[1] Alvi, S., Jarzabek, D., gilzad kohan, M., Hedman, D., Jenczyk, P., Natile, M., Vomiero, A., Akhtar, F., 2020. Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Appl. Mater. Int. 12, 21070-21079.
[2] An, X.H., Wu, S.D., Wang, Z.G., Zhang, Z.F., 2019. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1-45.
[3] An, Z., Mao, S., Liu, Y., Zhou, H., Zhai, Y., Tian, Z., Liu, C., Zhang, Z., Han, X., 2021. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy. J. Mater. Sci. Technol. 92, 195-207.
[4] Archard, J.F., 1953. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 24, 981-988.
[5] Argibay, N., Furnish, T.A., Boyce, B.L., Clark, B.G., Chandross, M., 2016. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior. Scripta Mater. 123, 26-29.
[6] Argon, A., 2008. Strengthening Mechanisms in Crystal Plasticity.
[7] Balluffi, R., Ruoff, A., 1963. On Strain‐Enhanced Diffusion in Metals. I. Point Defect Models. J. Appl. Phys. 34, 1634-1647.
[8] Blau, P., Julian, P., 2010. Elevated-temperature tribology of metallic materials. Tribol. Int. 43, 1203-1208.
[9] Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., Russo, A., 2012. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech.Behav. Biomed. Mater. 10, 197-205.
[10] Cantor, B., Chang, I., Knight, P., Vincent, A.J.B., 2004. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213-218.
[11] Cao, P., 2020. The Strongest Size in Gradient Nanograined Metals. Nano Lett. 2, 1440-1446.
[12] Carney, C., Dogan, O., Jablonksi, P., Hawk, J., Alman, D., 2015. Design of Refractory High-Entropy Alloys. JOM 67.
[13] Cavaliere, P., 2015. Mechanical Properties of Nanocrystalline Materials, pp. 3-16.
[14] Chen, G., Qiao, J.W., Jiao, Z.M., Zhao, D., Zhang, T.W., Ma, S.G., Wang, Z.H., 2019a. Strength-ductility synergy of Al0.1CoCrFeNi high-entropy alloys with gradient hierarchical structures. Scripta Mater. 167, 95-100.
[15] Chen, H., Cui, H.-Z., Jiang, D., Song, X., Zhang, L., Ma, G., Gao, X., Niu, H., Zhao, X., Li, J., Zhang, C., Wang, R., Sun, X., 2021. Formation and Beneficial Effects of the Amorphous/Nanocrystalline Phase in Laser Remelted (FeCoCrNi)75Nb10B8Si7 High-Entropy Alloy Coatings Fabricated by Plasma Cladding. J. Alloys Compd. 899, 163277.
[16] Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Christ, H.J., Heilmaier, M., 2015. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J. Alloys Compd. 661.
[17] Chen, M.-R., Lin, S.-J., Yeh, J.-W., Chuang, M.-H., Lee, P.-H., Huang, Y.-S., 2006. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363-1369.
[18] Chen, S., Tseng, K.-K., Tong, Y., Li, W., Tsai, C.-W., Yeh, J.-W., Liaw, P.K., 2019b. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 795, 19-26.
[19] Chen, X., Han, Z., Li, X., Lu, K., 2016. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci. Adv. 2, e1601942.
[20] Chen, X., Han, Z., Lu, K., 2014. Wear mechanism transition dominated by subsurface recrystallization structure in Cu–Al alloys. Wear 320, 41–50.
[21] Chen, X., Han, Z., Lu, K., 2018. Friction and Wear Reduction in Copper with a Gradient Nano-grained Surface Layer. ACS Appl. Mater. Inter. 10, 13829-13838.
[22] Cheng, Z., Wang, S., Wu, G., Gao, J., Yang, X., Wu, H., 2022. Tribological properties of high-entropy alloys: A review. Int. J. Miner. Metall. Mater. 29, 389-403.
[23] Cheng, Z., Yang, L., Huang, Z., Wan, T., Zhu, M., Ren, F., 2021. Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution. Wear 474-475, 203755.
[24] Cheng, Z., Zhou, H., Lu, Q., Gao, H., Lu, L., 2018a. Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925.
[25] Cheng, Z., Zhou, H., Lu, Q., Gao, H., Lu, L., 2018b. Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, eaau1925.
[26] Coury, F.G., Kaufman, M., Clarke, A., 2019. Solid-solution strengthening in refractory high entropy alloys. Acta Mater. 175.
[27] Curry, J., Babuska, T., Furnish, T., lu, P., Adams, D., Kustas, A., Nation, B., Dugger, M., Chandross, M., Clark, B., Boyce, B., Schuh, C., Argibay, N., 2018. Achieving Ultralow Wear with Stable Nanocrystalline Metals. Adv. Mater. 30, 1802026.
[28] Das, G., 1972. A new structure of sputtered tantalum. Thin Solid Films 12, 305-311.
