Title

# NUMERICAL METHODS AND SIMULATIONS OF MOVING CONTACT LINE PROBLEMS

Author
Name pinyin
CHAI Shuqing
School number
11750002
Degree

Discipline

Supervisor

Mentor unit

Tutor of External Organizations

Tutor units of foreign institutions

Publication Years
2023-02-14
Submission date
2023-03-13
University

Place of Publication

Abstract

We develop a second-order accurate sharp interface method to simulate moving contact line (MCL) problems. Based on the principle of total free energy dissipation, we derive the boundary conditions including the interfacial conditions, the Navier-slip boundary condition, and the contact angle condition. These conditions together with either the incompressible Navier-Stokes equations or the incompressible Stokes equations form a continuum model. Our models relieve the contact line singularity.

The immersed interface method (IIM) has been widely used in simulations of multiphase flows with closed interfaces. We generalize the IIM to solve for the velocity field in the MCL problems. With the help of variational formulation, the contact angle condition can be combined with the interfacial kinematics in a weak form. A parametric finite element method (parametric FEM) is applied to solve for the interface motion as well as the curvature, which are in turn used to update the correction terms for the irregular points in the IIM. The hybrid IIM-parametric FEM method is Cartesian grid-based, and achieves second-order accuracy not only in the velocity field but also in the interface and the contact line motion. This is validated by numerical results. Moreover, we generalize the method to account for discontinuous viscosity and topological changes, where the order of accuracy is preserved.

Various numerical experiments are presented in the study of droplet motion and contact angle hysteresis (CAH). We observe periodically stick-slip behavior and find that the velocity dependence of the CAH can be symmetric and asymmetric in different cases. We investigate the merging and collision of droplets and learn that the inertial effect concerns not only the interface motion but also the appearance of topological changes.

