中文版 | English
Title

Singlet oxygen generation in light-assisted peroxymonosulfate activation by carbon nitride: Role of elevated crystallinity

Author
Corresponding AuthorWang,Zhongying
Publication Years
2023-04-01
DOI
Source Title
ISSN
0045-6535
EISSN
1879-1298
Volume321
Abstract
Carbon nitride (CN) is an emerging 2D non-metal semiconductor material that could be used in photocatalysis and advanced oxidation processes (AOPs) for pollutants degradation. The radical-induced degradation by CN in photocatalysis or photo-assisted AOPs was widely reported in previous studies. Nevertheless, how the non-radical degradation by CN materials could be achieved under irradiation is neither well understood nor controlled. In this work, crystalline carbon nitride (CCN) was synthesized via a facile molten-salt method, and used to activate peroxymonosulfate (PMS) under visible light (>420 nm) to selectively and efficiently degrade tetracycline (TC). Compared to the traditional polymeric carbon nitride (PCN), CCN was found to be a superior PMS activator with the assistance of visible light, which was ascribed to the increased crystallinity of CN tri-s-triazine units and the increased number of catalytic sites, thereby optimizing the photoelectric properties. The activation performance could be further improved by copper loading, with TC degradation rate nearly six times more than that of PCN. EPR trapping and quenching tests showed that singlet oxygen (O) was the dominant reactive oxygen species in the CCN/PMS/visible light system, attributing to the increased graphitic N sites and formation of electron-deficient C in C–N bonding between neighboring tri-s-triazine units upon crystallinity elevation in CCN. In contrast to the conventional radical-based photocatalysis and AOP processes, the visible light-assisted non-radical AOP degradation was highlighted for the selectivity and the remarkable resistance to the impacts of background inorganic anions or natural organic matter (up to 10 mg/L) in the actual water matrix. This work revealed the O generation mechanism by CN-based materials under the joint assistance of visible light illumination and crystallinity elevation, and its excellent removal performance demonstrates the great potential of CCN-based materials in the practical wastewater treatment.
Keywords
URL[Source Record]
Indexed By
Language
English
SUSTech Authorship
First ; Corresponding
Funding Project
National Natural Science Foundation of China["22076075","22176086"]
WOS Research Area
Environmental Sciences & Ecology
WOS Subject
Environmental Sciences
WOS Accession No
WOS:000944181400001
Publisher
ESI Research Field
ENVIRONMENT/ECOLOGY
Scopus EID
2-s2.0-85148366902
Data Source
Scopus
Citation statistics
Cited Times [WOS]:0
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/489752
DepartmentSchool of Environmental Science and Engineering
Affiliation
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing,Jiangsu,210000,China
First Author AffilicationSchool of Environmental Science and Engineering
Corresponding Author AffilicationSchool of Environmental Science and Engineering
First Author's First AffilicationSchool of Environmental Science and Engineering
Recommended Citation
GB/T 7714
Chen,Beizhao,Liu,Xun,Liu,Bei,et al. Singlet oxygen generation in light-assisted peroxymonosulfate activation by carbon nitride: Role of elevated crystallinity[J]. CHEMOSPHERE,2023,321.
APA
Chen,Beizhao.,Liu,Xun.,Liu,Bei.,Han,Qi.,Li,Li.,...&Wang,Zhongying.(2023).Singlet oxygen generation in light-assisted peroxymonosulfate activation by carbon nitride: Role of elevated crystallinity.CHEMOSPHERE,321.
MLA
Chen,Beizhao,et al."Singlet oxygen generation in light-assisted peroxymonosulfate activation by carbon nitride: Role of elevated crystallinity".CHEMOSPHERE 321(2023).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Chen,Beizhao]'s Articles
[Liu,Xun]'s Articles
[Liu,Bei]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Chen,Beizhao]'s Articles
[Liu,Xun]'s Articles
[Liu,Bei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chen,Beizhao]'s Articles
[Liu,Xun]'s Articles
[Liu,Bei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.