Title | A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency |
Author | |
Corresponding Author | Qin,Quande |
Publication Years | 2023-03-01
|
DOI | |
Source Title | |
ISSN | 0140-9883
|
EISSN | 1873-6181
|
Volume | 119 |
Abstract | Traditional three-stage data envelopment analysis (DEA) models do not consider the problem of functional form and multicollinearity. This study develops a new stochastic semi-parametric frontier-based three-stage DEA model. The frontier incorporates the effects of both external environmental factors and statistical noise on efficiency. We adopt the StoNED (stochastic non-smooth envelopment of data) approach and use the quasi-likelihood estimation method to estimate the parameters of inefficiency term and stochastic noise. We conduct Monte Carlo experiments to examine the performance of the new frontier under different circumstances. Our results show that the new frontier provides a more realistic and accuracy estimator for efficiency measures. An empirical analysis is used to evaluate green economic efficiency (GEE) in China. We empirically compare different models and the results show that external environmental factors cause significant differences. We provide each provincial average GEE evaluated by the improved QLE-StoNED model, which are outperforms compared with other recently developed estimators. And a gradient difference emerges in the GEE among the eastern, central and western areas of China. The results also offer practical implications for the harmonious development of industrial production and a green economy in China. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
Funding Project | National Natural Science Foundation of China["71871146","72174124"]
; Guangdong Special Support Program for Young Top-notch Talent in Science and Technology Innovation[2019TQ05L989]
; Natural Science Foundation of Guangdong Province[2021A1515011777]
; Research Platforms and Project in Ordinary Universities of Education Department of Guangdong Province[2020WTSCX079]
|
WOS Research Area | Business & Economics
|
WOS Subject | Economics
|
WOS Accession No | WOS:000939859200001
|
Publisher | |
ESI Research Field | ECONOMICS BUSINESS
|
Scopus EID | 2-s2.0-85148689995
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:1
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/497244 |
Department | School of Environmental Science and Engineering |
Affiliation | 1.School of Management,Shenzhen Polytechnic,Shenzhen,518055,China 2.College of Management,Shenzhen University,Shenzhen,518060,China 3.School of Environmental Science & Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
Recommended Citation GB/T 7714 |
Liu,Fangmei,Li,Li,Ye,Bin,et al. A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency[J]. ENERGY ECONOMICS,2023,119.
|
APA |
Liu,Fangmei,Li,Li,Ye,Bin,&Qin,Quande.(2023).A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency.ENERGY ECONOMICS,119.
|
MLA |
Liu,Fangmei,et al."A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency".ENERGY ECONOMICS 119(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment