中文版 | English
Title

Quantum Multi-Round Resonant Transition Algorithm

Author
Corresponding AuthorWang, Hefeng; Xin, Tao; Long, Guilu
Publication Years
2023
DOI
Source Title
EISSN
1099-4300
Volume25Issue:1
Abstract
Solving the eigenproblems of Hermitian matrices is a significant problem in many fields. The quantum resonant transition (QRT) algorithm has been proposed and demonstrated to solve this problem using quantum devices. To better realize the capabilities of the QRT with recent quantum devices, we improve this algorithm and develop a new procedure to reduce the time complexity. Compared with the original algorithm, it saves one qubit and reduces the complexity with error epsilon from O(1/epsilon(2)) to O(1/epsilon). Thanks to these optimizations, we can obtain the energy spectrum and ground state of the effective Hamiltonian of the water molecule more accurately and in only 20 percent of the time in a four-qubit processor compared to previous work. More generally, for non-Hermitian matrices, a singular-value decomposition has essential applications in more areas, such as recommendation systems and principal component analysis. The QRT has also been used to prepare singular vectors corresponding to the largest singular values, demonstrating its potential for applications in quantum machine learning.
Keywords
URL[Source Record]
Indexed By
Language
English
SUSTech Authorship
Corresponding
Funding Project
National Natural Science Foundation of China[2017YFA0303700] ; Key Research and Development Program of Guangdong province[11774197] ; [2018B030325002] ; [12005015] ; [11974205]
WOS Research Area
Physics
WOS Subject
Physics, Multidisciplinary
WOS Accession No
WOS:000919672700001
Publisher
Data Source
Web of Science
Citation statistics
Cited Times [WOS]:0
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/431012
DepartmentInstitute for Quantum Science and Engineering
Affiliation
1.Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
2.Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
3.Xi An Jiao Tong Univ, Sch Sci, Dept Appl Phys, Xian 710049, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
5.Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
6.Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
Corresponding Author AffilicationInstitute for Quantum Science and Engineering
Recommended Citation
GB/T 7714
Yang, Fan,Chen, Xinyu,Zhao, Dafa,et al. Quantum Multi-Round Resonant Transition Algorithm[J]. ENTROPY,2023,25(1).
APA
Yang, Fan.,Chen, Xinyu.,Zhao, Dafa.,Wei, Shijie.,Wen, Jingwei.,...&Long, Guilu.(2023).Quantum Multi-Round Resonant Transition Algorithm.ENTROPY,25(1).
MLA
Yang, Fan,et al."Quantum Multi-Round Resonant Transition Algorithm".ENTROPY 25.1(2023).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Yang, Fan]'s Articles
[Chen, Xinyu]'s Articles
[Zhao, Dafa]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Yang, Fan]'s Articles
[Chen, Xinyu]'s Articles
[Zhao, Dafa]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yang, Fan]'s Articles
[Chen, Xinyu]'s Articles
[Zhao, Dafa]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.