Keywords
Language
English
Training classes

Enrollment Year
2017
Year of Degree Awarded
2023-03
References List

[1] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. “Diffuse-interface methods in fluid mechanics”. In: Annual Review of Fluid Mechanics 30 (1998), pp. 139–165.
[2] W. Bao, W. Jiang, Y. Wang, and Q. Zhao. “A parametric finite element method forsolid-state dewetting problems with anisotropic surface energies”. In: Journal ofComputational Physics 330 (2017), pp. 380–400.
[3] J. W. Barrett, H. Garcke, and R. Nürnberg. “A parametric finite element methodfor fourth order geometric evolution equations”. In: Journal of ComputationalPhysics 222 (2007), pp. 441–467.
[4] J. W. Barrett, H. Garcke, and R. Nürnberg. “On the variational approximationof combined second and fourth order geometric evolution equations”. In: SIAMJournal on Scientific Computing 29 (2007), pp. 1006–1041.
[5] I. B. Bazhlekov, P. D. Anderson, and H. E. Meijer. “Numerical investigation ofthe effect of insoluble surfactants on drop deformation and breakup in simpleshear flow”. In: Journal of Colloid and Interface Science 298 (2006), pp. 369–394.
[6] J. B. Bell, P. Colella, and H. M. Glaz. “A second-order projection method for theincompressible Navier-Stokes equations”. In: Journal of Computational Physics 85(1989), pp. 257–283.
[7] T. D. Blake. “The physics of moving wetting lines”. In: Journal of Colloid andInterface Science 299 (2006), pp. 1–13.
[8] T. D. Blake and J. De Coninck. “The influence of solid–liquid interactions ondynamic wetting”. In: Advances in Colloid and Interface Science 96 (2002), pp. 21–36.
[9] T. D. Blake and J. Haynes. “Kinetics of liquidliquid displacement”. In: Journal ofColloid and Interface Science 30 (1969), pp. 421–423.
[10] F. Brochard-Wyart and P. G. De Gennes. “Dynamics of partial wetting”. In: Advances in Colloid and Interface Science 39 (1992), pp. 1–11.
[11] D. L. Brown, R. Cortez, and M. L. Minion. “Accurate projection methods for theincompressible Navier–Stokes equations”. In: Journal of Computational Physics168 (2001), pp. 464–499.
[12] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. “CutFEM: discretizing geometry and partial differential equations”. In: International Journalfor Numerical Methods in Engineering 104 (2015), pp. 472–501.
[13] E. Burman and P. Hansbo. “Fictitious domain finite element methods using cutelements: II. A stabilized Nitsche method”. In: Applied Numerical Mathematics 62(2012), pp. 328–341.
[14] S. Chai, Z. Zhang, and Z. Zhang. “A second order accuracy preserving methodfor moving contact lines with Stokes flow”. In: Journal of Computational Physics445 (2021), p. 110607.
[15] J. Chessa and T. Belytschko. “An extended finite element method for two-phasefluids”. In: Journal of Applied Mechanics 70 (2003), pp. 10–17.
[16] A. J. Chorin. “Numerical solution of the Navier-Stokes equations”. In: Mathematics of Computation 22 (1968), pp. 745–762.
[17] R. Cox. “The dynamics of the spreading of liquids on a solid surface. Part 1.Viscous flow”. In: Journal of Fluid Mechanics 168 (1986), pp. 169–194.
[18] B. J De Gans, P. C. Duineveld, and U. S. Schubert. “Inkjet printing of polymers: state of the art and future developments”. In: Advanced Materials 16 (2004),pp. 203–213.
[19] S. R. De Groot and P. Mazur. Non-equilibrium Thermodynamics. Courier Corporation, 2013.
[20] P. Dimitrakopoulos and J. J. L. Higdon. “On the gravitational displacement ofthree-dimensional fluid droplets from inclined solid surfaces”. In: Journal of FluidMechanics 395 (1999), pp. 181–209.
[21] M. Doi. “Onsager’s variational principle in soft matter”. In: Journal of Physics:Condensed Matter 23 (2011), p. 284118.
[22] J.-B. Dupont and D. Legendre. “Numerical simulation of static and sliding dropwith contact angle hysteresis”. In: Journal of Computational Physics 229 (2010),pp. 2453–2478.
[23] E. B. Dussan V. “On the spreading of liquids on solid surfaces: static and dynamic contact lines”. In: Annual Review of Fluid Mechanics 11 (1979), pp. 371–400.
