475–1478. 15. B. Schneider, S. Demeshko, S. Dechert, and F. Meyer. Angew. Chem. Int. Ed. 2010, 49, 9274–9277. 16. Y.-T. Wang, S.-T. Li, S.-Q. Wu, A.-L. Cui, D.-Z. Shen, and H.-Z. Kou. J. Am. Chem. Soc. 2013, 135, 5942–5945. 17. T. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami, and H. Oshio. Nat. Commun. 2014, 5, 1–8. 18. S. Dhers, A. Mondal, D. Aguilà, J. Ramírez, S. Vela, P. Dechambenoit, M. Rouzières, J. R. Nitschke, R. Clérac, and J.-M. Lehn. J. Am. Chem. Soc. 2018, 140, 8218–8227. 19. R.-J. Wei, Q. Huo, J. Tao, R.-B. Huang, and L.-S. Zheng. Angew. Chem. Int. Ed. 2011, 50, 8940–8943. 20. Z.-Y. Li, J.-W. Dai, M. Damjanovic, T. Shiga, J.-H. Wang, J. Zhao, H. Oshio, M. Yamashita, and X.-H. Bu. Angew. Chem. Int. Ed. 2019, 58, 4339– 4344. 21. M. Nihei, T. Shiga, Y. Maeda, and H. Oshio. Coord. Chem. Rev. 2007, 251, 2606–2621.

22. H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, and P. Gütlich. Coord. Chem. Rev. 1999, 190, 629–647. 23. N. F. Sciortino, K. R. Scherl-Gruenwald, G. Chastanet, G. J. Halder, K. W. Chapman, J. F. Létard, and C. J. Kepert. Angew. Chem. 2012, 124, 10301– 10305. 24. K. Otsubo, T. Haraguchi, and H. Kitagawa. Coord. Chem. Rev. 2017, 346, 123–138. 25. Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, W. Liu, G.-Z. Huang, Z.-P. Ni, and M.- L. Tong. Inorg. Chem. Front. 2020, 7, 1685–1690. 26. K. P. Xie, Z. Y. Ruan, B. H. Lyu, X. X. Chen, X. W. Zhang, G. Z. Huang, Y. C. Chen, Z. P. Ni, and M.-L.Tong. Angew. Chem. Int. Ed. 2021, 60, 27144–27150. 27. S. Chorazy, T. Charytanowicz, D. Pinkowicz, J. Wang, K. Nakabayashi, S. Klimke, F. Renz, I. S. Ohkoshi, and B. Sieklucka. Angew. Chem. Int. Ed. 2020, 59, 15741–15749. 28. M.A. Halcrow. Coord. Chem. Rev. 2009, 253, 2493–2514. 29. H. S. Scott, R. W. Staniland, and P. E. Kruger. Coord. Chem. Rev. 2018, 362, 24–43. 30. T. Gebretsadik, Q. Yang, J. Wu, and J. Tang. Coord. Chem. Rev. 2021, 431, 213666.

31. A. Bousseksou, G. Molnár, J. A. Real, and K. Tanaka. Coord. Chem. Rev. 2007, 251, 1822–1833. 32. K. Kaushik, S. Ghosh, S. Kamilya, M. Rouzieres, S. Mehta, and A. Mondal. Inorg. Chem. 2021, 60, 7545–7552. 33. D. Rosario-Amorin, P. Dechambenoit, A. Bentaleb, M. Rouzieres, C. Mathonière, and R. Clérac. J. Am. Chem. Soc. 2018, 140, 98–101. 34. R. Boča, M. Boča, H. Ehrenberg, H. Fuess, W. Linert, F. Renz, and I. Svoboda. Chem. Phys. 2003, 293, 375–395. 35. T. Fujigaya, D.-L. Jiang, and T. Aida. J. Am. Chem. Soc. 2003, 125, 14690– 14691. 36. C. Lochenie, W. Bauer, A. P. Railliet, S. Schlamp, Y. Garcia, and B. Weber. Inorg. Chem. 2014, 53, 11563–11572. 37. A. Benchohra, Y. Li, L. M. Chamoreau, B. Baptiste, E. Elkaim, N. Guillou, and R. Lescouëzec. Angew. Chem. Int. Ed. 2021, 60, 8803–8807. 38. M. Shatruk, H. Phan, B. A. Chrisostomo, and A. Suleimenova. Coord. Chem. Rev. 2015, 289, 62–73. 39. S. Xue, Y. Guo, and Y. Garcia. CrystEngComm. 2021, 23, 7899–7915. 40. S. Wang, X.-H. Ding, J.-L. Zuo, X.-Z. You, and W. Huang. Coord. Chem. Rev. 2011, 255, 1713–1732. 41. Y.-C. Chen, Y. Meng, Y.-J. Dong, X.-W. Song, G.-Z. Huang, C.-L. Zhang, and M.-L. Tong. Chem. Sci. 2020, 11, 3281–3289.

42. F. J. Valverde-Muñoz, M. C. Muñoz, S. Ferrer, C. BartualMurgui, and J. A. Real. Inorg. Chem. 2018, 57, 12195–12205. 43. L.-F. Wang, W.-M. Zhuang, G.-Z. Huang, Y.-C. Chen, J.-Z. Qiu, Z.-P. Ni, and M.-L. Tong. Chem. Sci. 2019, 10, 7496–7502 44. A. Dragulescu-Andrasi, O. Hietsoi, Ö. Üngör, P. W. Dunk, V. Stubbs, A. Arroyave, K. Kovnir, and M. Shatruk. Inorg. Chem. 2019, 58, 11920–11926. 45. Y.-R. Qiu, L. Cui, P.-Y. Cai, F. Yu, M. Kurmoo, C. F. Leong, D. M. D’Alessandro, and J.-L. Zuo. Chem. Sci. 2020, 11, 6229–6235. 46. A. Bousseksou, G. Molnar, P. Demont, and J. Menegotto. J. Mater.Chem. 2003, 13, 2069–2071. 47. M. Nakano, G.-e. Matsubayashi, and T. Matsuo. Phys. Rev. B 2002, 66, 212412. 48. S. Bonhommeau, T. Guillon, L. M. L. Daku, P. Demont, J. S. Costa, J. F. Létard, G. Molnár, and A. Bousseksou. Angew. Chem. Int. Ed. 2006, 45, 1625–1629. 49. D. S. Middlemiss, and R. J. Deeth. J. Chem. Phys. 2014, 140,144503. 50. T. Guillon, S. Bonhommeau, J. S. Costa, A. Zwick, J.-F.Létard, P. Demont, G. Molnµr, and A. Bousseksou. Phys .Status Solidi A 2006, 203, 2974–2980. 51. J.-L. Wang, Q. Liu, Y.-S. Meng, H. Zheng, H.-L. Zhu, Q. Shi, and T. Liu. Inorg. Chem. 2017, 56, 10674–10680.

52. Y. Zhang, U. P. Mallik, N. Rath, G. T. Yee, R. Clérac, and S. M. Holmes. Chem. Commun. 2010, 46, 4953–4955. 53. J. E. Park, S.-K. Kang, J. O. Woo, and K. Son, Dalton Trans. 2015, 44, 9964–9969.v

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/420671
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
You ML. ENGINEERING THE DYNAMIC MAGNETIC PROPERTIES IN CYANIDE-BRIDGED COORDINATION CLUSTERS[D]. 新加坡. 新加坡国立大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11855005-游茂林-化学系.pdf(7557KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[游茂林]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[游茂林]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[游茂林]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.