[1] GOLDBERG A D, ALLIS C D, BERNSTEIN E. Epigenetics: A Landscape Takes Shape [J]. Cell, 2007, 128(4): 635-638.
[2] HWANG J Y, AROMOLARAN K A, ZUKIN R S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection [J]. Nature Reviews Neuroscience, 2017, 18(6): 347-361.
[3] YAO B, CHRISTIAN K M, HE C, et al. Epigenetic Mechanisms in Neurogenesis [J]. Nature Reviews Neuroscience, 2016, 17(9): 537-549.
[4] DOMINISSINI D. Genomics and Proteomics Roadmap to the Epitranscriptome [J]. Science, 2014, 346(6214): 1192-1192.
[5] LI X Y, XIONG X S, YI C Q. Epitranscriptome Sequencing Technologies: Decoding Rna Modifications [J]. Nature Methods, 2017, 14(1): 23-31.
[6] LIVNEH I, MOSHITCH-MOSHKOVITZ S, AMARIGLIO N, et al. The M(6)a Epitranscriptome: Transcriptome Plasticity in Brain Development and Function [J]. Nature Reviews Neuroscience, 2020, 21(1): 36-51.
[7] ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic Rna Modifications in Gene Expression Regulation [J]. Cell, 2017, 169(7): 1187-1200.
[8] JIA G F, FU Y, ZHAO X, et al. N6-Methyladenosine in Nuclear Rna Is a Major Substrate of the Obesity-Associated Fto [J]. Nature Chemical Biology, 2011, 7(12): 885-887.
[9] ZHENG G Q, DAHL J A, NIU Y M, et al. Alkbh5 Is a Mammalian Rna Demethylase That Impacts Rna Metabolism and Mouse Fertility [J]. Molecular Cell, 2013, 49(1): 18-29.
[10] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the Human and Mouse M(6)a Rna Methylomes Revealed by M(6)a-Seq [J]. Nature, 2012, 485(7397): 201-206.
[11] MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive Analysis of Mrna Methylation Reveals Enrichment in 3 ' Utrs and near Stop Codons [J]. Cell, 2012, 149(7): 1635-1646.
[12] SANEYOSHI M, HARADA F, NISHIMURA S. Isolation and Characterization of N6-Methyladenosine from Escherichia Coli Valine Transfer Rna [J]. Biochimica Et Biophysica Acta, 1969, 190(2): 264-273.
[13] IWANAMI Y, BROWN G M. Methylated Bases of Ribosomal Ribonucleic Acid from Hela Cells [J]. Archives of Biochemistry and Biophysics, 1968, 126(1): 8-15.
[14] BEEMON K, KEITH J. Localization of N6-Methyladenosine in RousSarcoma Virus Genome [J]. Journal of Molecular Biology, 1977, 113(1): 165-179.
[15] HOROWITZ S, HOROWITZ A, NILSEN T W, et al. Mapping of N-6-Methyladenosine Residues in Bovine Prolactin Messenger-Rna [J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1984, 81(18): 5667-5671.
[16] HE P C, HE C. M(6)a Rna Methylation: From Mechanisms to Therapeutic Potential [J]. Embo Journal, 2021, 40(3).
[17] ZACCARA S, RIES R J, JAFFREY S R. Reading, Writing and Erasing Mrna Methylation [J]. Nature Reviews Molecular Cell Biology, 2019, 20(10): 608-624.
[18] ZHAO B X S, ROUNDTREE I A, HE C. Post-Transcriptional Gene Regulation by Mrna Modifications [J]. Nature Reviews Molecular Cell Biology, 2017, 18(1): 31-42.
[19] SHI H L, WEI J B, HE C. Where, When, and How: Context-Dependent Functions of Rna Methylation Writers, Readers, and Erasers [J]. Molecular Cell, 2019, 74(4): 640-650.
[20] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. M(6)a Mrna Methylation Facilitates Resolution of Naive Pluripotency toward Differentiation [J]. Science, 2015, 347(6225): 1002-1006.