[29] Deng, G., Tieu, K., Lan, X., Su, L., Wang, L., Zhu, Q., Zhu, H., 2019. Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy. Tribol. Int. 144, 106116.
[30] Diao, H.Y., Feng, R., Dahmen, K.A., Liaw, P.K., 2017. Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252-266.
[31] Dirras, G., Lilensten, L., Djemia, P., Laurent-Brocq, M., Tingaud, D., Couzinie, J.-P., Perrière, L., Chauveau, T., Guillot, I., 2016. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng. A 654, 30-38.
[32] Divinski, S., Pokoev, A., Neelamegan, E., Paul, A., 2018. A Mystery of "Sluggish Diffusion" in High-Entropy Alloys: The Truth or a Myth? Diffusion Foundations 17, 69-104.
[33] Dobbelstein, H., Thiele, M., Gurevich, E., George, E., Ostendorf, A., 2016. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW. Physics Procedia 83, 624-633.
[34] Du, L.M., Lan, L.W., Zhu, S., Yang, H.J., Shi, X.H., Liaw, P.K., Qiao, J.W., 2018. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 35.
[35] Erdemir, A., 2005. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Tech. 200, 1792-1796.
[36] Erdemir, A., 2012. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8, 97-102.
[37] Fang, Q., Liu, F., Feng, H., Liaw, P., Jia, L., 2020a. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites. J. Mater. Sci. Technol. 54.
[38] Fang, Q., Liu, F., Feng, H., Liaw, P., Jia, L., 2020b. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites. J. Mater. Sci. Technol. 54, 14-19.
[39] Fang, S., Wang, C., Li, C.-L., Luan, J.-H., Jiao, Z.-B., Liu, C.-T., Hsueh, C.-H., 2020c. Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films. J. Alloys Compd. 820, 153388.
[40] Fang, T., Li, W., Tao, N., Lu, K., 2011. Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper. Science 331, 1587-1590.
[41] Fang, T.H., Tao, N., Lu, K., 2014. Tension-induced softening and hardening in gradient nanograined surface layer in copper. Scripta Mater. 77, 17–20.
[42] Farhat, Z., Ding, Y., Northwood, D., Alpas, A.T., 1996. Effect of grain size on friction and wear of nanocrystalline aluminum. Mater. Sci. Eng. A 206, 302-313.
[43] Farkas, D., van swygenhoven, H., Derlet, P., 2002. Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101.
[44] Feng, X., Zhang, J., Wang, Y., Hou, Z.Q., Wu, K., Liu, G., Sun, J., 2017a. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int. J. Plast. 95.
[45] Feng, X.B., Fu, W., Zhang, J.Y., Zhao, J.T., Li, J., Wu, K., Liu, G., Sun, J., 2017b. Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films. Scripta Mater. 139, 71-76.
[46] Fu, H., Zhou, X., Wu, B., Qian, L., Yang, X.-S., 2021. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique. J. Mater. Sci. Technol. 82, 227-238.
[47] Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., Lavernia, E., 2016. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59-71.
[48] Gaertner, D., Kottke, J., Chumlyakov, Y., Hergemöller, F., Wilde, G., Divinski, S., 2020. Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: Kinetic hints towards a low-temperature phase instability of the solid-solution? Scripta Mater. 187, 57-62.
[49] Glienke, M., Vaidya, M., Gururaj, K., Daum, L., Tas, B., Rogal, Ł., K G, P., Wilde, G., Divinski, S., 2020. Grain boundary diffusion in CoCrFeMnNi high entropy alloy: Kinetic hints towards a phase decomposition. Acta Mater. 195.
[50] Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O., 2014. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153.
[51] Gubicza, J., Heczel, A., Kawasaki, M., Han, J.-K., Zhao, Y., Xue, Y., Huang, S., Lábár, J., 2019a. Evolution of microstructure and hardness in Hf25Nb25Ti25Zr25 high-entropy alloy during high-pressure torsion. J. Alloys Compd. 788.
[52] Gubicza, J., Hung, P.T., Kawasaki, M., Han, J.-K., Zhao, Y., Xue, Y., Lábár, J.L., 2019b. Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn. Mater. Charact. 154, 304-314.
[53] Guo, N.N., Wang, L., Luo, L., Chen, R., su, Y., Guo, J.J., Fu, H.Z., 2015. Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy. Mater. Sci. Eng. A 651.
[54] Guo, W., Liu, B., Liu, Y., Li, T., Fu, A., Fang, Q., Nie, Y., 2019. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd. 776, 428-436.
[55] H. Okamoto, P.R.S., L. Kacprzak, 1990. Binary Alloy Phase Diagrams.
[56] Hall, E.O., 1951. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B 64, 747-753.
[57] He, J.Y., Liu, W.H., Wang, H., wu, Y., Liu, X.J., Nieh, T.G., Lu, Z.P., 2014. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105–113.
