中文版 | English

Mechanism Research and Device Optimization for High Efficiency and High stability Green InP QLEDs

Name pinyin
ZHANG Tianqi
School number
Mentor unit
Tutor of External Organizations
Tutor units of foreign institutions
Publication Years
Submission date
Place of Publication

Colloidal semiconductor quantum dots (QDs), as new-generation emissive materials, have shown great potential in many device applications, including light-emitting diodes (LEDs), bioimaging, solar cells, and photocatalysis, owing to their quantum size effects, unique physical and optical properties, such as good monochromaticity, convenient band gap tunability, high stability and photoluminescence (PL) quantum yield (QY). Indium phosphide (InP) QDs material is a promising cadmium-free candidate for constructing high-performance QD light-emitting diodes (QLEDs) as the emissive layer. Continuous efforts have been afforded to this topic in recent years. However, the performance of green InP QLEDs is still below the commercialization standard. High efficiency and high stability are two key factors in realizing the application of high-performance QLED devices. In order to achieve a good external quantum efficiency (EQE) and extend the operating lifetime of green InP QLEDs, this thesis has focused on the above two factors to carry out research on the working and degradation mechanisms of green InP QLEDs and has made the following innovative achievements.

In the case of low efficiency caused by unbalanced carrier injection, an innovative design of enhanced hole injection based on the electric dipole layer to enhance the hole injection is proposed. A strong forward built-in electric field significantly helps the hole hopping at the interface between the hole injection layer (HIL) and the hole transport layer (HTL). For green InP QLEDs with strong electron injection, this method avoids the confinement of electron injection, thus obtaining a higher radiation recombination rate. Based on this research, the EQE of the optimized device has increased from 4.25% to 7.94%. In addition, the maximum luminance of the green InP QLEDs reaches 52,730 cd·m-2, which is highest among counterparts.

In order to further enhance the efficiency, an electron leakage mechanism in green InP QLEDs is revealed and in-depth studied. Furthermore, an effective approach is proposed to avoid electron leakage by LiF that reduces the Fermi energy difference between green InP QDs and ITO anode. The LiF modification not only suppresses the leaked electrons but also further strengthens the hole injection through a tunneling effect. Based on this approach, an optimized device has achieved a more balanced carrier injection in its emitting layer, resulting in a further enhanced EQE as high as 9.14%.

In the case of poor device stability, the degradation mechanism of QLEDs is preliminarily revealed and studied. The dark spots in light distribution imaging and hot spots in thermal imaging of QLEDs are analyzed from the aspects of optics, electricity, and heat. As a result, a coupling degradation mechanism of film formation, current density, and temperature on QLEDs is obtained. In addition, the influence of various factors on the working temperature of QLEDs is systematically researched. Besides improving the operating level in device fabrication, an effective thermal management method is applied to the green InP QLEDs. The optimized device achieved an operating lifetime of T50 @100nit = 8,311 hours, which is also a record of green InP QLEDs.

In this thesis, the working mechanism and degradation mechanism in green InP QLEDs have been deeply studied. Based on these mechanisms, several approaches are proposed to achieve better carrier balance and lower working temperature. The optimized green InP QLEDs exhibit higher efficiency and higher stability, making them more desirable in display applications. The mechanisms and solutions proposed in the thesis will also provide more ideas for the related fields.

Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] Administration, U. S. E. I. Annual Energy Outlook 2022; March, 2022.
[2] Lin, X.; Dai, X. L.; Pu, C. D.; Deng, Y. Z.; Niu, Y.; Tong, L. M.; Fang, W.; Jin, Y. Z.; Peng, X. G., Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 2017, 8.
[3] Yang, Z.; Gao, M.; Wu, W.; Yang, X.; Sun, X. W.; Zhang, J.; Wang, H.-C.; Liu, R.-S.; Han, C.-Y.; Yang, H.; Li, W., Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Materials Today 2019, 24, 69-93.
[4] Chen, D.; Chen, D.; Dai, X.; Zhang, Z.; Lin, J.; Deng, Y.; Hao, Y.; Zhang, C.; Zhu, H.; Gao, F.; Jin, Y., Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance. Adv Mater 2020, 32 (52), e2006178.
[5] Ye, F.; Shan, Q.; Zeng, H.; Choy, W. C. H., Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Lett. 2021, 6 (9), 3114-3131.
[6] Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I., Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem Rev 2016, 116 (18), 10513-10622.
[7] Hu, Y. Z.; Koch, S. W.; Thoai, D. B. T., Quantum Confinement and Coulomb Effects in Semiconductor Quantum Dots. Mod Phys Lett B 1990, 4 (16), 1009-1016.
