1 Kurita, D. & Himeno, H. Bacterial Ribosome Rescue Systems. Microorganisms (2022) 10, 372.
2 Muller, C., Crowe-McAuliffe, C. & Wilson, D. N. Ribosome Rescue Pathways in Bacteria. Front Microbiol (2021) 12, 652980.
3 Moore, S. D. & Sauer, R. T. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol Microbiol (2005) 58, 456-466.
4 Ito, K., Chadani, Y., Nakamori, K., Chiba, S., Akiyama, Y. & Abo, T. Nascentome analysis uncovers futile protein synthesis in Escherichia coli. PLoS One (2011) 6, e28413.
5 Yan, L. L. & Zaher, H. S. How do cells cope with RNA damage and its consequences? J Biol Chem (2019) 294, 15158-15171.
6 Thomas, E. N., Kim, K. Q., McHugh, E. P., Marcinkiewicz, T. & Zaher, H. S. Alkylative damage of mRNA leads to ribosome stalling and rescue by trans translation in bacteria;. Elife (2020) 9, e61984.
7 Samatova, E., Daberger, J., Liutkute, M. & Rodnina, M. V. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol (2020) 11, 619430.
8 Simms, C. L. & Zaher, H. S. Quality control of chemically damaged RNA. Cell Mol Life Sci (2016) 73, 3639-3653.
9 Sharma, S., Kaushik, S., Sinha, M., Kushwaha, G. S., Singh, A., Sikarwar, J., Chaudhary, A., Gupta, A., Kaur, P. & Singh, T. P. Structural and functional insights into peptidyl-tRNA hydrolase. Biochim Biophys Acta (2014) 1844, 1279-1288.
10 Petropoulos, A. D., McDonald, M. E., Green, R. & Zaher, H. S. Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem (2014) 289, 17589-17596.
11 Giudice, E. & Gillet, R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem Sci (2013) 38, 403-411.
12 Wurtmann, E. J. & Wolin, S. L. RNA under attack: cellular handling of RNA damage. Crit Rev Biochem Mol Biol (2009) 44, 34-49.
13 Singh, N. S., Ahmad, R., Sangeetha, R. & Varshney, U. Recycling of ribosomal complexes stalled at the step of elongation in Escherichia coli. J Mol Biol (2008) 380, 451-464.
14 Li, X., Yokota, T., Ito, K., Nakamura, Y. & Aiba, H. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol Microbiol (2007) 63, 116-126.
15 Li, X., Hirano, R., Tagami, H. & Aiba, H. Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling. RNA (2006) 12, 248-255.
16 Sunohara, T., Jojima, K., Tagami, H., Inada, T. & Aiba, H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J Biol Chem (2004) 279, 15368-15375.
17 Chiabudini, M., Tais, A., Zhang, Y., Hayashi, S., Wolfle, T., Fitzke, E. & Rospert, S. Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol (2014) 34, 4062-4076.
18 Wei, J., Wu, C. & Sachs, M. S. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol (2012) 32, 2396-2406.
19 Bhushan, S., Meyer, H., Starosta, A. L., Becker, T., Mielke, T., Berninghausen, O., Sattler, M., Wilson, D. N. & Beckmann, R. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell (2010) 40, 138-146.
20 Huter, P., Arenz, S., Bock, L. V., Graf, M., Frister, J. O., Heuer, A., Peil, L., Starosta, A. L., Wohlgemuth, I., Peske, F., Novacek, J., Berninghausen, O., Grubmuller, H., Tenson, T., Beckmann, R., Rodnina, M. V., Vaiana, A. C. & Wilson, D. N. Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P. Mol Cell (2017) 68, 515-527.e516.21 Lassak, J., Wilson, D. N. & Jung, K. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol (2016) 99, 219-235.22 Ude, S., Lassak, J., Starosta, A. L., Kraxenberger, T., Wilson, D. N. & Jung, K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science (2013) 339, 82-85.23 Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science (1996) 271, 990-993.24 Bandyra, K. J. & Luisi, B. F. Licensing and due process in the turnover of bacterial RNA. RNA Biol (2013) 10, 627-635.25 Ueda, K., Yamamoto, Y., Ogawa, K., Abo, T., Inokuchi, H. & Aiba, H. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells (2002) 7, 509-519.26 Abo, T., Ueda, K., Sunohara, T., Ogawa, K. & Aiba, H. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells (2002) 7, 629-638.27 Webster, M. W., Takacs, M., Zhu, C., Vidmar, V., Eduljee, A., Abdelkareem, M. & Weixlbaumer, A. Structural basis of transcription-translation coupling and collision in bacteria. Science (2020) 369, 1355-1359.28 Washburn, R. S., Zuber, P. K., Sun, M., Hashem, Y., Shen, B., Li, W., Harvey, S., Acosta Reyes, F. J., Gottesman, M. E., Knauer, S. H. & Frank, J. Escherichia coli NusG Links the Lead Ribosome with the Transcription Elongation Complex. iScience (2020) 23, 101352.29 Wang, C., Molodtsov, V., Firlar, E., Kaelber, J. T., Blaha, G., Su, M. & Ebright, R. H. Structural basis of transcription-translation coupling. Science (2020) 369, 1359-1365.30 Conn, A. B., Diggs, S., Tam, T. K. & Blaha, G. M. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling. Int J Mol Sci (2019) 20, 2595.31 Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature (2006) 440, 561-564.32 Karousis, E. D. & Muhlemann, O. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol (2019) 11, a032862.33 Bicknell, A. A. & Ricci, E. P. When mRNA translation meets decay. Biochem Soc Trans (2017) 45, 339-351.34 Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol (2004) 5, 89-99.35 van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science (2002) 295, 2262-2264.36 Muthunayake, N. S., Tomares, D. T., Childers, W. S. & Schrader, J. M. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. Wiley Interdiscip Rev RNA (2020) 11, e1599.37 Mohanty, B. K. & Kushner, S. R. Regulation of mRNA Decay in Bacteria. Annu Rev Microbiol (2016) 70, 25-44.38 Ikeuchi, K., Tesina, P., Matsuo, Y., Sugiyama, T., Cheng, J., Saeki, Y., Tanaka, K., Becker, T., Beckmann, R. & Inada, T. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J (2019) 38, e100276.39 D'Orazio, K. N., Wu, C. C., Sinha, N., Loll-Krippleber, R., Brown, G. W. & Green, R. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. Elife (2019) 8, e49117.40 Neubauer, C., Gao, Y. G., Andersen, K. R., Dunham, C. M., Kelley, A. C., Hentschel, J., Gerdes, K., Ramakrishnan, V. & Brodersen, D. E. The structural basis for mRNA recognition and cleavage by the ribosome- dependent endonuclease RelE. Cell (2009) 139, 1084-1095.41 Saito, K., Kratzat, H., Campbell, A., Buschauer, R., Burroughs, A. M., Berninghausen, O., Aravind, L., Green, R., Beckmann, R. & Buskirk, A. R. Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature (2022) 603, 503-508.42 Grela, P., Szajwaj, M., Horbowicz-Drozdzal, P. & Tchorzewski, M. How Ricin Damages the Ribosome. Toxins (Basel) (2019) 11, 241.43 Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem (1987) 262, 5908-5912.44 Olombrada, M., Pena, C., Rodriguez-Galan, O., Klingauf-Nerurkar, P., Portugal-Calisto, D., Oborska-Oplova, M., Altvater, M., Gavilanes, J. G., Martinez-Del-Pozo, A., de la Cruz, J., Garcia-Ortega, L. & Panse, V. G. The ribotoxin alpha-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Res (2020) 48, 6210-6222.45 Nayak, S. K. & Batra, J. K. A single amino acid substitution in ribonucleolytic toxin restrictocin abolishes its specific substrate recognition activity. Biochemistry (1997) 36, 13693-13699.46 Endo, Y. & Wool, I. G. The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28 S ribosomal ribonucleic acid. J Biol Chem (1982) 257, 9054-9060.47 Olombrada, M., Lazaro-Gorines, R., Lopez-Rodriguez, J. C., Martinez-Del-Pozo, A., Onaderra, M., Maestro-Lopez, M., Lacadena, J., Gavilanes, J. G. & Garcia-Ortega, L. Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins (Basel) (2017) 9, 71.48 Allen, J. P. & Hauser, A. R. Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol (2019) 201, e00776-00718.49 Cramer, W. A., Sharma, O. & Zakharov, S. D. On mechanisms of colicin import: the outer membrane quandary. Biochem J (2018) 475, 3903-3915.50 Beck, C. M., Morse, R. P., Cunningham, D. A., Iniguez, A., Low, D. A., Goulding, C. W. & Hayes, C. S. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure (2014) 22, 707-718.51 Ng, C. L., Lang, K., Meenan, N. A., Sharma, A., Kelley, A. C., Kleanthous, C. & Ramakrishnan, V. Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol (2010) 17, 1241-1246.52 Soelaiman, S., Jakes, K., Wu, N., Li, C. & Shoham, M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell (2001) 8, 1053-1062.53 Tomita, K., Ogawa, T., Uozumi, T., Watanabe, K. & Masaki, H. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A (2000) 97, 8278-8283.54 Ogawa, T., Tomita, K., Ueda, T., Watanabe, K., Uozumi, T. & Masaki, H. A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science (1999) 283, 2097-2100.55 Meineke, B., Schwer, B., Schaffrath, R. & Shuman, S. Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC. Nucleic Acids Res (2011) 39, 687-700.56 Meineke, B. & Shuman, S. Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC. Virology (2012) 427, 144-150.57 Tu, G. F., Reid, G. E., Zhang, J. G., Moritz, R. L. & Simpson, R. J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem (1995) 270, 9322-9326.58 Neubauer, C., Gillet, R., Kelley, A. C. & Ramakrishnan, V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science (2012) 335, 1366-1369.59 Rae, C. D., Gordiyenko, Y. & Ramakrishnan, V. How a circularized tmRNA moves through the ribosome. Science (2019) 363, 740-744.60 Ramrath, D. J., Yamamoto, H., Rother, K., Wittek, D., Pech, M., Mielke, T., Loerke, J., Scheerer, P., Ivanov, P., Teraoka, Y., Shpanchenko, O., Nierhaus, K. H. & Spahn, C. M. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature (2012) 485, 526-529.61 Dong, G., Nowakowski, J. & Hoffman, D. W. Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBO J (2002) 21, 1845-1854.62 Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K. & Inokuchi, H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A (1994) 91, 9223-9227.63 Ushida, C., Himeno, H., Watanabe, T. & Muto, A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res (1994) 22, 3392-3396.64 Gutmann, S., Haebel, P. W., Metzinger, L., Sutter, M., Felden, B. & Ban, N. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature (2003) 424, 699-703.65 Felden, B., Himeno, H., Muto, A., Atkins, J. F. & Gesteland, R. F. Structural organization of Escherichia coli tmRNA. Biochimie (1996) 78, 979-983.66 Williams, K. P. & Bartel, D. P. Phylogenetic analysis of tmRNA secondary structure. RNA (1996) 2, 1306-1310.67 Keiler, K. C., Shapiro, L. & Williams, K. P. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci U S A (2000) 97, 7778-7783.68 Ivanova, N., Pavlov, M. Y., Felden, B. & Ehrenberg, M. Ribosome rescue by tmRNA requires truncated mRNAs. J Mol Biol (2004) 338, 33-41.69 Asano, K., Kurita, D., Takada, K., Konno, T., Muto, A. & Himeno, H. Competition between trans-translation and termination or elongation of translation. Nucleic Acids Res (2005) 33, 5544-5552.70 Kurita, D., Miller, M. R., Muto, A., Buskirk, A. R. & Himeno, H. Rejection of tmRNA.SmpB after GTP hydrolysis by EF-Tu on ribosomes stalled on intact mRNA. RNA (2014) 20, 1706-1714.71 Miller, M. R., Liu, Z., Cazier, D. J., Gebhard, G. M., Herron, S. R., Zaher, H. S., Green, R. & Buskirk, A. R. The role of SmpB and the ribosomal decoding center in licensing tmRNA entry into stalled ribosomes. RNA (2011) 17, 1727-1736.72 Sundermeier, T. R., Dulebohn, D. P., Cho, H. J. & Karzai, A. W. A previously uncharacterized role for small protein B (SmpB) in transfer messenger RNA-mediated trans-translation. Proc Natl Acad Sci U S A (2005) 102, 2316-2321.73 Chadani, Y., Ono, K., Ozawa, S., Takahashi, Y., Takai, K., Nanamiya, H., Tozawa, Y., Kutsukake, K. & Abo, T. Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans- translation system. Mol Microbiol (2010) 78, 796-808.74 Huter, P., Muller, C., Beckert, B., Arenz, S., Berninghausen, O., Beckmann, R. & Wilson, D. N. Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons. Nature (2017) 541, 546-549.75 James, N. R., Brown, A., Gordiyenko, Y. & Ramakrishnan, V. Translational termination without a stop codon. Science (2016) 354, 1437-1440.76 Demo, G., Svidritskiy, E., Madireddy, R., Diaz-Avalos, R., Grant, T., Grigorieff, N., Sousa, D. & Korostelev, A. A. Mechanism of ribosome rescue by ArfA and RF2. Elife (2017) 6, e23687.77 Ma, C., Kurita, D., Li, N., Chen, Y., Himeno, H. & Gao, N. Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature (2017) 541, 550-553.78 Zeng, F., Chen, Y., Remis, J., Shekhar, M., Phillips, J. C., Tajkhorshid, E. & Jin, H. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature (2017) 541, 554-557.79 Chadani, Y., Matsumoto, E., Aso, H., Wada, T., Kutsukake, K., Sutou, S. & Abo, T. trans-translation-mediated tight regulation of the expression of the alternative ribosome-rescue factor ArfA in Escherichia coli. Genes Genet Syst (2011) 86, 151-163.80 Chadani, Y., Ito, K., Kutsukake, K. & Abo, T. ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl- tRNA hydrolysis in Escherichia coli. Mol Microbiol (2012) 86, 37-50.81 Zeng, F. & Jin, H. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA (2016) 22, 49-60.82 Frolova, L. Y., Tsivkovskii, R. Y., Sivolobova, G. F., Oparina, N. Y., Serpinsky, O. I., Blinov, V. M., Tatkov, S. I. & Kisselev, L. L. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA (1999) 5, 1014-1020.83 Dincbas-Renqvist, V., Engstrom, A., Mora, L., Heurgue-Hamard, V., Buckingham, R. & Ehrenberg, M. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J (2000) 19, 6900-6907.84 Mora, L., Heurgue-Hamard, V., Champ, S., Ehrenberg, M., Kisselev, L. L. & Buckingham, R. H. The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol (2003) 47, 267-275.85 Vestergaard, B., Van, L. B., Andersen, G. R., Nyborg, J., Buckingham, R. H. & Kjeldgaard, M. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell (2001) 8, 1375-1382.86 Zoldak, G., Redecke, L., Svergun, D. I., Konarev, P. V., Voertler, C. S., Dobbek, H., Sedlak, E. & Sprinzl, M. Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Res (2007) 35, 1343-1353.87 Klaholz, B. P., Pape, T., Zavialov, A. V., Myasnikov, A. G., Orlova, E. V., Vestergaard, B., Ehrenberg, M. & van Heel, M. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature (2003) 421, 90-94.88 Rawat, U. B., Zavialov, A. V., Sengupta, J., Valle, M., Grassucci, R. A., Linde, J., Vestergaard, B., Ehrenberg, M. & Frank, J. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature (2003) 421, 87-90.89 Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J., Trakhanov, S., Scott, W. G. & Noller, H. F. Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci U S A (2008) 105, 19684-19689.90 Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R. M., Petry, S., Kelley, A. C. & Ramakrishnan, V. Insights into translational termination from the structure of RF2 bound to the ribosome. Science (2008) 322, 953-956.91 Youngman, E. M., He, S. L., Nikstad, L. J. & Green, R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell (2007) 28, 533-543.92 Ito, K., Uno, M. & Nakamura, Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature (2000) 403, 680-684.93 Shimokawa-Chiba, N., Muller, C., Fujiwara, K., Beckert, B., Ito, K., Wilson, D. N. & Chiba, S. Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nat Commun (2019) 10, 5397.94 Goralski, T. D. P., Kirimanjeswara, G. S. & Keiler, K. C. A New Mechanism for Ribosome Rescue Can Recruit RF1 or RF2 to Nonstop Ribosomes. mBio (2018) 9, e02436-02418.95 Carvalho, C. L., Lopes de Carvalho, I., Ze-Ze, L., Nuncio, M. S. & Duarte, E. L. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis (2014) 37, 85-96.96 Oyston, P. C. F. Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol (2008) 57, 921-930.97 Sjostedt, A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci (2007) 1105, 1-29.98 Bosio, C. M., Bielefeldt-Ohmann, H. & Belisle, J. T. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol (2007) 178, 4538-4547.99 Schaub, R. E., Poole, S. J., Garza-Sanchez, F., Benbow, S. & Hayes, C. S. Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs. J Biol Chem (2012) 287, 29765-29775.100 Feaga, H. A., Viollier, P. H. & Keiler, K. C. Release of nonstop ribosomes is essential. mBio (2014) 5, e01916.101 Handa, Y., Hikawa, Y., Tochio, N., Kogure, H., Inoue, M., Koshiba, S., Guntert, P., Inoue, Y., Kigawa, T., Yokoyama, S. & Nameki, N. Solution structure of the catalytic domain of the mitochondrial protein ICT1 that is essential for cell vitality. J Mol Biol (2010) 404, 260-273.102 Richter, R., Rorbach, J., Pajak, A., Smith, P. M., Wessels, H. J., Huynen, M. A., Smeitink, J. A., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J (2010) 29, 1116-1125.103 Akabane, S., Ueda, T., Nierhaus, K. H. & Takeuchi, N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet (2014) 10, e1004616.104 Brown, A., Amunts, A., Bai, X. C., Sugimoto, Y., Edwards, P. C., Murshudov, G., Scheres, S. H. W. & Ramakrishnan, V. Structure of the large ribosomal subunit from human mitochondria. Science (2014) 346, 718-722.105 Greber, B. J., Boehringer, D., Leibundgut, M., Bieri, P., Leitner, A., Schmitz, N., Aebersold, R. & Ban, N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature (2014) 515, 283-286.106 Greber, B. J., Boehringer, D., Leitner, A., Bieri, P., Voigts-Hoffmann, F., Erzberger, J. P., Leibundgut, M., Aebersold, R. & Ban, N. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature (2014) 505, 515-519.107 Kogure, H., Handa, Y., Nagata, M., Kanai, N., Guntert, P., Kubota, K. & Nameki, N. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res (2014) 42, 3152-3163.108 Feaga, H. A., Quickel, M. D., Hankey-Giblin, P. A. & Keiler, K. C. Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria. PLoS Genet (2016) 12, e1005964.109 Carbone, C. E., Demo, G., Madireddy, R., Svidritskiy, E. & Korostelev, A. A. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun (2020) 11, 5552.110 Chan, K. H., Petrychenko, V., Mueller, C., Maracci, C., Holtkamp, W., Wilson, D. N., Fischer, N. & Rodnina, M. V. Mechanism of ribosome rescue by alternative ribosome-rescue factor B. Nat Commun (2020) 11, 4106.111 Gagnon, M. G., Seetharaman, S. V., Bulkley, D. & Steitz, T. A. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science (2012) 335, 1370-1372.112 Singarapu, K. K., Xiao, R., Acton, T., Rost, B., Montelione, G. T. & Szyperski, T. NMR structure of the peptidyl-tRNA hydrolase domain from Pseudomonas syringae expands the structural coverage of the hydrolysis domains of class 1 peptide chain release factors. Proteins (2008) 71, 1027-1031.113 Chadani, Y., Ono, K., Kutsukake, K. & Abo, T. Escherichia coli YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-mediated pathways. Mol Microbiol (2011) 80, 772-785.114 Handa, Y., Inaho, N. & Nameki, N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res (2011) 39, 1739-1748.115 Santos, N., Zhu, J., Donohue, J. P., Korostelev, A. A. & Noller, H. F. Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. Structure (2013) 21, 1258-1263.116 Howard, C. J. & Frost, A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol (2021) 56, 603-620.117 Joazeiro, C. A. P. Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol (2019) 20, 368-383.118 Lytvynenko, I., Paternoga, H., Thrun, A., Balke, A., Muller, T. A., Chiang, C. H., Nagler, K., Tsaprailis, G., Anders, S., Bischofs, I., Maupin-Furlow, J. A., Spahn, C. M. T. & Joazeiro, C. A. P. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell (2019) 178, 76-90.e22.119 Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I. & Inada, T. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. Mol Cell (2012) 46, 518-529.120 Hilal, T., Yamamoto, H., Loerke, J., Burger, J., Mielke, T. & Spahn, C. M. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near- atomic resolution. Nat Commun (2016) 7, 13521.121 Hashimoto, S., Sugiyama, T., Yamazaki, R., Nobuta, R. & Inada, T. Identification of a novel trigger complex that facilitates ribosome- associated quality control in mammalian cells. Sci Rep (2020) 10, 3422.122 Sitron, C. S., Park, J. H. & Brandman, O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (2017) 23, 798-810.123 Matsuo, Y., Ikeuchi, K., Saeki, Y., Iwasaki, S., Schmidt, C., Udagawa, T., Sato, F., Tsuchiya, H., Becker, T., Tanaka, K., Ingolia, N. T., Beckmann, R. & Inada, T. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun (2017) 8, 159.124 Crowe-McAuliffe, C., Takada, H., Murina, V., Polte, C., Kasvandik, S., Tenson, T., Ignatova, Z., Atkinson, G. C., Wilson, D. N. & Hauryliuk, V. Structural Basis for Bacterial Ribosome-Associated Quality Control by RqcH and RqcP. Mol Cell (2021) 81, 115-126.e117.125 Osuna, B. A., Howard, C. J., Kc, S., Frost, A. & Weinberg, D. E. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Elife (2017) 6, e27949.126 Shen, P. S., Park, J., Qin, Y., Li, X., Parsawar, K., Larson, M. H., Cox, J., Cheng, Y., Lambowitz, A. M., Weissman, J. S., Brandman, O. & Frost, A. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA- independent elongation of nascent chains. Science (2015) 347, 75-78.127 Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. Structure and assembly pathway of the ribosome quality control complex. Mol Cell (2015) 57, 433-444.128 Burroughs, A. M. & Aravind, L. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. RNA Biol (2014) 11, 360-372.129 Filbeck, S., Cerullo, F., Paternoga, H., Tsaprailis, G., Joazeiro, C. A. P. & Pfeffer, S. Mimicry of Canonical Translation Elongation Underlies Alanine Tail Synthesis in RQC. Mol Cell (2021) 81, 104-114.e106.130 Doamekpor, S. K., Lee, J. W., Hepowit, N. L., Wu, C., Charenton, C., Leonard, M., Bengtson, M. H., Rajashankar, K. R., Sachs, M. S., Lima, C. D. & Joazeiro, C. A. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. Proc Natl Acad Sci U S A (2016) 113, E4151-4160.131 Defenouillere, Q., Zhang, E., Namane, A., Mouaikel, J., Jacquier, A. & Fromont-Racine, M. Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT- tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits. J Biol Chem (2016) 291, 12245-12253.132 Bengtson, M. H. & Joazeiro, C. A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature (2010) 467, 470-473.133 Kostova, K. K., Hickey, K. L., Osuna, B. A., Hussmann, J. A., Frost, A., Weinberg, D. E. & Weissman, J. S. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science (2017) 357, 414-417.134 Yonashiro, R., Tahara, E. B., Bengtson, M. H., Khokhrina, M., Lorenz, H., Chen, K. C., Kigoshi-Tansho, Y., Savas, J. N., Yates, J. R., Kay, S. A., Craig, E. A., Mogk, A., Bukau, B. & Joazeiro, C. A. The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Elife (2016) 5, e11794.135 Choe, Y. J., Park, S. H., Hassemer, T., Korner, R., Vincenz-Donnelly, L., Hayer-Hartl, M. & Hartl, F. U. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature (2016) 531, 191-195.136 Zurita Rendon, O., Fredrickson, E. K., Howard, C. J., Van Vranken, J., Fogarty, S., Tolley, N. D., Kalia, R., Osuna, B. A., Shen, P. S., Hill, C. P., Frost, A. & Rutter, J. Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun (2018) 9, 2197.137 Verma, R., Reichermeier, K. M., Burroughs, A. M., Oania, R. S., Reitsma, J. M., Aravind, L. & Deshaies, R. J. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature (2018) 557, 446-451.138 Thrun, A., Garzia, A., Kigoshi-Tansho, Y., Patil, P. R., Umbaugh, C. S., Dallinger, T., Liu, J., Kreger, S., Patrizi, A., Cox, G. A., Tuschl, T. & Joazeiro, C. A. P. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell (2021) 81, 2112-2122.e2117.139 Sitron, C. S. & Brandman, O. Detection and Degradation of Stalled Nascent Chains via Ribosome- Associated Quality Control. Annu Rev Biochem (2020) 89, 417-442.140 Baranov, P. V., Vestergaard, B., Hamelryck, T., Gesteland, R. F., Nyborg, J. & Atkins, J. F. Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons. Biol Direct (2006) 1, 28.141 Burroughs, A. M. & Aravind, L. The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci (2019) 20, 1981.142 Tian, Y., Zeng, F., Raybarman, A., Fatma, S., Carruthers, A., Li, Q. & Huang, R. H. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A (2022) 119, e2202464119.143 Maughan, W. P. & Shuman, S. Distinct Contributions of Enzymic Functional Groups to the 2',3'-Cyclic Phosphodiesterase, 3'-Phosphate Guanylylation, and 3'-ppG/5'-OH Ligation Steps of the Escherichia coli RtcB Nucleic Acid Splicing Pathway. J Bacteriol (2016) 198, 1294-1304.144 Tanaka, N. & Shuman, S. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. J Biol Chem (2011) 286, 7727-7731.145 Tanaka, N., Meineke, B. & Shuman, S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem (2011) 286, 30253-30257.146 Maughan, W. P. & Shuman, S. Characterization of 3'-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5'-Phosphate Capping Activity of RtcB3. J Bacteriol (2015) 197, 3616-3624.147 Chakravarty, A. K., Subbotin, R., Chait, B. T. & Shuman, S. RNA ligase RtcB splices 3'-phosphate and 5'-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. Proc Natl Acad Sci U S A (2012) 109, 6072-6077.148 Desai, K. K., Cheng, C. L., Bingman, C. A., Phillips, G. N., Jr. & Raines, R. T. A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res (2014) 42, 3931-3942.149 Nandy, A., Saenz-Mendez, P., Gorman, A. M., Samali, A. & Eriksson, L. A. Homology model of the human tRNA splicing ligase RtcB. Proteins (2017) 85, 1983-1993.150 McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol (1994) 238, 777-793.151 Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature (2012) 484, 256-259.152 Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H. F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell (2006) 126, 1065-1077.153 Shimizu, Y. ArfA recruits RF2 into stalled ribosomes. J Mol Biol (2012) 423, 624-631.154 Jin, H., Kelley, A. C., Loakes, D. & Ramakrishnan, V. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc Natl Acad Sci U S A (2010) 107, 8593-8598.155 Schmeing, T. M., Huang, K. S., Strobel, S. A. & Steitz, T. A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature (2005) 438, 520-524.156 Yan, L. L. & Zaher, H. S. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell (2021) 81, 614-628.e614.157 Jolivet-Gougeon, A., Sixou, J. L., Tamanai-Shacoori, Z. & Bonnaure-Mallet, M. Antimicrobial treatment of Capnocytophaga infections. Int J Antimicrob Agents (2007) 29, 367-373.158 Mansfield, M. J. & Doxey, A. C. Genomic insights into the evolution and ecology of botulinum neurotoxins. Pathog Dis (2018) 76, fty040.159 Graf, M., Huter, P., Maracci, C., Peterek, M., Rodnina, M. V. & Wilson, D. N. Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Nat Commun (2018) 9, 3053.160 Zhou, D., Tanzawa, T., Lin, J. & Gagnon, M. G. Structural basis for ribosome recycling by RRF and tRNA. Nat Struct Mol Biol (2020) 27, 25-32.161 Williams, D. E., Lassota, P. & Andersen, R. J. Motuporamines A− C, cytotoxic alkaloids isolated from the marine sponge Xestospongia exigua (Kirkpatrick). The Journal of Organic Chemistry (1998) 63, 4838-4841.162 Roskelley, C. D., Williams, D. E., McHardy, L. M., Leong, K. G., Troussard, A., Karsan, A., Andersen, R. J., Dedhar, S. & Roberge, M. Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res (2001) 61, 6788-6794.163 To, K. C., Loh, K. T., Roskelley, C. D., Andersen, R. J. & O'Connor, T. P. The anti-invasive compound motuporamine C is a robust stimulator of neuronal growth cone collapse. Neuroscience (2006) 139, 1263-1274.164 Williams, D. E., Craig, K. S., Patrick, B., McHardy, L. M., van Soest, R., Roberge, M. & Andersen, R. J. Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): isolation, structure elucidation, analogue synthesis, and conformational analysis. J Org Chem (2002) 67, 245-258.165 Skruber, K., Chaplin, K. J. & Phanstiel, O. t. Synthesis and Bioevaluation of Macrocycle-Polyamine Conjugates as Cell Migration Inhibitors. J Med Chem (2017) 60, 8606-8619.166 Muth, A., Pandey, V., Kaur, N., Wason, M., Baker, C., Han, X., Johnson, T. R., Altomare, D. A. & Phanstiel, O. t. Synthesis and biological evaluation of antimetastatic agents predicated upon dihydromotuporamine C and its carbocyclic derivatives. J Med Chem (2014) 57, 4023-4034.167 McHardy, L. M., Sinotte, R., Troussard, A., Sheldon, C., Church, J., Williams, D. E., Andersen, R. J., Dedhar, S., Roberge, M. & Roskelley, C. D. The tumor invasion inhibitor dihydromotuporamine C activates RHO, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res (2004) 64, 1468-1474.168 To, K. C., Church, J. & O'Connor, T. P. Growth cone collapse stimulated by both calpain- and Rho-mediated pathways. Neuroscience (2008) 153, 645-653.169 Franco, S. J., Rodgers, M. A., Perrin, B. J., Han, J., Bennin, D. A., Critchley, D. R. & Huttenlocher, A. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol (2004) 6, 977-983.170 Li, G., Liu, Y., Yu, X. & Li, X. Multivalent photoaffinity probe for labeling small molecule binding proteins. Bioconjug Chem (2014) 25, 1172-1180.171 Bi, W., Bai, X., Gao, F., Lu, C., Wang, Y., Zhai, G., Tian, S., Fan, E., Zhang, Y. & Zhang, K. DNA-Templated Aptamer Probe for Identification of Target Proteins. Anal Chem (2017) 89, 4071-4076.172 Bai, X., Lu, C., Jin, J., Tian, S., Guo, Z., Chen, P., Zhai, G., Zheng, S., He, X., Fan, E., Zhang, Y. & Zhang, K. Development of a DNA-Templated Peptide Probe for Photoaffinity Labeling and Enrichment of the Histone Modification Reader Proteins. Angew Chem Int Ed Engl (2016) 55, 7993-7997.173 Liu, Y., Zheng, W., Zhang, W., Chen, N., Liu, Y., Chen, L., Zhou, X., Chen, X., Zheng, H. & Li, X. Photoaffinity labeling of transcription factors by DNA-templated crosslinking. Chem Sci (2015) 6, 745-751.174 Kalesh, K. A., Clulow, J. A. & Tate, E. W. Target profiling of zerumbone using a novel cell-permeable clickable probe and quantitative chemical proteomics. Chem Commun (Camb) (2015) 51, 5497-5500.175 Jensen, A. J., Martinez Molina, D. & Lundback, T. CETSA: a target engagement assay with potential to transform drug discovery. Future Med Chem (2015) 7, 975-978.176 Lanning, B. R., Whitby, L. R., Dix, M. M., Douhan, J., Gilbert, A. M., Hett, E. C., Johnson, T. O., Joslyn, C., Kath, J. C., Niessen, S., Roberts, L. R., Schnute, M. E., Wang, C., Hulce, J. J., Wei, B., Whiteley, L. O., Hayward, M. M. & Cravatt, B. F. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol (2014) 10, 760-767.177 Voigt, T., Gerding-Reimers, C., Ngoc Tran, T. T., Bergmann, S., Lachance, H., Scholermann, B., Brockmeyer, A., Janning, P., Ziegler, S. & Waldmann, H. A natural product inspired tetrahydropyran collection yields mitosis modulators that synergistically target CSE1L and tubulin. Angew Chem Int Ed Engl (2013) 52, 410-414.178 Ong, S. E., Schenone, M., Margolin, A. A., Li, X., Do, K., Doud, M. K., Mani, D. R., Kuai, L., Wang, X., Wood, J. L., Tolliday, N. J., Koehler, A. N., Marcaurelle, L. A., Golub, T. R., Gould, R. J., Schreiber, S. L. & Carr, S. A. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc Natl Acad Sci U S A (2009) 106, 4617-4622.179 Martinez Molina, D. & Nordlund, P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. Annu Rev Pharmacol Toxicol (2016) 56, 141-161.180 Jafari, R., Almqvist, H., Axelsson, H., Ignatushchenko, M., Lundback, T., Nordlund, P. & Martinez Molina, D. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc (2014) 9, 2100-2122.181 Martinez Molina, D., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E. A., Dan, C., Sreekumar, L., Cao, Y. & Nordlund, P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science (2013) 341, 84-87.182 Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform (2011) 12, 449-462.183 Kikuchi, M., Hatano, N., Yokota, S., Shimozawa, N., Imanaka, T. & Taniguchi, H. Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem (2004) 279, 421-428.184 Litovkin, K. V., Ivanova, O. V., Bauer, A., Hoheisel, J. D., Bubnov, V. V. & Zaporozhan, V. N. Microarray study of gene expression in uterine leiomyoma. Exp Oncol (2008) 30, 106-111.185 Rezaul, K., Thumar, J. K., Lundgren, D. H., Eng, J. K., Claffey, K. P., Wilson, L. & Han, D. K. Differential protein expression profiles in estrogen receptor-positive and -negative breast cancer tissues using label-free quantitative proteomics. Genes Cancer (2010) 1, 251-271.186 Yamaga, R., Ikeda, K., Boele, J., Horie-Inoue, K., Takayama, K., Urano, T., Kaida, K., Carninci, P., Kawai, J., Hayashizaki, Y., Ouchi, Y., de Hoon, M. & Inoue, S. Systemic identification of estrogen-regulated genes in breast cancer cells through cap analysis of gene expression mapping. Biochem Biophys Res Commun (2014) 447, 531-536.187 Cheng, L., Zhao, Y., Tang, M., Luo, Z. & Wang, X. Knockdown of ISOC1 suppresses cell proliferation in pancreatic cancer in vitro. Oncol Lett (2019) 17, 4263-4270.188 Gao, B., Zhao, L., Wang, F., Bai, H., Li, J., Li, M., Hu, X., Cao, J. & Wang, G. Knockdown of ISOC1 inhibits the proliferation and migration and induces the apoptosis of colon cancer cells through the AKT/GSK-3beta pathway. Carcinogenesis (2020) 41, 1123-1133.189 Zhao, J. Q., Li, X. N., Fu, L. P., Zhang, N. & Cai, J. H. ISOC1 promotes the proliferation of gastric cancer cells by positively regulating CDK19. Eur Rev Med Pharmacol Sci (2020) 24, 11602-11609.190 Shi, J., Yang, F., Zhou, N., Jiang, Y., Zhao, Y., Zhu, J., Prelaj, A., Malhotra, J., Normanno, N., Danese, E., Cardona, A. F., Hong, X., Jiang, G. & Song, X. Isochorismatase domain-containing protein 1 (ISOC1) participates in DNA damage repair and inflammation-related pathways to promote lung cancer development. Transl Lung Cancer Res (2021) 10, 1444-1456.191 Xiang, J., Gao, X. Q., Chen, X. L. & Lu, Y. Y. ISOC1 is a novel potential tumor suppressor in hepatocellular carcinoma. Neoplasma (2022) 69, 174-182.192 Huang, X., Shi, Z., Wang, W., Bai, J., Chen, Z., Xu, J., Zhang, D. & Fu, S. Identification and characterization of a novel protein ISOC2 that interacts with p16INK4a. Biochem Biophys Res Commun (2007) 361, 287-293.193 Blum, M., Chang, H. Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., Paysan-Lafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G. A., Williams, L., Bork, P., Bridge, A., Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Necci, M., Orengo, C. A., Pandurangan, A. P., Rivoire, C., Sigrist, C. J. A., Sillitoe, I., Thanki, N., Thomas, P. D., Tosatto, S. C. E., Wu, C. H., Bateman, A. & Finn, R. D. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res (2021) 49, D344-d354.194 Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D. & Bateman, A. Pfam: The protein families database in 2021. Nucleic Acids Res (2021) 49, D412-d419.195 Groftehauge, M. K., Truan, D., Vasil, A., Denny, P. W., Vasil, M. L. & Pohl, E. Crystal Structure of a Hidden Protein, YcaC, a Putative Cysteine Hydrolase from Pseudomonas aeruginosa, with and without an Acrylamide Adduct. Int J Mol Sci (2015) 16, 15971-15984.196 Colovos, C., Cascio, D. & Yeates, T. O. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure (1998) 6, 1329-1337.197 Young, I. & Gibson, F. Regulation of the enzymes involved in the biosynthesis of 2, 3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochimica et Biophysica Acta (BBA)-General Subjects (1969) 177, 401-411.198 Young, I., Batterham, T. & Gibson, F. The isolation, identification and properties of isochorismic acid. An intermediate in the biosynthesis of 2, 3-dihydroxybenzoic acid. Biochimica et Biophysica Acta (BBA)-General Subjects (1969) 177, 389-400.199 Welch, G. R., Cole, K. W. & Gaertner, F. H. Chorismate synthase of Neurospora crassa: a flavoprotein. Archives of Biochemistry and Biophysics (1974) 165, 505-518.200 Walsh, C. T., Liu, J., Rusnak, F. & Sakaitani, M. J. C. R. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. (1990) 90, 1105-1129.201 Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. & Thomashow, L. S. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol (2001) 183, 6454-6465.202 Parsons, J. F., Calabrese, K., Eisenstein, E. & Ladner, J. E. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry (2003) 42, 5684-5693.203 McDonald, M., Mavrodi, D. V., Thomashow, L. S. & Floss, H. G. Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc (2001) 123, 9459-9460.204 Romao, M. J., Turk, D., Gomis-Ruth, F. X., Huber, R., Schumacher, G., Mollering, H. & Russmann, L. Crystal structure analysis, refinement and enzymatic reaction mechanism of N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. at 2.0 A resolution. J Mol Biol (1992) 226, 1111-1130.205 Du, X., Wang, W., Kim, R., Yakota, H., Nguyen, H. & Kim, S. H. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry (2001) 40, 14166-14172.206 Butterton, J. R. & Calderwood, S. B. Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol (1994) 176, 5631-5638.207 Raymond, K. N., Dertz, E. A. & Kim, S. S. J. P. o. t. N. A. o. S. Enterobactin: an archetype for microbial iron transport. (2003) 100, 3584-3588.208 Carrano, C. J. & Raymond, K. N. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J Am Chem Soc (1979) 101, 5401-5404.209 Drake, E. J., Nicolai, D. A. & Gulick, A. M. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol (2006) 13, 409-419.210 Liu, S., Zhang, C., Li, N., Niu, B., Liu, M., Liu, X., Wei, T., Zhu, D., Huang, Y., Xu, S. & Gu, L. Structural insight into the ISC domain of VibB from Vibrio cholerae at atomic resolution: a snapshot just before the enzymatic reaction. Acta Crystallogr D Biol Crystallogr (2012) 68, 1329-1338.211 Rusnak, F., Faraci, W. S. & Walsh, C. T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry (1989) 28, 6827-6835.212 Zajc, A., Romao, M. J., Turk, B. & Huber, R. Crystallographic and fluorescence studies of ligand binding to N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. J Mol Biol (1996) 263, 269-283.213 Alfonzo, J. D., Thiemann, O. H. & Simpson, L. Purification and characterization of MAR1. A mitochondrial associated ribonuclease from Leishmania tarentolae. J Biol Chem (1998) 273, 30003-30011.214 Caruthers, J., Zucker, F., Worthey, E., Myler, P. J., Buckner, F., Van Voorhuis, W., Mehlin, C., Boni, E., Feist, T., Luft, J., Gulde, S., Lauricella, A., Kaluzhniy, O., Anderson, L., Le Trong, I., Holmes, M. A., Earnest, T., Soltis, M., Hodgson, K. O., Hol, W. G. & Merritt, E. A. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Sci (2005) 14, 2887-2894.215 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr (2010) 66, 213-221.216 Engh, R. & Huber, R. Structure quality and target parameters. (2012).217 Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr Sect A: Found Crystallogr (1991) 47, 392-400.218 Lovell, S. C., Davis, I. W., Arendall III, W. B., De Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. & Richardson, D. C. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics (2003) 50, 437-450.219 Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr (2010) 66, 12-21.220 Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J. & Chen, V. B. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci (2018) 27, 293-315.221 Liebschner, D., Afonine, P. V., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C. & Adams, P. D. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr D Struct Biol (2017) 73, 148-157.222 Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng (1995) 8, 127-134.223 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods (2020) 17, 1214-1221.224 Walker, S. E. & Fredrick, K. Preparation and evaluation of acylated tRNAs. Methods (2008) 44, 81-86.225 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods (2017) 14, 290-296.226 Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y. & Agard, D. A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods (2017) 14, 331-332.227 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol (2015) 192, 216-221.228 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature (2021) 596, 583-589.229 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem (2004) 25, 1605-1612.230 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr (2004) 60, 2126-2132.231 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H. & Ferrin, T. E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci (2021) 30, 70-82.232 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol (1997) 276, 307-326.233 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol (2005) 152, 36-51.
Edit Comment