[58] Hebert, R., Perepezko, J., Rösner, H., Wilde, G., 2016. Deformation-driven catalysis of nanocrystallization in amorphous Al alloys. Beilstein J. Nanotechnol. 7, 1428-1433.
[59] Hoogeveen, R., Moske, M., Geisler, H., Samwer, K., 1996. Texture and phase transformation of sputter-deposited metastable Ta films and TaCu multilayers. Thin Solid Films 275, 203-206.
[60] Hou, Z., Zhang, P., Wu, K., Wang, Y., Liu, G., Zhang, G., Sun, J., 2019. Size dependent phase transformation and mechanical behaviors in nanocrystalline Ta thin films. Int. J. Refract. Met. 82, 7-14.
[61] Hsu, C.-Y., Sheu, T.-S., Yeh, J.-W., Lee, P.-H., 2010. Effect of iron content on wear behavior of AlCoCrFe x Mo 0.5Ni high-entropy alloys. Wear 268, 653-659.
[62] Huang, C., Zhang, Y., Shen, J., Vilar, R., 2011. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6A1-4V alloy. Surf. Coat. Tech. 206, 1389–1395.
[63] Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., Lu, Z., 2017. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Adv. Mater. 29, 1701678.
[64] Huang, H.W., Wang, Z.B., Lu, J., Lu, K., 2015. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 87.
[65] Huang, X., Hansen, N., Tsuji, N., 2006. Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science 312, 249-251.
[66] Jang, D., Greer, J., 2010. Transition From a Strong-Yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses. Nat. Mater. 9, 215-219.
[67] Jang, D., Greer, J.R., 2011. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scripta Mater. 64, 77-80.
[68] Jeong, D., Gonzalez, F., Palumbo, G., Aust, K., Erb, U., 2001. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Mater. 44, 493-499.
[69] Jiang, L., Bai, Z., Powers, M., Fan, Y., Zhang, W., George, E., Misra, A., 2022. Deformation mechanisms in crystalline-amorphous high-entropy composite multilayers. Mater. Sci. Eng. A, 143144.
[70] Jiang, S., Mao, Z., Zhang, Y., Li, H., 2017. Mechanisms of nanocrystallization and amorphization of NiTiNb shape memory alloy subjected to severe plastic deformation. Procedia Engineering 207, 1493-1498.
[71] Jiang, W., Atzmon, M., 2003. The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission electron microscopy study. Acta Mater. 51, 4095-4105.
[72] Joseph, J., Haghdadi, N., Shamlaye, K., Hodgson, P., Barnett, M., Fabijanic, D., 2019. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear.
[73] Juan, C.-C., Tseng, K.-K., Hsu, W.-L., Tsai, M., Tsai, C.-W., Lin, C.-M., Lee, P.-H., Lin, S.-J., Yeh, J.-W., 2016. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 175.
[74] Kang, B., Lee, J., Ryu, H.J., Hong, S., 2017. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A 712.
[75] Katnagallu, S., Wu, G., Singh, S.P., Nandam, S., Xia, W., Stephenson, L., Gleiter, H., Schwaiger, R., Hahn, H., Herbig, M., Raabe, D., Gault, B., Balachandran, S., 2020. Nanoglass–nanocrystal composite – a novel material class for enhanced strength –plasticity synergy. Small 2020, 2004400.
[76] Kim, J., Choi, Y., Suresh, S., Argon, A., 2002. Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science 295, 654-657.
[77] Koch, C.C., Morris, D.G., Lu, K., Inoue, A., 2013. Ductility of Nanostructured Materials. MRS Bulletin 24, 54-58.
[78] Lee, S.-W., Huh, M., Chae, S., Lee, J.-C., 2006. Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater. 54, 1439-1444.
[79] Li, W.L., Tao, N., Lu, K., 2008. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater. 59, 546-549.
[80] Li, X., Jin, Z., Xin, Z., Lu, K., 2020a. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science 370, 831-836.
[81] Li, X., Lu, L., Li, J., Zhang, X., Gao, H., 2020b. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 5, 706-723.
[82] Li, X.Y., Jin, Z.H., Zhou, X., Lu, K., 2020c. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science 370, 831-836.
[83] Li, Z., K G, P., Deng, Y., Raabe, D., Tasan, C., 2016. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227-230.
[84] Liang, D., Zhao, C., Zhu, W., Wei, P., Jiang, F., Ren, F., 2020. Significantly Enhanced Wear Resistance of an Ultrafine-Grained CrFeNi Medium-Entropy Alloy at Elevated Temperatures. Metall. Mater. Trans. A 51, 2834-2850.
[85] Lilensten, L., Couzinie, J.-P., Bourgon, J., Perrière, L., Dirras, G., Prima, F., Guillot, I., 2016. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 1-7.