[8] Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H. M., Quantum Nanostructures (QDs): An Overview. In Synthesis of Inorganic Nanomaterials, 2018; pp 59-88.
[9] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298 (5599), 1759-1762.
[10] Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M., Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annu Rev Anal Chem 2013, 6, 143-162.
[11] Zhou, J.; Yang, Y.; Zhang, C. Y., Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015, 115 (21), 11669-11717.
[12] Meinardi, F.; Bruni, F.; Brovelli, S., Luminescent solar concentrators for building-integrated photovoltaics. Nat Rev Mater 2017, 2 (12).
[13] Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chem Rev 2015, 115 (23), 12732-12763.
[14] Ren, A. B.; Yuan, L. M.; Xu, H.; Wu, J.; Wang, Z. M., Recent progress of III-V quantum dot infrared photodetectors on silicon. J Mater Chem C 2019, 7 (46), 14441-14453.
[15] Chen, B. L.; Wan, Y. T.; Xie, Z. Y.; Huang, J.; Zhang, N. T.; Shang, C.; Norman, J.; Li, Q.; Yeyu, T.; Lau, K. M.; Gossard, A. C.; Bowers, J. E., Low Dark Current High Gain InAs Quantum Dot Avalanche Photodiodes Monolithically Grown on Si. Acs Photonics 2020, 7 (2), 528-533.
[16] Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I., Colloidal quantum dot lasers. Nat Rev Mater 2021, 6 (5), 382-401.
[17] Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulovic, V.; Bawendi, M. G., Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics 2008, 2 (4), 247-250.
[18] Lim, J.; Park, Y. S.; Klimov, V. I., Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat Mater 2018, 17 (1), 42-+.
[19] Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z., Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 2017, 29 (14).
[20] Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y.; Wang, S. J.; Du, Z. L.; Li, L. S.; Zhang, Z. Y., Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 2019, 13 (3), 192-+.
[21] Chow, W. W.; Jahnke, F., On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quant Electron 2013, 37 (3), 109-184.
[22] Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G., Quantum Dots for Display Applications. Angew Chem Int Edit 2020, 59 (50), 22312-22323.
[23] Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1 (4), 207-211.
[24] Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y. Q.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L., Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19 (4), 548-+.
[25] Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G., Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mat. 1996, 8 (1), 173-180.
[26] Reiss, P.; Bleuse, J.; Pron, A., Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2 (7), 781-784.
[27] Talapin, D. V.; Mekis, I.; Gotzinger, S.; Kornowski, A.; Benson, O.; Weller, H., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J Phys Chem B 2004, 108 (49), 18826-18831.
[28] Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J., Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater. 2007, 19 (15), 1927-+.
[29] Wang, X. B.; Li, W. W.; Sun, K., Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties. J Mater Chem 2011, 21 (24), 8558-8565.
[30] Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P., InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 2013, 5 (1), 307-317.
[31] Parliament, T. E., Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 On the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. 2011.
[32] PLC., N. G., European Commission to Prohibit Cadmium from TVs and Displays by October 2019. 2017. https://www.nanocotechnologies.com/media/european-commission-to-prohibit-cadmium/.
[33] Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R., Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem-Us 1996, 100 (17), 7212-7219.
[34] Micic, O. I.; Cheong, H. M.; Fu, H.; Zunger, A.; Sprague, J. R.; Mascarenhas, A.; Nozik, A. J., Size-dependent spectroscopy of InP quantum dots. J Phys Chem B 1997, 101 (25), 4904-4912.
[35] Wang, A.; Shen, H. B.; Zang, S. P.; Lin, Q. L.; Wang, H. Z.; Qian, L.; Niu, J. Z.; Li, L. S., Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 2015, 7 (7), 2951-2959.
[36] Xiang, C. Y.; Koo, W.; Chen, S.; So, F.; Liu, X.; Kong, X. X.; Wang, Y. J., Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Appl. Phys. Lett. 2012, 101 (5).
[37] Huang, X.; Yu, R. M.; Yang, X. Q.; Xu, X. M.; Zhang, H.; Zhang, D. D., Efficient CuInS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. J Lumin 2018, 202, 339-344.
[38] Li, L. A.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. Soc. 2011, 133 (5), 1176-1179.
[39] Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G., White light-emitting devices based on carbon dots' electroluminescence. Chem. Commun. 2011, 47 (12), 3502-3504.
[40] Kim, B. H.; Cho, C. H.; Mun, J. S.; Kwon, M. K.; Park, T. Y.; Kim, J. S.; Byeon, C. C.; Lee, J.; Park, S. J., Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv. Mater. 2008, 20 (16), 3100-3104.
[41] Shen, H. B.; Wang, H. Z.; Li, X. M.; Niu, J. Z.; Wang, H.; Chen, X.; Li, L. S., Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton T 2009, (47), 10534-10540.
[42] Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K. Y., High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103 (5).
[43] Kim, J. H.; Yang, H., High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%. Chem. Mat. 2016, 28 (17), 6329-6335.
[44] Cheng, K. Y.; Anthony, R.; Kortshagen, U. R.; Holmes, R. J., High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Lett. 2011, 11 (5), 1952-1956.
[45] Kim, D. H.; Kim, T. W., Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy 2017, 32, 441-447.
[46] Battaglia, D.; Peng, X. G., Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2 (9), 1027-1030.
[47] Li, L.; Reiss, P., One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130 (35), 11588-+.
[48] Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H., Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloid Surface A 2002, 202 (2-3), 145-154.
[49] Micic, O. I.; Smith, B. B.; Nozik, A. J., Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J Phys Chem B 2000, 104 (51), 12149-12156.
[50] Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W., Development of InP Quantum Dot-Based Light-Emitting Diodes. ACS Energy Lett. 2020, 5 (4), 1095-1106.
[51] Kim, M. R.; Chung, J. H.; Lee, M.; Lee, S.; Fang, D. J., Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. J Colloid Interf Sci 2010, 350 (1), 5-9.
[52] Xu, S.; Ziegler, J.; Nann, T., Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 2008, 18 (23), 2653-2656.
[53] Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S., InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability. Chem. Mat. 2011, 23 (20), 4459-4463.
[54] Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L., High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. J Phys Chem Lett 2020, 11 (3), 960-967.
[55] Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K.; Sun, X. W., InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30 (49).
[56] Wang, H. C.; Zhang, H.; Chen, H. Y.; Yeh, H. C.; Tseng, M. R.; Chung, R. J.; Chen, S.; Liu, R. S., Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m-2. Small 2017, 13 (13).
[57] Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS Core Multi-Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Adv. Funct. Mater. 2021, 31 (11).
[58] Xie, R.; Battaglia, D.; Peng, X., Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129 (50), 15432-+.
[59] Ippen, C.; Greco, T.; Wedel, A., InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device. Journal of Information Display 2012, 13 (2), 91-95.
[60] Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K., Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots. ACS Nano 2013, 7 (10), 9019-9026.
[61] Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S., Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chem. Mat. 2017, 29 (16), 6893-6899.
[62] Kuo, T. R.; Hung, S. T.; Lin, Y. T.; Chou, T. L.; Kuo, M. C.; Kuo, Y. P.; Chen, C. C., Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes. Nanoscale Res Lett 2017, 12.
[63] Zhang, H.; Hu, N.; Zeng, Z. P.; Lin, Q. L.; Zhang, F. J.; Tang, A. W.; Jia, Y.; Li, L. S.; Shen, H. B.; Teng, F.; Du, Z. L., High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. Adv. Opt. Mater. 2019, 7 (7).
[64] Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E., Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays. Acs Appl Nano Mater 2019, 2 (3), 1496-1504.
[65] Hahm, D.; Chang, J. H.; Jeong, B. G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W. D.; Rhee, S.; Lim, J.; Lee, D. C.; Lee, C.; Char, K.; Bae, W. K., Design Principle for Bright, Robust, and Color-Pure InP/ZnSexS1-x/ZnS Heterostructures. Chem. Mat. 2019, 31 (9), 3476-3484.
[66] Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G., Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. J. Am. Chem. Soc. 2019, 141 (16), 6448-6452.
[67] Zhang, W. D.; Zhuang, W. D.; Liu, R. H.; Xing, X. R.; Qu, X. W.; Liu, H. C.; Xu, B.; Wang, K.; Sun, X. W., Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices. Acs Omega 2019, 4 (21), 18961-18968.
[68] Taylor, D. A.; Teku, J. A.; Cho, S.; Chae, W. S.; Jeong, S. J.; Lee, J. S., Importance of Surface Functionalization and Purification for Narrow FWHM and Bright Green-Emitting InP Core-Multishell Quantum Dots via a Two-Step Growth Process. Chem. Mat. 2021, 33 (12), 4399-4407.
[69] Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T., High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2 (1), 10.
[70] Yu, P.; Shan, Y. L.; Cao, S.; Hu, Y. Q.; Li, Q. Y.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L., Inorganic Solid Phosphorus Precursor of Sodium Phosphaethynolate for Synthesis of Highly Luminescent InP-Based Quantum Dots. ACS Energy Lett. 2021, 6 (8), 2697-2703.