[21] SLEDZ P, JINEK M. Structural Insights into the Molecular Mechanism of the M(6)a Writer Complex [J]. Elife, 2016, 5.
[22] WANG P, DOXTADER K A, NAM Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases [J]. Molecular Cell, 2016, 63(2): 306-317.
[23] WANG X, FENG J, XUE Y, et al. Structural Basis of N-6-Adenosine Methylation by the Mettl3-Mettl14 Complex [J]. Nature, 2016, 534(7608): 575-578.
[24] PING X L, SUN B F, WANG L, et al. Mammalian Wtap Is a Regulatory Subunit of the Rna N6-Methyladenosine Methyltransferase [J]. Cell Research, 2014, 24(2): 177-189.
[25] SCHWARTZ S, MUMBACH M R, JOVANOVIC M, et al. Perturbation of M6a Writers Reveals Two Distinct Classes of Mrna Methylation at Internal and 5 ' Sites [J]. Cell Reports, 2014, 8(1): 284-296.
[26] CHURCH C, MOIR L, MCMURRAY F, et al. Overexpression of Fto Leads to Increased Food Intake and Results in Obesity [J]. Nature Genetics, 2010, 42(12): 1086-1092.
[27] FISCHER J, KOCH L, EMMERLING C, et al. Inactivation of the Fto Gene Protects from Obesity [J]. Nature, 2009, 458(7240): 894-898.
[28] GERKEN T, GIRARD C A, TUNG Y C L, et al. The Obesity-Associated Fto Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase [J]. Science, 2007, 318(5855): 1469-1472.
[29] WEI J B, LIU F G, LU Z K, et al. Differential M(6)a, M(6)a(M), and M(1)a Demethylation Mediated by Fto in the Cell Nucleus and Cytoplasm [J]. Molecular Cell, 2018, 71(6): 973-985.
[30] MAUER J, LUO X B, BLANJOIE A, et al. Reversible Methylation of M(6)a(M) in the 5 ' Cap Controls Mrna Stability [J]. Nature, 2017, 541(7637): 371-375.
[31] YU J, SHE Y C, JI S J. M(6)a Modification in Mammalian Nervous System Development, Functions, Disorders, and Injuries [J]. Frontiers in Cell and Developmental Biology, 2021, 9.
[32] FU Y, JIA G F, PANG X Q, et al. Fto-Mediated Formation of N-6-Hydroxymethyladenosine and N-6-Formyladenosine in Mammalian Rna [J]. Nature Communications, 2013, 4.
[33] MURAKAMI S, JAFFREY S R. Hidden Codes in Mrna: Control of Gene Expression by M(6)A [J]. Molecular Cell, 2022, 82(12): 2236-2251.
[34] WANG X, ZHAO B S, ROUNDTREE I A, et al. N-6-Methyladenosine Modulates Messenger Rna Translation Efficiency [J]. Cell, 2015, 161(6): 1388-1399.
[35] WANG X, LU Z K, GOMEZ A, et al. N-6-Methyladenosine-Dependent Regulation of Messenger Rna Stability [J]. Nature, 2014, 505(7481): 117-120.
[36] SHI H L, WANG X, LU Z K, et al. Ythdf3 Facilitates Translation and Decay of N-6-Methyladenosine-Modified Rna [J]. Cell Research, 2017, 27(3): 315-328.
[37] XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear M(6)a Reader Ythdc1 Regulates Mrna Splicing [J]. Molecular Cell, 2016, 61(4): 507-519.
[38] ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. Ythdc1 Mediates Nuclear Export of N-6 - Methyladenosine Methylated Mrnas [J]. Elife, 2017, 6.
[39] HSU P J, ZHU Y F, MA H H, et al. Ythdc2 Is an N-6-Methyladenosine Binding Protein That Regulates Mammalian Spermatogenesis [J]. Cell Research, 2017, 27(9): 1115-1127.