[24] E. B. Dussan V and S. H. Davis. “On the motion of a fluid-fluid interface alonga solid surface”. In: Journal of Fluid Mechanics 65 (1974), pp. 71–95.
[25] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. “A hybrid particle level setmethod for improved interface capturing”. In: Journal of Computational Physics183 (2002), pp. 83–116.
[26] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. “A non-oscillatory Eulerianapproach to interfaces in multimaterial flows (the ghost fluid method)”. In: Journal of Computational Physics 152 (1999), pp. 457–492.
[27] T.-P. Fries and T. Belytschko. “The extended/generalized finite element method:an overview of the method and its applications”. In: International Journal for Numerical Methods in Engineering 84 (2010), pp. 253–304.
[28] T. Fullana, S. Zaleski, and S. Popinet. “Dynamic wetting failure in curtain coating by the Volume-of-Fluid method”. In: The European Physical Journal SpecialTopics 229 (2020), pp. 1923–1934.
[29] S. Ganesan and L. Tobiska. “Arbitrary Lagrangian–Eulerian finite-element methodfor computation of two-phase flows with soluble surfactants”. In: Journal of Computational Physics 231 (2012), pp. 3685–3702.
[30] Y. Gao and J.-G. Liu. “Gradient flow formulation and second order numericalmethod for motion by mean curvature and contact line dynamics on rough surface”. In: arXiv preprint arXiv:2001.04036 (2020).
[31] J.-F. Gerbeau and T. Lelievre. “Generalized Navier boundary condition and geometric conservation law for surface tension”. In: Computer Methods in AppliedMechanics and Engineering 198 (2009), pp. 644–656.
[32] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang. “A second-order-accuratesymmetric discretization of the Poisson equation on irregular domains”. In:Journal of Computational Physics 176 (2002), pp. 205–227.
[33] J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan. “Robust computational algorithmsfor dynamic interface tracking in three dimensions”. In: SIAM Journal on Scientific Computing 21 (2000), pp. 2240–2256.
[34] P. M. Gresho. “Some current CFD issues relevant to the incompressible NavierStokes equations”. In: Computer Methods in Applied Mechanics and Engineering 87(1991), pp. 201–252.
[35] P. M. Gresho and R. L. Sani. “On pressure boundary conditions for the incompressible Navier-Stokes equations”. In: International Journal for Numerical Methods in Fluids 7 (1987), pp. 1111–1145.
[36] D. Guan, Y. J. Wang, E. Charlaix, and P. Tong. “Asymmetric and speed-dependentcapillary force hysteresis and relaxation of a suddenly stopped moving contactline”. In: Physical Review Letters 116 (2016), p. 066102.
[37] D. Guan, Y. J. Wang, E. Charlaix, and P. Tong. “Simultaneous observation ofasymmetric speed-dependent capillary force hysteresis and slow relaxation of asuddenly stopped moving contact line”. In: Physical Review E 94 (2016), p. 042802.
[38] R. Hu and Z. Li. “Error analysis of the immersed interface method for Stokesequations with an interface”. In: Applied Mathematics Letters 83 (2018), pp. 207–211.
[39] C. Huh and L. E. Scriven. “Hydrodynamic model of steady movement of asolid/liquid/fluid contact line”. In: Journal of Colloid and Interface Science 35 (1971),pp. 85–101.
[40] K. Ito, Z. Li, and X. Wan. “Pressure jump conditions for Stokes equations withdiscontinuous viscosity in 2D and 3D”. In: Methods and Applications of Analysis13 (2006), pp. 199–214.
[41] D. Jacqmin. “Contact-line dynamics of a diffuse fluid interface”. In: Journal ofFluid Mechanics 402 (2000), pp. 57–88.
[42] Y. J. Jiang, A. Umemura, and C. K. Law. “An experimental investigation on thecollision behaviour of hydrocarbon droplets”. In: Journal of Fluid Mechanics 234(1992), pp. 171–190.
[43] H. Johnston and J.-G. Liu. “Accurate, stable and efficient Navier–Stokes solversbased on explicit treatment of the pressure term”. In: Journal of ComputationalPhysics 199 (2004), pp. 221–259.