[71] Wen, Z. L.; Zhou, Z. M.; Liu, H. C.; Wang, Z. J.; Li, X.; Fang, F.; Wang, K.; Teo, K. L.; Sun, X. W., Color revolution: toward ultra-wide color gamut displays. J Phys D Appl Phys 2021, 54 (21).
[72] Chen, J. H., V.; Hartlove, J.; Hofler, J.; Lee, E., A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film. SID Symposium Digest of Technical Papers 2012, Wiley Online Library, 895-896.
[73] Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370 (6488), 354-357.
[74] Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515 (7525), 96-99.
[75] Hao, J. J.; Liu, H. C.; Miao, J.; Lu, R.; Zhou, Z. M.; Zhao, B. X.; Xie, B.; Cheng, J. J.; Wang, K.; Delville, M. H., A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci Rep 2019, 9.
[76] Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L., Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9.
[77] Jo, J. H.; Kim, J. H.; Lee, S. H.; Jang, H. S.; Jang, D. S.; Lee, J. C.; Park, K. U.; Choi, Y.; Ha, C.; Yang, H., Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating. J. Alloy. Compd. 2015, 647, 6-13.
[78] Liu, H. C.; Zhong, H. Y.; Zheng, F. K.; Xie, Y.; Li, D. P.; Wu, D.; Zhou, Z. M.; Sun, X. W.; Wang, K., Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes. Chin. Phys. B 2019, 28 (12).
[79] Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27 (44), 7162-+.
[80] Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B., CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26 (15), 2435-2445.
[81] Li, Z. C.; Chen, Z. M.; Yang, Y. C.; Xue, Q. F.; Yip, H. L.; Cao, Y., Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 2019, 10.
[82] Qi, H.; Wang, S. J.; Jiang, X. H.; Fang, Y.; Wang, A.; Shen, H. B.; Du, Z. L., Research progress and challenges of blue light-emitting diodes based on II-VI semiconductor quantum dots. J Mater Chem C 2020, 8 (30), 10160-10173.
[83] https://www.ossila.com.
[84] Stouwdam, J. W.; Janssen, R. A. J., Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J Mater Chem 2008, 18 (16), 1889-1894.
[85] Manders, J. R.; Qian, L.; Titov, A.; Hyvonen, J.; Tokarz-Scott, J.; Acharya, K. P.; Yang, Y. X.; Cao, W. R.; Zheng, Y.; Xue, J. G.; Holloway, P. H., High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. J Soc Inf Display 2015, 23 (11), 523-528.
[86] Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; Kazlas, P. T., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photonics 2013, 7 (5), 407-412.
[87] Semet, V.; Adessi, C.; Capron, T.; Mouton, R.; Binh, V. T., Low work-function cathodes from Schottky to field-induced ballistic electron emission: Self-consistent numerical approach. Phys. Rev. B 2007, 75 (4).
[88] Simmons, J. G., Richardson-Schottky Effect in Solids. Phys Rev Lett 1965, 15 (25), 967-&.
[89] Feng, Y.; Verboncoeur, J. P., Transition from Fowler-Nordheim field emission to space charge limited current density. Phys Plasmas 2006, 13 (7).
[90] Parker, I. D., Carrier Tunneling and Device Characteristics in Polymer Light-Emitting-Diodes. J Appl Phys 1994, 75 (3), 1656-1666.
[91] van Woudenbergh, T.; Wildeman, J.; Blom, P. W. M., Charge injection across a polymeric heterojunction. Phys. Rev. B 2005, 71 (20).
[92] Herz, L. M., Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. Annu Rev Phys Chem 2016, 67, 65-89.
[93] deQuilettes, D. W.; Frohna, K.; Emin, D.; Kirchartz, T.; Bulovic, V.; Ginger, D. S.; Stranks, S. D., Charge-Carrier Recombination in Halide Perovskites. Chem Rev 2019, 119 (20), 11007-11019.
[94] Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L., Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices. Adv. Mater. 2018, 30 (50).
[95] Ba, G. H.; Xu, Q. L.; Li, X. Y.; Lin, Q. L.; Shen, H. B.; Du, Z. L., Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering. Opt Express 2021, 29 (8), 12169-12178.
[96] Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E., Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586 (7829), 385-+.
[97] Lee, K. H.; Han, C. Y.; Kang, H. D.; Ko, H.; Lee, C.; Lee, J.; Myoung, N.; Yim, S. Y.; Yang, H., Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer. ACS Nano 2015, 9 (11), 10941-10949.
[98] Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H., Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices. ACS Nano 2013, 7 (8), 7295-7302.