[86] Lilensten, L., Couzinie, J.-P., Perrière, L., Hocini, A., Keller, C., Dirras, G., Guillot, I., 2017. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142.
[87] Liu, C., Li, Z., Lu, W., Bao, Y., Xia, W., Wu, X., Zhao, H., Gault, B., Liu, C., Herbig, M., Fischer, A., Dehm, G., Wu, G., Raabe, D., 2021. Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat. Commun. 12, 5518.
[88] Liu, C., Liu, Y., Wang, Q., Liu, X., Bao, Y., Wu, G., Lu, J., 2020. Nano-Dual-Phase Metallic Glass Film Enhances Strength and Ductility of a Gradient Nanograined Magnesium Alloy. Adv. Sci. 7, 2001480.
[89] Liu, Q., Wang, G., Sui, X., Liu, Y., Li, X., Yang, J., 2019. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering. J. Mater. Sci. Technol. 35, 2600-2607.
[90] Liu, X., Lei, W., Ma, L., Liu, J., Cui, J., 2016a. Effect of Boron on the Microstructure, Phase Assemblage and Wear Properties of Al0.5CoCrCuFeNi High-Entropy Alloy. Rare Metal Mater. Eng. 45, 2201-2207.
[91] Liu, Y., Ma, S., Zhang, C., Zhang, T., Yang, H., Wang, Z., Qiao, J., 2016b. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions. Metall. Mater. Trans. 47.
[92] Lu, J.Z., Luo, K., Zhang, Y., Sun, G., Gu, Y., Zhou, J., Ren, X.D., Zhang, X.-C., Zhang, L.F., Chen, K.M., Cui, C., Jiang, Y., 2010. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 58, 5354-5362.
[93] Lu, K., 2014. Making strong nanomaterials ductile with gradients. Science 345, 1455-1456.
[94] Lu, K., 2016. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019.
[95] Lu, Q., Shen, Y., Chen, X., Qian, L., Lu, K., 2004. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 304, 422-426.
[96] Lu, Z.P., Wang, H., Chen, M.W., Baker, I., Yeh, J.-W., Liu, C., Nieh, T.G., 2015. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66.
[97] Luo, J., Sun, W., Duan, R., Yang, W., Chan, K.C., Ren, F., Yang, X.-S., 2022. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance. J. Mater. Sci. Technol. 110, 43-56.
[98] Ma, E., Wu, X., 2019. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nat. Commun. 10, 10.
[99] Ma, E., Zhu, T., 2017. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20.
[100] Ma, G.Z., Song, K., Sun, B., Yan, Z.J., Kühn, U., Ding, C., Eckert, J., 2013. Effect of cold-rolling on the crystallization behavior of a CuZr-based bulk metallic glass. J. Mater. Sci. 48, 6825-6832.
[101] Ma, L., Wang, L., Zhang, T., Inoue, A., 2002. Bulk Glass Formation of Ti–Zr–Hf–Cu–M (M=Fe, Co, Ni) Alloys. Mater. Tran. 43, 277.
[102] Maier-Kiener, V., Schuh, B., George, E., Clemens, H., Hohenwarter, A., 2017. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Design 115, 479-485.
[103] Maiti, S., Steurer, W., 2015. Structural-disorder and its effect on the mechanical properties in single-phase TaNbHfZr high-entropy alloys. Acta Mater. 106.
[104] Mao, X., Sun, J., Feng, Y., Zhou, X., Zhao, X., 2019. High-temperature wear properties of gradient microstructure induced by ultrasonic impact treatment. Mater. Lett. 246.
[105] Mathiou, C., Poulia, A., Georgatis, E., Karantzalis, A.E., 2018. Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phy. 210, 126-135.
[106] Ming, K., Gu, C., Su, Q., Xie, D., Wu, Y., Wang, Y., Shao, L., Nastasi, M., Wang, J., 2020. Strength and plasticity of amorphous ceramics with self-patterned nano-heterogeneities. Int. J. Plast. 134, 102837.
[107] Miracle, D., Senkov, O., 2016. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448-511.
[108] Murty, B.S., Yeh, J.-W., Ranganathan, S., 2014. High-Entropy Alloys, pp. 13-35.
[109] Nagarjuna, C., You, H.-J., Ahn, S., Song, J.-W., Jeong, K.-Y., Madavali, B., Song, G., Na, Y.-S., Won, J.W., Kim, H.-S., Hong, S.-J., 2021. Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions. Appl. Surf. Sci. 549, 149202.
[110] Okamoto, H., 2010. Diagrams for Binary Alloys. ASM International, Materials Park, OH.
[111] Okamoto, N., Kashioka, D., Hirato, T., Inui, H., 2013. Specimen- and Grain-Size Dependence of Compression Deformation Behavior in Nanocrystalline Copper. Int. J. Plast. 56, 171-183.