[44] H. Johnston and J.-G. Liu. “Finite difference schemes for incompressible flowbased on local pressure boundary conditions”. In: Journal of Computational Physics180 (2002), pp. 120–154.
[45] C. Josserand, L. Lemoyne, R. Troeger, and S. Zaleski. “Droplet impact on a drysurface: triggering the splash with a small obstacle”. In: Journal of Fluid Mechanics524 (2005), p. 47.
[46] M. Kang, R. P. Fedkiw, and X.-D. Liu. “A boundary condition capturing methodfor multiphase incompressible flow”. In: Journal of Scientific Computing 15 (2000),pp. 323–360.
[47] K. H. Karlsen, K.-A. Lie, and N. Risebro. “A fast marching method for reservoirsimulation”. In: Computational Geosciences 4 (2000), pp. 185–206.
[48] G. E. Karniadakis, M. Israeli, and S. A. Orszag. “High-order splitting methodsfor the incompressible Navier-Stokes equations”. In: Journal of ComputationalPhysics 97 (1991), pp. 414–443.
[49] Y. Kim, M.-C. Lai, and C. S. Peskin. “Numerical simulations of two-dimensionalfoam by the immersed boundary method”. In: Journal of Computational Physics229 (2010), pp. 5194–5207.
[50] J. Koplik, J. R. Banavar, and J. F. Willemsen. “Molecular dynamics of Poiseuilleflow and moving contact lines”. In: Physical Review Letters 60 (1988), p. 1282.
[51] G. Korotcenkov. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches. Springer, 2013.
[52] M.-C. Lai and H.-C. Tseng. “A simple implementation of the immersed interfacemethods for Stokes flows with singular forces”. In: Computers & Fluids 37 (2008),pp. 99–106.
[53] L. Lee and R. J. LeVeque. “An immersed interface method for incompressibleNavier–Stokes equations”. In: SIAM Journal on Scientific Computing 25 (2003),pp. 832–856.
[54] D. Legendre and M. Maglio. “Comparison between numerical models for thesimulation of moving contact lines”. In: Computers & Fluids 113 (2015), pp. 2–13.
[55] S. Leung and H. Zhao. “A grid based particle method for moving interface problems”. In: Journal of Computational Physics 228 (2009), pp. 2993–3024.
[56] R. J. LeVeque and Z. Li. “Immersed interface methods for Stokes flow with elastic boundaries or surface tension”. In: SIAM Journal on Scientific Computing 18(1997), pp. 709–735.
[57] R. J. Leveque and Z. Li. “The immersed interface method for elliptic equationswith discontinuous coefficients and singular sources”. In: SIAM Journal on Numerical Analysis 31 (1994), pp. 1019–1044.
[58] B. Li. “Convergence of Dziuk’s linearly implicit parametric finite element methodfor curve shortening flow”. In: SIAM Journal on Numerical Analysis 58 (2020),pp. 2315–2333.
[59] J. Li. “Macroscopic model for head-on binary droplet collisions in a gaseousmedium”. In: Physical Review Letters 117 (2016), p. 214502.
[60] Z. Li. The Immersed Interface Method: A Numerical Approach for Partial DifferentialEquations with Interfaces. University of Washington, 1994.
[61] Z. Li. “The immersed interface method using a finite element formulation”. In:Applied Numerical Mathematics 27 (1998), pp. 253–267.
[62] Z. Li and K. Ito. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, 2006.
[63] Z. Li, K. Ito, and M.-C. Lai. “An augmented approach for Stokes equations witha discontinuous viscosity and singular forces”. In: Computers & Fluids 36 (2007),pp. 622–635.
[64] Z. Li and M.-C. Lai. “The immersed interface method for the Navier–Stokesequations with singular forces”. In: Journal of Computational Physics 171 (2001),pp. 822–842.
[65] Z. Li, M.-C. Lai, G. He, and H. Zhao. “An augmented method for free boundaryproblems with moving contact lines”. In: Computers & fluids 39 (2010), pp. 1033–1040.
[66] Z. Li, M.-C. Lai, X. Peng, and Z. Zhang. “A least squares augmented immersedinterface method for solving Navier–Stokes and Darcy coupling equations”. In:Computers & Fluids 167 (2018), pp. 384–399.
[67] Z. Li, T. Lin, and X. Wu. “New Cartesian grid methods for interface problems using the finite element formulation”. In: Numerische Mathematik 96 (2003), pp. 61–98.
[68] H. Liu, Y. Ju, N. Wang, G. Xi, and Y. Zhang. “Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference”.In: Physical Review E 92 (2015), p. 033306.
