中文版 | English
Title

Atomic Pd dispersion in triangular Cu nanosheets with dominant (111) plane as a tandem catalyst for highly efficient and selective electrodehalogenation

Author
Corresponding AuthorChen,Shaoqing
Publication Years
2023-07-05
DOI
Source Title
ISSN
0926-3373
EISSN
1873-3883
Volume328
Abstract
Single-atom alloys (SAA) in which active metal atoms are atomically dispersed in an inert host possess unique geometric and electronic structures, and generally own higher catalytic performance than their monometallic counterparts. Whereas it is still challenging to facilely synthesize well-defined single atoms embedded in single crystals dominated with a specific active plane. Herein, we synthesized Pd single atoms anchored in triangular Cu nanosheets (PdCu SAA) with dominant active (111) plane via wet chemical synthesis and galvanic replacement as a high-performance catalyst for the electrocatalytic hydrodehalogenation (ECHD) of the refractory tribromophenol. Based on intensive theoretical calculations and experimental work, a hydrogen spillover mechanism was firstly proposed and verified for the highly efficient and selective ECHD. Hydrogen spillover occurs from the hydrogen-rich Pd to the hydrogen-deficient Cu host with a marginal kinetic energy barrier due to the short reaction distance and the negligible interfacial resistance. Meanwhile, the strong metal-support interaction between Pd and peripheral Cu optimizes the adsorption of hydrogenated products to allow for the further catalytic reaction. Consequently, by decoupling the ECHD process into hydrogen adsorption, hydrogen spillover and hydrodebromination, PdCu SAA as a tandem catalyst completely reduced tribromophenol with high phenol selectivity. The intrinsic catalytic activity of Pd and Cu in PdCu SAA substantially outperforms their monometallic counterparts by 14.4 and 3.2 times, respectively. This work showcases that the atomic dispersion of noble metals in SAA offers a promising catalyst design strategy to attain unprecedented catalytic properties via isolating activation and desorption steps.
Keywords
URL[Source Record]
Indexed By
Language
English
SUSTech Authorship
Corresponding
Funding Project
National Natural Science Foundation of China["22005288","22176131"] ; Key Project of Basic Research of Shenzhen[JCYJ20220818095601002]
WOS Research Area
Chemistry ; Engineering
WOS Subject
Chemistry, Physical ; Engineering, Environmental ; Engineering, Chemical
WOS Accession No
WOS:001005458200001
Publisher
ESI Research Field
CHEMISTRY
Scopus EID
2-s2.0-85148640994
Data Source
Scopus
Citation statistics
Cited Times [WOS]:0
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/497221
DepartmentDepartment of Materials Science and Engineering
Affiliation
1.College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen,518060,China
2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei,230026,China
4.Departments of Chemical and Petroleum Engineering,University of Wyoming,82071,United States
5.School of Chemical Engineering,The University of Queensland,Brisbane,4072,Australia
Corresponding Author AffilicationDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Chen,Huihuang,Li,Hongbo,Chen,Shaoqing,et al. Atomic Pd dispersion in triangular Cu nanosheets with dominant (111) plane as a tandem catalyst for highly efficient and selective electrodehalogenation[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2023,328.
APA
Chen,Huihuang.,Li,Hongbo.,Chen,Shaoqing.,Sheng,Li.,Zhang,Zhirong.,...&Yang,Bo.(2023).Atomic Pd dispersion in triangular Cu nanosheets with dominant (111) plane as a tandem catalyst for highly efficient and selective electrodehalogenation.APPLIED CATALYSIS B-ENVIRONMENTAL,328.
MLA
Chen,Huihuang,et al."Atomic Pd dispersion in triangular Cu nanosheets with dominant (111) plane as a tandem catalyst for highly efficient and selective electrodehalogenation".APPLIED CATALYSIS B-ENVIRONMENTAL 328(2023).
Files in This Item:
There are no files associated with this item.
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Chen,Huihuang]'s Articles
[Li,Hongbo]'s Articles
[Chen,Shaoqing]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Chen,Huihuang]'s Articles
[Li,Hongbo]'s Articles
[Chen,Shaoqing]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Chen,Huihuang]'s Articles
[Li,Hongbo]'s Articles
[Chen,Shaoqing]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.