[112] Otto, F., Dlouhy, A., Somsen, C., Bei, H., Eggeler, G., George, E., 2013. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743-5755.
[113] Owen, L., Jones, N., 2018. Lattice distortions in high-entropy alloys. J. Mater. Res. 33, 2954-2969.
[114] Owen, L., Pickering, E., Playford, H., Stone, H., Tucker, M., Jones, N., 2017. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11-18.
[115] P. Villars, A.P., H. Okamoto, 1995. Handbook of Ternary Alloy Phase Diagrams ASM International, Materials Park, OH.
[116] Padmanabhan, K.A., Dinda, G., Hahn, H., Gleiter, H., 2007. Inverse Hall-Petch Effect and Grain Boundary Sliding Controlled Flow in Nanocrystalline Materials. Mater. Sci. Eng. A 452, 462-468.
[117] Pan, Q., Lu, L., 2022. Synthesis and deformation mechanics of gradient nanostructured materials. National Science Open 1, 20220010.
[118] Petch, N., 1953. The Cleavage Strength Of Polycrystals. J. Iron Steel Inst. Lond. 173, 25.
[119] Pickering, E., Jones, N., 2016. High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects. Int. Mater. Rev. 61.
[120] Pole, M., Sadeghilaridjani, M., Shittu, J., Ayyagari, A., Mukherjee, S., 2020. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J. Alloys Compd. 843, 156004.
[121] Popescu, A., Brânzoi, F., Constantin, I., Anastasescu, M., Burada, M., Mitrică, D., Anasiei, I., Olaru, M.-T., Constantin, V., 2021. Electrodeposition, Characterization, and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings 11, 1367.
[122] Poulia, A., Georgatis, E., Lekatou, A., Karantzalis, A., 2016. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Met. 57.
[123] Poulia, A., Georgatis, E., Lekatou, A., Karantzalis, A., 2017. Dry-Sliding Wear Response of MoTaWNbV High Entropy Alloy. Adv. Eng. Mater. 19, 1600535.
[124] Prasad, S.V., Battaile, C.C., Kotula, P.G., 2011. Friction transitions in nanocrystalline nickel. Scripta Mater. 64, 729-732.
[125] Ranganathan, S., 2003. Alloyed pleasures: Multimetallic cocktails. Current Science 85, 1025.
[126] Ren, F., Arshad, S., Bellon, P., Averback, R.S., Pouryazdan, M., Hahn, H., 2014. Sliding wear-induced chemical nanolayering in Cu–Ag, and its implications for high wear resistance. Acta Mater. 72, 148-158.
[127] Ribis, J., de Carlan, Y., 2012. Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238-252.
[128] Rupert, T., Gianola, D., Gan, Y., Hemker, K., 2009. Experimental Observations of Stress-Driven Grain Boundary Migration. Science 326, 1686-1690.
[129] Rupert, T., Schuh, C., 2010. Sliding Wear of Nanocrystalline Ni-W: Structural Evolution and the Apparent Breakdown of Archard Scaling. Acta Mater. 58, 4137-4148.
[130] Rynio, C., Hattendorf, H., Klöwer, J., Eggeler, G., 2014. The evolution of tribolayers during high temperature sliding wear. Wear 315, 1-10.
[131] Sadeghilaridjani, M., Pole, M., Jha, S., Muskeri, S., Ghodki, N., Mukherjee, S., 2021. Deformation and tribological behavior of ductile refractory high-entropy alloys. Wear 478-479, 203916.
[132] Saeidi, K., Gao, X., Zhong, Y., Shen, Z.J., 2015. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A 625, 221-229.
[133] Sakaki, K., Kawase, T., Hirato, M., Mizuno, M., Araki, H., Shirai, Y., Nagumo, M., 2006. The effect of hydrogen on vacancy generation in iron by plastic deformation. Scripta Mater. 55, 1031-1034.
[134] Sathiyamoorthi, P., Bae, J.W., Asghari-Rad, P., Park, J.M., Kim, H., 2018. Ultra-high tensile strength nanocrystalline CoCrNi equi-atomic medium entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A.
[135] Schuh, B., Völker, B., Todt, J., Schell, N., Perrière, L., Li, J., Couzinie, J.-P., Hohenwarter, A., 2017. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201-212.
[136] Schuh, C., Lund, A., 2003. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449-452.
[137] Senkov, O., Isheim, D., Seidman, D., Pilchak, A., 2016. Development of a Refractory High Entropy Superalloy. Entropy 18, 102.
[138] Senkov, O., Jensen, J., Pilchak, A.L., Miracle, D., Fraser, H.L., 2017. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo 0.5 NbTa 0.5 TiZr. Mater. Design 139.
[139] Senkov, O., Miracle, D., Chaput, K., Couzinie, J.-P., 2018a. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33, 1-37.
[140] Senkov, O., Pilchak, A., Semiatin, S., 2018b. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy. Metall. Mater. Trans. A 49.
[141] Senkov, O., Senkova, S., Dimiduk, D., Woodward, C., Miracle, D., 2012. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J. Mater. Sci. 47, 6522-6534.
[142] Senkov, O., Wilks, G., Miracle, D., Chuang, C., Liaw, P., 2010. Refractory high-entropy alloys. Intermetallics 18, 1758-1765.
[143] Senkov, O., Woodward, C., 2011. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 529, 311-320.
[144] Senkov, O.N., Semiatin, S.L., 2015. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110-1123.
[145] Senkov, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., 2011. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698-706.
[146] Senkov, O.N., Woodward, C., Miracle, D.B., 2014. Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys. JOM 66, 2030-2042.
[147] Serdiuk, I., Sobol’, O., Grigoriev, S., Beresnev, V., Pogrebnjak, A., Kolesnikov, D., Nyemchenko, U., 2014. Tribological Characteristics of (TiZrHfVNbTa)N Coatings Applied Using the Vacuum Arc Deposition Method. J. Frict. Wear 35.
[148] Shahmir, H., He, J., Lu, Z., Kawasaki, M., Langdon, T., 2016. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 676.
[149] Shahmir, H., Nili-Ahmadabadi, M., Shafiee, A., Andrzejczuk, M., Lewandowska, M., Langdon, T.G., 2018a. Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 725, 196-206.
[150] Shahmir, H., Nili-Ahmadabadi, M., Shafiee, A., Langdon, T.G., 2018b. Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 718, 468-476.
[151] Sheikh, S., Shafeie, S., Hu, Q., Ahlström, J., Persson, C., Veselý, J., Zýka, J., Klement, U., Guo, S., 2016. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902.
[152] Song, S.H., Chen, X.M., Weng, L.Q., 2011. Solute diffusion during high-temperature plastic deformation in alloys. Mater. Sci. Eng. A 528, 7196-7199.
[153] Spaepen, F., 1977. A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses. Acta Metall. 25, 407-415.
[154] Stepanov, N., Yurchenko, N., Panina, E., Tikhonovsky, M., Zherebtsov, S., 2017. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162-164.
[155] Stott, F.H., 2002. High-temperature sliding wear of metals. Tribol. Int. 35, 489–495.
[156] Tabor, D., 1951. The Hardness of Metals. Journal of the Institue of Metals 79, 67-76.
[157] Takeuchi, A., Chen, N., Wada, T., Yokoyama, Y., Kato, H., Inoue, A., Yeh, J.W., 2011. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546-1554.
[158] Talachi, A., Eizadjou, M., Manesh, H., Janghorban, K., 2011. Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process. Mater. Charact. 62, 12-21.
[159] Tao, N., Wang, Z.B., Tong, W.P., Sui, M., Lu, J., Lu, K., 2002. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603-4616.
[160] Tiwari, G., Mehrotra, R., 2008. Diffusion and Melting. Defect Diffus. Forum 279, 23-37.
[161] Tong, C.-J., Chen, M.-R., Yeh, J.-W., Lin, S.-J., Lee, P.-H., Shun, T.-T., Chang, S.-Y., 2005a. Mechanical performance of the AlXCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263-1271.
[162] Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Lee, P.-H., Shun, T.-T., Tsau, C.-H., Chang, S.-Y., 2005b. Microstructure characterization of AlXCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881-893.
[163] Tong, Z., Liu, H., Jiao, J., Zhou, W., Yang, Y., Ren, X., 2020a. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit. Manuf. 35, 101417.
[164] Tong, Z., Liu, H., Jiao, J., Zhou, W., Yang, Y., Ren, X., 2020b. Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening. J. Mater. Process. Tech. 285, 116806.
[165] Tsai, C., Tsai, M., Yeh, J.-W., 2013. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887–4897.
[166] Tsai, M.-H., Yeh, J.-W., 2014. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2, 107-123.
[167] Tsai, M.T., Huang, J.C., Tsai, W.Y., Chou, T.H., Chen, C.-F., Li, T.H., Jang, J.S.C., 2018. Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys. Intermetallics 93, 113-121.
[168] Tu, C.-H., Wu, S.-K., Lin, C., 2020. A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy. Intermetallics 126, 106935.
[169] Vaidya, M., Sen, S., Zhang, X., Frommeyer, L., Rogal, Ł., Sankaran, S., Grabowski, B., Wilde, G., Divinski, S., 2020. Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys. Acta Mater. 196.
[170] Valiev, R., 2004. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511-516.
[171] Valiev, R., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y., 2015. Fundamentals of Superior Properties in Bulk NanoSPD Materials. Mater. Res. Lett. 4, 1-21.
[172] Verma, A., Abhyankar, A.C., Mohape, M.R., Gowtam, D.S., Deshmukh, V.P., Shanmugasundaram, T., 2019. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scripta Mater. 161, 28-31.