[69] T. Liu, B. Khoo, and K. Yeo. “Ghost fluid method for strong shock impacting onmaterial interface”. In: Journal of Computational Physics 190 (2003), pp. 651–681.
[70] S. Manservisi and R. Scardovelli. “A variational approach to the contact angledynamics of spreading droplets”. In: Computers & Fluids 38 (2009), pp. 406–424.
[71] A. Mayo. “The fast solution of Poisson’s and the biharmonic equations on irregular regions”. In: SIAM Journal on Numerical Analysis 21 (1984), pp. 285–299.
[72] H. S. H. Mohand, H. Hoang, G. Galliero, and D. Legendre. “On the use of afriction model in a Volume of Fluid solver for the simulation of dynamic contactlines”. In: Journal of Computational Physics 393 (2019), pp. 29–45.
[73] M. Muradoglu and S. Tasoglu. “A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls”. In: Computers& Fluids 39 (2010), pp. 615–625.
[74] L. Onsager. “Reciprocal relations in irreversible processes. I.” In: Physical Review37 (1931), p. 405.
[75] L. Onsager. “Reciprocal relations in irreversible processes. II.” In: Physical Review38 (1931), p. 2265.
[76] S. Osher and J. A. Sethian. “Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations”. In: Journal of ComputationalPhysics 79 (1988), pp. 12–49.
[77] C. S. Peskin. “Flow patterns around heart valves: a numerical method”. In: Journal of Computational Physics 10 (1972), pp. 252–271.
[78] C. S. Peskin. “The immersed boundary method”. In: Acta Numerica 11 (2002),pp. 479–517.
[79] P. Petrov and I. Petrov. “A combined molecular-hydrodynamic approach to wetting kinetics”. In: Langmuir 8 (1992), pp. 1762–1767.
[80] C. Pozrikidis. “Stability of sessile and pendant liquid drops”. In: Journal of Engineering Mathematics 72 (2012), pp. 1–20.
[81] T. Qian, X.-P. Wang, and P. Sheng. “A variational approach to the moving contact line hydrodynamics”. In: Journal of Fluid Mechanics 564 (2006), 333–360.
[82] T. Qian, X.-P. Wang, and P. Sheng. “Molecular scale contact line hydrodynamicsof immiscible flows”. In: Physical Review E 68 (2003), p. 016306.
[83] J. Qin and P. Gao. “Asymptotic theory of fluid entrainment in dip coating”. In:Journal of Fluid Mechanics 844 (2018), pp. 1026–1037.
[84] T. Rabczuk, J.-H. Song, X. Zhuang, and C. Anitescu. Extended Finite Element andMeshfree Methods. Academic Press, 2019.
[85] W. Ren and W. E. “Boundary conditions for the moving contact line problem”.In: Physics of Fluids 19 (2007), p. 022101.
[86] W. Ren, D. Hu, and W. E. “Continuum models for the contact line problem”. In:Physics of Fluids 22 (2010), p. 102103.
[87] M. Renardy, Y. Renardy, and J. Li. “Numerical simulation of moving contact lineproblems using a volume-of-fluid method”. In: Journal of Computational Physics171 (2001), pp. 243–263.
[88] P. D. Spelt. “A level-set approach for simulations of flows with multiple moving contact lines with hysteresis”. In: Journal of Computational physics 207 (2005),pp. 389–404.
[89] H. A. Stone, A. D. Stroock, and A. Ajdari. “Engineering flows in small devices:microfluidics toward a lab-on-a-chip”. In: Annual Review of Fluid Mechanics 36(2004), pp. 381–411.
[90] Z. Tan, D.-V. Le, K. M. Lim, and B. Khoo. “An immersed interface methodfor the incompressible Navier–Stokes equations with discontinuous viscosityacross the interface”. In: SIAM Journal on Scientific Computing 31 (2009), pp. 1798–1819.
[91] P. A. Thompson and M. O. Robbins. “Simulations of contact-line motion: slipand the dynamic contact angle”. In: Physical Review Letters 63 (1989), p. 766.
[92] W. Thomson. “Capillary attraction”. In: Nature 34 (1886), pp. 270–272.
[93] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J.Han, S. Nas, and Y.-J. Jan. “A front-tracking method for the computations ofmultiphase flow”. In: Journal of Computational Physics 169 (2001), pp. 708–759.
[94] O. Voinov. “Hydrodynamics of wetting”. In: Fluid Dynamics 11 (1976), pp. 714–721.
[95] J. D. Van der Waals. “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. In: Journal of Statistical Physics 20(1979), pp. 200–244.