[40] LIU N A, ZHOU K I, PARISIEN M, et al. N-6-Methyladenosine Alters Rna Structure to Regulate Binding of a Low-Complexity Protein [J]. Nucleic Acids Research, 2017, 45(10): 6051-6063.
[41] HUANG H L, WENG H Y, SUN W J, et al. Recognition of Rna N-6-Methyladenosine by Igf2bp Proteins Enhances Mrna Stability and Translation [J]. Nature Cell Biology, 2018, 20(3): 285-295.
[42] ZHANG F R, KANG Y, WANG M L, et al. Fragile X Mental Retardation Protein Modulates the Stability of Its M(6)a-Marked Messenger Rna Targets [J]. Human Molecular Genetics, 2018, 27(22): 3936-3950.
[43] ZACCARA S, JAFFREY S R. A Unified Model for the Function of Ythdf Proteins in Regulating M(6)a-Modified Mrna [J]. Cell, 2020, 181(7): 1582-1595.
[44] LASMAN L, KRUPALNIK V, VIUKOV S, et al. Context-Dependent Functional Compensation between Ythdf M(6)a Reader Proteins [J]. Genes & Development, 2020, 34(19-20): 1373-1391.
[45] KONTUR C, JEONG M, CIFUENTES D, et al. Ythdf M(6)a Readers Function Redundantly During Zebrafish Development [J]. Cell Reports, 2020, 33(13).
[46] LI Y Z, BEDI R K, MOROZ-OMORI E V, et al. Structural and Dynamic Insights into Redundant Function of Ythdf Proteins [J]. Journal of Chemical Information and Modeling, 2020, 60(12): 5932-5935.
[47] CHANG M Q, LV H Y, ZHANG W L, et al. Region-Specific Rna M(6)a Methylation Represents a New Layer of Control in the Gene Regulatory Network in the Mouse Brain [J]. Open Biology, 2017, 7(9).
[48] HESS M E, HESS S, MEYER K D, et al. The Fat Mass and Obesity Associated Gene (Fto) Regulates Activity of the Dopaminergic Midbrain Circuitry [J]. Nature Neuroscience, 2013, 16(8): 1042-1048.
[49] MA C H, CHANG M Q, LV H Y, et al. Rna M(6)a Methylation Participates in Regulation of Postnatal Development of the Mouse Cerebellum [J]. Genome Biology, 2018, 19.
[50] FISHELL G, KRIEGSTEIN A R. Neurons from Radial Glia: The Consequences of Asymmetric Inheritance [J]. Current Opinion in Neurobiology, 2003, 13(1): 34-41.
[51] WOODWORTH M B, GREIG L C, KRIEGSTEIN A R, et al. Snapshot: Cortical Development [J]. Cell, 2012, 151(4): 918-918.
[52] YOON K J, RINGELING F R, VISSERS C, et al. Temporal Control of Mammalian Cortical Neurogenesis by M(6)a Methylation [J]. Cell, 2017, 171(4): 877-889.
[53] WANG Y, LI Y, YUE M H, et al. N-6-Methyladenosine Rna Modification Regulates Embryonic Neural Stem Cell Self-Renewal through Histone Modifications [J]. Nature Neuroscience, 2018, 21(2): 195-206.
[54] WANG C X, CUI G S, LIU X Y, et al. Mettl3-Mediated M(6) a Modification Is Required for Cerebellar Development [J]. Plos Biology, 2018, 16(6).
[55] DU K Z, ZHANG Z, ZENG Z W, et al. Distinct Roles of Fto and Mettl3 in Controlling Development of the Cerebral Cortex through Transcriptional and Translational Regulations [J]. Cell Death & Disease, 2021, 12(7).
[56] LI M M, ZHAO X, WANG W, et al. Ythdf2-Mediated M(6)a Mrna Clearance Modulates Neural Development in Mice [J]. Genome Biology, 2018, 19.
[57] EDENS B M, VISSERS C, SU J, et al. Fmrp Modulates Neural Differentiation through M(6)a-Dependent Mrna Nuclear Export [J]. Cell Reports, 2019, 28(4): 845-854.