[173] Viat, A., Guillonneau, G., Fouvry, S., Kermouche, G., Sao Joao, S., Wehrs, J., Michler, J., Henne, J.-F., 2017. Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear 392-393.
[174] Wang, L., Zhang, Y., Zeng, Z., Zhou, H., He, J., Liu, P., Chen, M., Han, J., Srolovitz, D.J., Teng, J., Guo, Y., Yang, G., Kong, D., Ma, E., Hu, Y., Yin, B., Huang, X., Zhang, Z., Zhu, T., Han, X., 2022. Tracking the sliding of grain boundaries at the atomic scale. Science 375, 1261-1265.
[175] Wang, M., Tasan, C., Ponge, D., Kostka, A., Raabe, D., 2014. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater. 79, 268–281.
[176] Wang, P., Han, Z., Lu, K., 2018. Enhanced tribological performance of a gradient nanostructured interstitial-free steel. Wear 402.
[177] Wang, Y., Chen, M., Zhou, F., Ma, E., 2002. High tensile ductility in a nanostructured metal. Nature 419, 912-915.
[178] Wang, Y., Li, J., Hamza, A., Barbee, T., 2007. Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155–11160.
[179] Wang, Y., Liao, X., Zhao, Y., Lavernia, E., Ringer, S., Horita, Z., Langdon, T.G., Zhu, Y., 2010. The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Mater. Sci. Eng. A 527, 4959-4966.
[180] Wang, Z., Wang, C., Zhao, Y., Hsu, Y.-C., Li, C.-L., Kai, J.-J., Liu, C.-T., Hsueh, C.-H., 2020. High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. Int. J. Plast. 131, 102726.
[181] Wang, Z.X., Li, F.Y., Pan, M.X., Zhao, D.Q., 2005. Effects of high pressure on the nucleation of Cu60Zr20Hf10Ti10 bulk metallic glass. J. Alloys Compd. 388, 262-265.
[182] Waseem, O., Lee, J., Lee, H., Ryu, H.J., 2017. Supplementary Information: The effect of Ti on the sintering and mechanical properties of high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials.
[183] Wei, B., Wu, W., Xie, D., Nastasi, M., Wang, J., 2021. Strength, plasticity, thermal stability and strain rate sensitivity of nanograined nickel with amorphous ceramic grain boundaries. Acta Mater. 212, 116918.
[184] Wohlbier, T., 2021. Metallic Glasses and Their Composites.
[185] Wu, B., Fu, H., Zhou, X., Qian, L., Luo, J., Zhu, J., Lee, W., Yang, X., 2021a. Severe plastic deformation-produced gradient nanostructured copper with a strengthening-softening transition. Mater. Sci. Eng. A 819, 141495.
[186] Wu, G., Balachandran, S., Gault, B., Xia, W., Liu, C., Rao, Z., Wei, Y., Liu, S., Lu, J., Herbig, M., Lu, W., Dehm, G., Li, Z., Raabe, D., 2020a. Crystal-Glass High-Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability. Adv. Mater. 32, 2002619.
[187] Wu, G., Chan, K.-C., Zhu, L., Sun, L., Lu, J., 2017. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 546, 80-83.
[188] Wu, G., Liu, C., Brognara, A., Ghidelli, M., Bao, Y., Liu, S., Wu, X., Xia, W., Zhao, H., Rao, J., Ponge, D., Devulapalli, V., Lu, W., Dehm, G., Raabe, D., Li, Z., 2021b. Symbiotic crystal-glass alloys via dynamic chemical partitioning. Mater. Today, 6-14.
[189] Wu, G., Liu, C., Sun, L., Wang, Q., Sun, B., Han, B., Kai, J.-J., Luan, J., Chain, T., Liu, Cao, K., Cheng, L., Lu, J., 2019. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat. Commun. 10, 5099.
[190] Wu, G., Sun, L., Zhu, L., Liu, C., Wang, Q., Bao, Y., Lu, J., 2020b. Near-ideal strength and large compressive deformability of a nano-dual-phase glass-crystal alloy in sub-micron. Scripta Mater. 188, 290-295.
[191] Wu, W., Ni, S., Liu, Y., Song, M., 2016a. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. J. Mater. Res. 31, 3815-3823.
[192] Wu, X., Yang, M., Yuan, F., Chen, L., Zhu, Y., 2016b. Combining Gradient Structure and TRIP Effect to Produce Austenite Stainless Steel with High Strength and Ductility. Acta Mater. 112, 337-346.
[193] Wu, X., Yang, M., Yuan, F., Wu, G., Wei, Y., Huang, X., Zhu, Y., 2015. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. U. S. A. 112, 1517193112.
[194] Wu, Y., Cai, Y., Wang, T., Shi, J.J., Zhu, J., Wang, Y., Hui, X.D., 2014. A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties. Mater. Lett. 130, 277.