[99] Rhee, S.; Chang, J. H.; Hahm, D.; Jeong, B. G.; Kim, J.; Lee, H.; Lim, J.; Hwang, E.; Kwak, J.; Bae, W. K., Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano 2020, 14 (12), 17496-17504.
[100] Song, J. J.; Wang, O.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S., Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29 (33).
[101] Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat Photonics 2015, 9 (4), 259-266.
[102] Zhao, B.; Chen, L. X.; Liu, W. Y.; Wu, L. J.; Lu, Z. Z.; Cao, W. R., High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification. Rsc Adv 2021, 11 (23), 14047-14052.
[103] Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K.; Lee, S.; Lee, C., Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12 (5), 2362-2366.
[104] Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J., Bright and Stable Quantum Dot Light-Emitting Diodes. Adv. Mater. 2022, 34 (4).
[105] Liu, H. H.; Zou, J. H.; Zhu, X. W.; Li, X. H.; Ni, H. Z.; Liu, Y. Y.; Tao, H.; Xu, M.; Wang, L.; Peng, J. B., Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots. Org Electron 2021, 99.
[106] Su, Q.; Sun, Y. Z.; Zhang, H.; Chen, S. M., Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes. Adv Sci 2018, 5 (10).
[107] Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J.; Liu, X. Y., Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. Acs Appl Mater Inter 2017, 9 (44), 38755-38760.
[108] Yang, Z. W.; Wu, Q. Q.; Lin, G. L.; Zhou, X. C.; Wu, W. J.; Yang, X. Y.; Zhang, J. H.; Li, W. W., All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater Horizons 2019, 6 (10), 2009-2015.
[109] Li, D. Y.; Bai, J. K.; Zhang, T. T.; Chang, C.; Jin, X.; Huang, Z.; Xu, B.; Li, Q. H., Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance. Chem. Commun. 2019, 55 (24), 3501-3504.
[110] Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. N.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S., Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. Acs Photonics 2018, 5 (3), 939-946.
[111] Moon, H.; Chae, H., Efficiency Enhancement of All-Solution-Processed Inverted-Structure Green Quantum Dot Light-Emitting Diodes Via Partial Ligand Exchange with Thiophenol Derivatives Having Negative Dipole Moment. Adv. Opt. Mater. 2020, 8 (1).
[112] Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M., Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13 (10), 11433-11442.
[113] Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575 (7784), 634-+.
[114] Yeom, J. E.; Shin, D. H.; Lampande, R.; Jung, Y. H.; Mude, N. N.; Park, J. H.; Kwon, J. H., Good Charge Balanced Inverted Red InP/ZnSe/ZnS-Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer. ACS Energy Lett. 2020, 5 (12), 3868-3875.
[115] Han, M. G.; Lee, Y.; Kwon, H. I.; Lee, H.; Kim, T.; Won, Y. H.; Jang, E., InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer. ACS Energy Lett. 2021, 6 (4), 1577-1585.
[116] Mei, G. D.; Tan, Y. Z.; Sun, J. Y.; Wu, D.; Zhang, T. Q.; Liu, H. C.; Liu, P.; Sun, X. W.; Choy, W. C. H.; Wang, K., Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl. Phys. Lett. 2022, 120 (9).
[117] Kim, Y.; Ippen, C.; Greco, T.; Lee, J.; Oh, M. S.; Han, C. J.; Wedel, A.; Kim, J., Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes. Opt Mater Express 2014, 4 (7), 1436-1443.
[118] Jang, I.; Kim, J.; Park, C. J.; Ippen, C.; Greco, T.; Oh, M. S.; Lee, J.; Kim, W. K.; Wedel, A.; Han, C. J.; Park, S. K., Study of Ethanolamine Surface Treatment on the Metal-Oxide Electron Transport Layer in Inverted InP Quantum Dot Light-Emitting Diodes. Electron Mater Lett 2015, 11 (6), 1066-1071.
[119] Moon, H.; Lee, W.; Kim, J.; Lee, D.; Cha, S.; Shin, S.; Chae, H., Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 2019, 55 (88), 13299-13302.
[120] Kim, B. H.; Acharya, K. P.; Desireddy, A.; Titov, A.; Tang, E.; Zhang, X.; Ying, C.; Hyvonen, J.; Holloway, P., Charge Injection Control of Cadmium‐Free Quantum Dot Light‐Emitting Diodes. SID Symposium Digest of Technical Papers 2020, 51 (1), 746-749.
[121] Lee, T.; Hahm, D.; Kim, K.; Bae, W. K.; Lee, C.; Kwak, J., Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer. Small 2019, 15 (50).
[122] Shen, H. B.; Cao, W. R.; Shewmon, N. T.; Yang, C. C.; Li, L. S.; Xue, J. G., High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes. Nano Lett. 2015, 15 (2), 1211-1216.