[96] L. Wang, H.-b. Huang, and X.-Y. Lu. “Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method”. In: Physical Review E 87 (2013),p. 013301.
[97] Q. Wang. “Generalized onsager principle and it applications”. In: Frontiers andProgress of Current Soft Matter Research. Springer, 2021, pp. 101–132.
[98] X.-P. Wang and Y.-G. Wang. “The sharp interface limit of a phase field model formoving contact line problem”. In: Methods and Applications of Analysis 14 (2007),pp. 287–294.
[99] J.-J. Xu, Z. Li, J. Lowengrub, and H. Zhao. “A level-set method for interfacialflows with surfactant”. In: Journal of Computational Physics 212 (2006), pp. 590–616.
[100] J.-J. Xu and W. Ren. “A level-set method for two-phase flows with moving contact line and insoluble surfactant”. In: Journal of Computational Physics 263 (2014),pp. 71–90.
[101] J.-J. Xu and H.-K. Zhao. “An Eulerian formulation for solving partial differentialequations along a moving interface”. In: Journal of Scientific Computing 19 (2003),pp. 573–594.
[102] S. Xu and Z. J. Wang. “An immersed interface method for simulating the interaction of a fluid with moving boundaries”. In: Journal of Computational Physics216 (2006), pp. 454–493.
[103] X. Xu, Y. Di, and M. Doi. “Variational method for contact line problems in slidingliquids”. In: Physics of Fluids 28 (2016), p. 087101.
[104] X. Xu, Y. Zhao, and X. Wang. “Analysis for contact angle hysteresis on roughsurfaces by a phase-field model with a relaxed boundary condition”. In: SIAMJournal on Applied Mathematics 79 (2019), pp. 2551–2568.
[105] T. Young. “III. An essay on the cohesion of fluids”. In: Philosophical Transactions of the Royal Society of London (1805), pp. 65–87.
[106] P. Yue and J. Feng. “Can diffuse-interface models quantitatively describe moving contact lines?” In: The European Physical Journal Special Topics 197 (2011),pp. 37–46.
[107] Q. Zhang. “Gepup: Generic projection and unconstrained PPE for fourth-ordersolutions of the incompressible Navier–Stokes equations with no-slip boundaryconditions”. In: Journal of Scientific Computing 67 (2016), pp. 1134–1180.
[108] Q. Zhang. “On a family of unsplit advection algorithms for volume-of-fluidmethods”. In: SIAM Journal on Numerical Analysis 51 (2013), pp. 2822–2850.
[109] Q. Zhang and A. Fogelson. “MARS: an analytic framework of interface tracking via mapping and adjusting regular semialgebraic sets”. In: SIAM Journal onNumerical Analysis 54 (2016), pp. 530–560.
[110] Z. Zhang, S. Xu, and W. Ren. “Derivation of a continuum model and the energylaw for moving contact lines with insoluble surfactants”. In: Physics of Fluids 26(2014), p. 062103.
[111] Z. Zhang and X. Xu. “Effective boundary conditions for dynamic contact anglehysteresis on chemically inhomogeneous surfaces”. In: Journal of Fluid Mechanics935 (2022).
[112] Q. Zhao, W. Jiang, and W. Bao. “A parametric finite element method for solidstate dewetting problems in three dimensions”. In: SIAM Journal on ScientificComputing 42 (2020), B327–B352.
[113] Q. Zhao and W. Ren. “An energy-stable finite element method for the simulation of moving contact lines in two-phase flows”. In: Journal of Computational Physics 417 (2020), p. 109582.

Data Source

Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/497963
DepartmentDepartment of Mathematics
Recommended Citation
GB/T 7714
Chai SQ. NUMERICAL METHODS AND SIMULATIONS OF MOVING CONTACT LINE PROBLEMS[D]. 香港. 香港大学,2023.
 Files in This Item: File Name/Size DocType Version Access License 11750002-柴树清-数学系.pdf（1552KB） Restricted Access -- Fulltext Requests
 Related Services Recommend this item Bookmark Usage statistics Export to Endnote Export to Excel Export to Csv Altmetrics Score Google Scholar Similar articles in Google Scholar [柴树清]'s Articles Baidu Scholar Similar articles in Baidu Scholar [柴树清]'s Articles Bing Scholar Similar articles in Bing Scholar [柴树清]'s Articles Terms of Use No data! Social Bookmark/Share