[58] YU J, CHEN M X, HUANG H J, et al. Dynamic M(6)a Modification Regulates Local Translation of Mrna in Axons [J]. Nucleic Acids Research, 2018, 46(3): 1412-1423.
[59] YU J, SHE Y C, YANG L X, et al. The M(6)a Readers Ythdf1 and Ythdf2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons [J]. Advanced Science, 2021, 8(22).
[60] ZHUANG M R, LI X B, ZHU J D, et al. The M(6)a Reader Ythdf1 Regulates Axon Guidance through Translational Control of Robo3.1 Expression [J]. Nucleic Acids Research, 2019, 47(9): 4765-4777.
[61] WENG Y L, WANG X, AN R, et al. Epitranscriptomic M(6)a Regulation of Axon Regeneration in the Adult Mammalian Nervous System [J]. Neuron, 2018, 97(2): 313-325.
[62] FLAMAND M N, MEYER K D. M(6)a and Ythdf Proteins Contribute to the Localization of Select Neuronal Mrnas [J]. Nucleic Acids Research, 2022, 50(8): 4464-4483.
[63] MERKURJEV D, HONG W T, IIDA K, et al. Synaptic N-6-Methyladenosine (M(6)a) Epitranscriptome Reveals Functional Partitioning of Localized Transcripts [J]. Nature Neuroscience, 2018, 21(7): 1004-1014.
[64] ZHANG Z Y, WANG M, XIE D F, et al. Mettl3-Mediated N-6-Methyladenosine Mrna Modification Enhances Long-Term Memory Consolidation [J]. Cell Research, 2018, 28(11): 1050-1061.
[65] KORANDA J L, DORE L, SHI H L, et al. Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning [J]. Neuron, 2018, 99(2): 283-292.
[66] ENGEL M, EGGERT C, KAPLICK P M, et al. The Role of M(6)a/M-Rna Methylation in Stress Response Regulation [J]. Neuron, 2018, 99(2): 389-403.
[67] WIDAGDO J, ZHAO Q Y, KEMPEN M J, et al. Experience-Dependent Accumulation of N-6-Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice [J]. Journal of Neuroscience, 2016, 36(25): 6771-6777.
[68] WALTERS B J, MERCALDO V, GILLON C J, et al. The Role of the Rna Demethylase Fto (Fat Mass and Obesity-Associated) and Mrna Methylation in Hippocampal Memory Formation [J]. Neuropsychopharmacology, 2017, 42(7): 1502-1510.
[69] LI L P, ZANG L Q, ZHANG F R, et al. Fat Mass and Obesity-Associated (Fto) Protein Regulates Adult Neurogenesis [J]. Human Molecular Genetics, 2017, 26(13): 2398-2411.
[70] SHI H L, ZHANG X L, WENG Y L, et al. M(6)a Facilitates HippocampusDependent Learning and Memory through Ythdf1 [J]. Nature, 2018, 563(7730): 249-253.
[71] BURNS A, ILIFFE S. Alzheimer's Disease [J]. Bmj-British Medical Journal, 2009, 338.
[72] SHAFIK A M, ZHANG F R, GUO Z X, et al. N6-Methyladenosine Dynamics in Neurodevelopment and Aging, and Its Potential Role in Alzheimer's Disease [J]. Genome Biology, 2021, 22(1).
[73] HAN M, LIU Z, XU Y Y, et al. Abnormality of M6a Mrna Methylation Is Involved in Alzheimer's Disease [J]. Frontiers in Neuroscience, 2020, 14.
[74] ZHAO F P, XU Y, GAO S C, et al. Mettl3-Dependent Rna M(6)a Dysregulation Contributes to Neurodegeneration in Alzheimer's Disease through Aberrant Cell Cycle Events [J]. Molecular Neurodegeneration, 2021, 16(1).