[123] Su, Q.; Zhang, H.; Chen, S. M., Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Appl. Phys. Lett. 2020, 117 (5).
[124] Narendran, N.; Gu, Y. M., Life of LED-Based White Light Sources. J Disp Technol 2005, 1 (1), 167-171.
[125] Narendran, N.; Gu, Y.; Freyssinier, J. P.; Yu, H.; Deng, L., Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 2004, 268 (3-4), 449-456.
[126] Xie, B.; Liu, H. C.; Hu, R.; Wang, C. F.; Hao, J. J.; Wang, K.; Luo, X. B., Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Adv. Funct. Mater. 2018, 28 (30).
[127] Neamen, D. A., Semiconductor physics and devices: basic principles. McGraw-hill: 2003.
[128] Kasap, S. O., Optoelectronics & Photonics: Principles & Practices. 2nd Edition ed.; Pearson: 2013.
[129] https://www.hamamatsu.com/eu/en/product/photometry-systems/luminescenceefficiency-measurement-system/quantaurus-qy/C11347-11.html.
[130] Vernon-Parry, K. III-Vs Review; 2000; pp 40-44.
[131] Egerton, R. F., Physical principles of electron microscopy. Springer: 2005; Vol. 56.
[132] Williams, D. B. C., C. B., The transmission electron microscope. In Transmission electron microscopy. Springer 1996, 3-17.
[133] Giessibl, F. J., Reviews of modern physics. 2003; Vol. 75 (3).
[134] Schweizer, P. M. K., S., Liquid Film Coating: Scientific principles and their technological implications. Springer Science & Business Media: 2012.
[135] Luttge, R., Microfabrication for industrial applications. William Andrew: 2011.
[136] Grèzes-Besset, C. C., G.; Pinard, L., Optical coatings for large facilities. In Optical Thin Films and Coatings. Elsevier: 2018.
[137] Balasubramanian, G. R., R. P., Review of Scientific Instruments. 1981; Vol. 52 (5).
[138] Shrotriya, V. Y., Y. , Journal of Applied Physics. 2005; Vol. 97 (5).
[139] Shrotriya, V.; Yang, Y., Capacitance-voltage characterization of polymer light-emitting diodes. J Appl Phys 2005, 97 (5).
[140] Garcia-Belmonte, G.; Bolink, H. J.; Bisquert, J., Capacitance-voltage characteristics of organic light-emitting diodes varying the cathode metal: Implications for interfacial states. Phys. Rev. B 2007, 75 (8).
[141] Zhang, L.; Nakanotani, H.; Adachi, C., Capacitance-voltage characteristics of a 4,4 '-bis[(N-carbazole)styryl]biphenyl based organic light-emitting diode: Implications for characteristic times and their distribution. Appl. Phys. Lett. 2013, 103 (9).
[142] Campbell, I. H.; Smith, D. L.; Ferraris, J. P., Electrical-Impedance Measurements of Polymer Light-Emitting-Diodes. Appl. Phys. Lett. 1995, 66 (22), 3030-3032.
[143] Zhang, H.; Hu, N.; Zeng, Z. P.; Lin, Q. L.; Zhang, F. J.; Tang, A. W.; Jia, Y.; Li, L. S.; Shen, H. B.; Teng, F.; Du, Z. L., High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. Adv. Opt. Mater. 2019, 7 (7).
[144] Lee, M. H.; Choi, W. H.; Zhu, F. R., Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes. Opt Express 2016, 24 (6), A592-A603.
[145] Kwon, Y.; Kim, Y.; Lee, H.; Lee, C.; Kwak, J., Composite film of poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes. Org Electron 2014, 15 (6), 1083-1087.
[146] Lee, M. H.; Chen, L. X.; Li, N.; Zhu, F. R., MoO3-induced oxidation doping of PEDOT:PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes. J Mater Chem C 2017, 5 (40), 10555-10561.
[147] H. J. Wang, Z. G. L., Q. M. Dong, D. Zhang, and R. Han, Performance of organic light emitting diodes with MoO3 and PEDOT:PSS as double hole injection layers. In 19th International Conference on Optical Communications and Networks (ICOCN), 2021.
[148] Zhu, L. Z.; Richardson, B. J.; Yu, Q. M., Inverted hybrid CdSe-polymer solar cells adopting PEDOT:PSS/MoO3 as dual hole transport layers. Phys Chem Chem Phys 2016, 18 (5), 3463-3471.
[149] Guo, S. H.; Wu, Q. Q.; Wang, L.; Cao, F.; Dou, Y. J.; Wang, Y. M.; Sun, Z. J.; Zhang, C. X.; Yang, X. Y., Boosting Efficiency of InP Quantum Dots-Based Light-Emitting Diodes by an In-Doped ZnO Electron Transport Layer. IEEE Electron Device Lett. 2021, 42 (12), 1806-1809.
[150] Li, X. Y.; Lin, Q. L.; Song, J. J.; Shen, H. B.; Zhang, H. M.; Li, L. S.; Li, X. G.; Du, Z. L., Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Adv. Opt. Mater. 2020, 8 (2).
[151] Motomura, G.; Ogura, K.; Iwasaki, Y.; Nagakubo, J.; Hirakawa, M.; Nishihashi, T.; Tsuzuki, T., Improvement of electroluminescent characteristics in quantum dot light-emitting diodes using ZnInP/ZnSe/ZnS quantum dots by mixing an electron transport material into the light-emitting layer. Aip Adv 2020, 10 (6).
[152] Iwasaki, Y.; Motomura, G.; Ogura, K.; Tsuzuki, T., Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 2020, 117 (11).
[153] Yuan, Q. L.; Wang, T.; Wang, R.; Zhao, J. L.; Zhang, H. Z.; Ji, W. Y., Exploring the emission mechanism of dichromatic white-light quantum-dot light-emitting diodes using wavelength-resolved transient electroluminescence analysis. Opt. Lett. 2020, 45 (23), 6370-6373.
[154] Lv, S. H.; Yang, K. Y.; Wu, C. X.; Wang, K.; Chen, R.; Chen, X.; Ju, S. M.; Luo, Z. Q.; Zhao, H. B.; Guo, T. L.; Li, F. S., Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Lett. 2022, 43 (2), 256-259.
[155] Wang, F. H.; Sun, W. D.; Liu, P.; Wang, Z. B.; Zhang, J.; Wei, J. L.; Li, Y.; Hayat, T.; Alsaedi, A.; Tan, Z. A., Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes through Transport Layer Doping Strategies. J Phys Chem Lett 2019, 10 (5), 960-965.
[156] X. T. Xiao, K. W., T. K. Ye, R. Cai, Z. W. Ren, D. Wu, X. W. Qu, J. Y. Sun, S. H. Ding, X. W. Sun, and W. C. H. Choy, Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Commun. Mater. 2020, 1 (1).
[157] Mark, P.; Helfrich, W., Space-Charge-Limited Currents in Organic Crystals. J Appl Phys 1962, 33 (1), 205-&.
[158] Lampert, M. A., Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys Rev 1956, 103 (6), 1648-1656.
[159] Kim, S. K.; Kim, Y. S., Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers. J Appl Phys 2019, 126 (3).
[160] Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W., Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv. Mater. 2012, 24 (30), 4180-4185.
[161] Yang, X. Y.; Divayana, Y.; Zhao, D. W.; Leck, K. S.; Lu, F.; Tan, S. T.; Abiyasa, A. P.; Zhao, Y. B.; Demir, H. V.; Sun, X. W., A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Appl. Phys. Lett. 2012, 101 (23).
[162] Jo, J. H.; Kim, J. H.; Lee, K. H.; Han, C. Y.; Jang, E. P.; Do, Y. R.; Yang, H., High-efficiency red electroluminescent device based on multishelled InP quantum dots. Opt. Lett. 2016, 41 (17), 3984-3987.
[163] Jang, I.; Kim, J.; Ippen, C.; Greco, T.; Oh, M. S.; Lee, J.; Kim, W. K.; Wedel, A.; Han, C. J.; Park, S. K., Inverted InP quantum dot light-emitting diodes using low-temperature solution-processed metal-oxide as an electron transport. Jpn. J. Appl. Phys. 2015, 54 (2).
[164] Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R. H.; Peng, X.; Jin, Y., Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11 (1).
[165] Cao, F.; Wang, S.; Wang, F. J.; Wu, Q. Q.; Zhao, D. W.; Yang, X. Y., A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chem. Mat. 2018, 30 (21), 8002-8007.
[166] Ouyang, J., "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34 (5), 423-436.
[167] Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21 (6), 1076-1081.
[168] Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S., Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes. ACS Nano 2019, 13 (7), 8229-8236.
[169] Cho, H.; Kang, D.; Lee, Y.; Bae, H.; Hong, S.; Cho, Y.; Kim, K.; Yi, Y.; Park, J. H.; Im, S., Dramatic Reduction of Contact Resistance via Ultrathin LiF in Two-Dimensional MoS2 Field Effect Transistors. Nano Lett. 2021, 21 (8), 3503-3510.