[195] Xin, Z., Li, X., Lu, K., 2018. Enhanced thermal stability of nanograined metals below a critical grain size. Science 360, 526-530.
[196] Xin, Z., Li, X., Lu, K., 2019. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading. Phys. Rev. Lett. 122, 126101.
[197] Xu, W., Liu, X.C., Li, X.Y., Lu, K., 2019. Deformation induced grain boundary segregation in nanolaminated Al-Cu alloy. Acta Mater. 182.
[198] Yang, C., Aoyagi, K., Bian, H., Chiba, A., 2019. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr. Mater. Lett. 254.
[199] Yang, L., Cheng, Z., Zhu, W., Zhao, C., Ren, F., 2021. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure. J. Mater. Sci. Technol. 73, 1-8.
[200] Yang, L., Zhao, C., Zhu, W., Cheng, Z., Wei, P., Ren, F., 2020. Microstructure, Mechanical Properties, and Sliding Wear Behavior of Oxide-Dispersion-Strengthened FeMnNi Alloy Fabricated by Spark Plasma Sintering. Metall. Mater. Trans. A 51, 2796-2810.
[201] Yao, Y., Li, X., Wang, Y., Zhao, W., Li, G., Liu, R., 2014. Microstructural evolution and mechanical properties of Ti-Zr beta titanium alloy after laser surface remelting. J. Alloys Compd. 583, 43-47.
[202] Yavari, A.R., Botta, W., Rodrigues, C., Cardoso, C., Valiev, R., 2002. Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation. Scripta Mater. 46, 711-716.
[203] Ye, Y., Wang, Q., Lu, J., Liu, C.T., Yang, Y., 2015. High-entropy alloy: challenges and prospects. Mater. Today 19, S1369702115004010.
[204] Ye, Y.X., Liu, C.Z., Wang, H., Nieh, T.G., 2018. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78-89.
[205] Yeh, J.-W., 2006. Recent progress in high-entropy alloys. Eur. J. Control 31, 633-648.
[206] Yeh, J.-W., Chen, S.K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T., Tsau, C.H., Chang, S.Y., 2004. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 6, 299-303.
[207] Yin, C.-h., Liang, Y.-l., Liang, Y., Li, W., Yang, M., 2019. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests. Acta Mater. 166, 208-220.
[208] Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., Liu, R.P., 2016. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 655, 283-291.
[209] Yurchenko, N., Stepanov, N., Zherebtsov, S., Tikhonovsky, M., Salishchev, G., 2017. Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng. A 704.
[210] Zhang, J., Gadelmeier, C., Sen, S., Wang, R., Zhang, X., Zhong, Y., Glatzel, U., Grabowski, B., Wilde, G., Divinski, S., 2022. Zr diffusion in BCC refractory high entropy alloys: A case of ’non-sluggish’ diffusion behavior. Acta Mater. 233, 117970.
[211] Zhang, J.Y., Cui, J.C., Liu, G., Sun, J., 2013. Deformation crossover in nanocrystalline Zr micropillars: The strongest external size. Scripta Mater. 68, 639-642.
[212] Zhang, L., Yu, G., Li, S., He, X., Xie, X., Xia, C., Ning, W., Zheng, C., 2019a. The effect of laser surface melting on grain refinement of phase separated Cu-Cr alloy. Opt. Laser Technol. 119, 105577.
[213] Zhang, T., Fan, Q., Ma, X., Wang, W., Wang, K., Shen, P., Yang, J., Wang, L., 2019b. Effect of Laser Remelting on Microstructural Evolution and Mechanical Properties of Ti-35Nb-2Ta-3Zr Alloy. Mater. Lett. 253.
[214] Zhang, Y., Greer, A., 2006. Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907-071907.
[215] Zhao, H., You, Z., Tao, N., Lu, L., 2021. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility. Acta Mater. 210, 116830.
[216] Zhou, X., Li, X.Y., Lu, K., 2018. Enhanced thermal stability of nanograined metals below a critical grain size. Science 360, 526.
[217] Zhou, Y., Zhang, Y., Wang, Y., Chen, G., 2007. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904-181904.
[218] Zhu, W., Zhao, C., Zhang, Y., Kwok, C.T., Luan, J., Jiao, Z., Ren, F., 2020. Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry. Acta Mater. 188, 697-710.
[219] Zhu, Y., Ameyama, K., Anderson, P., Beyerlein, I., Gao, H., Kim, H., Lavernia, E., Mathaudhu, S., Mughrabi, H., Tsuji, N., Zhang, X., Wu, X., Gilgenbach, C., Ritchie, R., 2021. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 9, 1-31.
[220] Zou, Y., Ma, H., Spolenak, R., 2015. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748.
[221] Zou, Y., Maiti, S., Steurer, W., Spolenak, R., 2014. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85–97.
Edit Comment