[170] Chiu, P. C.; Yang, S. H., Improvement in hole transporting ability and device performance of quantum dot light emitting diodes. Nanoscale Advances 2020, 2 (1), 401-407.
[171] Wu, Z. X.; Wang, L. D.; Wang, H. F.; Gao, Y. D.; Qiu, Y., Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film. Phys. Rev. B 2006, 74 (16).
[172] Muller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H., Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 2004, 85 (3), 381-383.
[173] Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H., Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31 (34).
[174] Pechstedt, K.; Whittle, T.; Baumberg, J.; Melvin, T., Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. J Phys Chem C 2010, 114 (28), 12069-12077.
[175] Wei, Y.; Cheng, Z. Y.; Lin, J., An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs (vol 48, pg 310, 2019). Chem Soc Rev 2019, 48 (1), 405-405.
[176] Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N.; Zeng, H. B., 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29 (5).
[177] Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G., Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28 (32), 6804-6834.
[178] Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M.; Zhang, L. J.; Sun, C.; Zhao, D.; Qin, G. S.; Bai, X.; Yu, W. W.; Rogach, A. L., Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Lett. 2019, 19 (3), 1552-1559.
[179] Jones, M.; Lo, S. S.; Scholes, G. D., Signatures of Exciton Dynamics and Carrier Trapping in the Time-Resolved Photoluminescence of Colloidal CdSe Nanocrystals. J Phys Chem C 2009, 113 (43), 18632-18642.
[180] Cai, X. C.; Martin, J. E.; Shea-Rohwer, L. E.; Gong, K.; Kelley, D. F., Thermal Quenching Mechanisms in II-VI Semiconductor Nanocrystals. J Phys Chem C 2013, 117 (15), 7902-7913.
[181] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G., Quantum-dot optical temperature probes. Appl. Phys. Lett. 2003, 83 (17), 3555-3557.
[182] Liu, T. C.; Huang, Z. L.; Wang, H. Q.; Wang, J. H.; Li, X. Q.; Zhao, Y. D.; Luo, Q. M., Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe. Anal Chim Acta 2006, 559 (1), 120-123.
[183] Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 2015, 3 (15), 8139-8147.
[184] Adachi, M. M.; Fan, F. J.; Sellan, D. P.; Hoogland, S.; Voznyy, O.; Houtepen, A. J.; Parrish, K. D.; Kanjanaboos, P.; Malen, J. A.; Sargent, E. H., Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 2015, 6.
[185] Qiu, L.; Hao, J. R.; Feng, Y. X.; Qu, X. Y.; Li, G. G.; Wei, Y.; Xing, G. C.; Wang, H. Q.; Yan, C. J.; Lin, J., One-pot in situ synthesis of CsPbX3@h-BN (X = Cl, Br, I) nanosheet composites with superior thermal stability for white LEDs. J Mater Chem C 2019, 7 (14), 4038-4042.
[186] Xie, B.; Cheng, Y. H.; Hao, J. J.; Yu, X. J.; Shu, W. C.; Wang, K.; Luo, X. B., White Light-Emitting Diodes With Enhanced Efficiency and Thermal Stability Optimized by Quantum Dots-Silica Nanoparticles. Ieee T Electron Dev 2018, 65 (2), 605-609.
[187] Yang, D. D.; Xie, Y. Y.; Geng, C.; Shen, C. Y.; Liu, J. G.; Sun, M. Z.; Li, S. S.; Bi, W. G.; Xu, S., Thermal Analysis and Performance Optimization of Quantum Dots in LEDs by Microsphere Model. Ieee T Electron Dev 2019, 66 (9), 3903-3909.
[188] Zou, H. Y.; Liu, M.; Zhou, D.; Zhang, X.; Liu, Y.; Yang, B.; Zhang, H., Employing CdSexTe1-x, Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes. J Phys Chem C 2017, 121 (9), 5313-5323.
[189] Wang, L.; Meng, L. H.; Chen, L.; Huang, S.; Wu, X. G.; Dai, G.; Deng, L. G.; Han, J. B.; Zou, B. S.; Zhang, C. F.; Zhong, H. Z., Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. J Phys Chem Lett 2019, 10 (12), 3248-3253.
[190] Li, Y.; Hou, X.Q.; Dai, X.L.; Yao, Z.L.; Lv, L.L.; Jin, Y.Z.; Peng, X.G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

Data Source
Document TypeThesis
DepartmentDepartment of Electrical and Electronic Engineering
Recommended Citation
GB/T 7714
Zhang TQ. Mechanism Research and Device Optimization for High Efficiency and High stability Green InP QLEDs[D]. 澳门. 澳门大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11853003-张天琦-电子与电气工程(10807KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张天琦]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张天琦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张天琦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.