[75] MARINO B L B, DE SOUZA L R, SOUSA K P A, et al. Parkinson's Disease: A Review from Pathophysiology to Treatment [J]. Mini-Reviews in Medicinal Chemistry, 2020, 20(9): 754-767.
[76] CHEN X C, YU C Y, GUO M J, et al. Down-Regulation of M6a Mrna Methylation Is Involved in Dopaminergic Neuronal Death [J]. Acs Chemical Neuroscience, 2019, 10(5): 2355-2363.
[77] SELBERG S, YU L Y, BONDARENKO O, et al. Small-Molecule Inhibitors of the Rna M6a Demethylases Fto Potently Support the Survival of Dopamine Neurons [J]. International Journal of Molecular Sciences, 2021, 22(9): 4537.
[78] CENTANIN L, WITTBRODT J. Retinal Neurogenesis [J]. Development, 2014, 141(2): 241-244.
[79] CEPKO C. Intrinsically Different Retinal Progenitor Cells Produce Specific Types of Progeny [J]. Nature Reviews Neuroscience, 2014, 15(9): 615-627.
[80] LIVESEY F J, CEPKO C L. Vertebrate Neural Cell-Fate Determination: Lessons from the Retina [J]. Nature Reviews Neuroscience, 2001, 2(2): 109-118.
[81] LI L, SUN Y, DAVIS A E, et al. Mettl14-Mediated M6a Modification Ensures the Cell Cycle Progression of Late-Born Retinal Progenitor Cells [J]. bioRxiv, 2022: 2022.2006.2011.495708.
[82] XIN Y, HE Q, LIANG H, et al. M6a Epitranscriptomic Modification Regulates Neural Progenitor-to-Glial Cell Transition in the Retina [J]. bioRxiv, 2022: 2022.2005.2008.491092.
[83] YANG Y M, SHUAI P, LI X, et al. Mettl14-Mediated M6a Modification Is Essential for Visual Function and Retinal Photoreceptor Survival [J]. Bmc Biology, 2022, 20(1).
[84] LI X R, SUNG X D, CARMELIET P. Hallmarks of Endothelial Cell Metabolism in Health and Disease [J]. Cell Metabolism, 2019, 30(3): 414-433.
[85] LEE J, KIM K E, CHOI D K, et al. Angiopoietin-1 Guides Directional Angiogenesis through Integrin Alpha(V)Beta(5) Signaling for Recovery of Ischemic Retinopathy [J]. Science Translational Medicine, 2013, 5(203).
[86] YAO M D, JIANG Q, MA Y, et al. Role of Mettl3-Dependent N-6-Methyladenosine Mrna Modification in the Promotion of Angiogenesis [J]. Molecular Therapy, 2020, 28(10): 2191-2202.
[87] PENG Y Q, WANG Z C, LI B Y, et al. N-6-Methyladenosine Modifications of Mrnas and Long Noncoding Rnas in Oxygen-Induced Retinopathy in Mice [J]. Experimental Eye Research, 2022, 220.
[88] SUO L, LIU C, ZHANG Q Y, et al. Mettl3-Mediated N-6-Methyladenosine Modification Governs Pericyte Dysfunction During Diabetes-Induced Retinal Vascular Complication [J]. Theranostics, 2022, 12(1): 277-289.
[89] FUHRMANN S, ZOU C J, LEVINE E M. Retinal Pigment Epithelium Development, Plasticity, and Tissue Homeostasis [J]. Experimental Eye Research, 2014, 123: 141-150.
[90] YIN L, MA C, HOU S P, et al. Methyltransferase-Like (Mettl)14-Mediated N6-Methyladenosine Modification Modulates Retinal Pigment Epithelial (Rpe) Activity by Regulating the Methylation of Microtubule-Associated Protein (Map)2 [J]. Bioengineered, 2022, 13(3): 4773-4785.
[91] MA X Q, LONG C D, WANG F Y, et al. Mettl3 Attenuates Proliferative Vitreoretinopathy and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells Via Wnt/Beta-Catenin Pathway [J]. Journal of Cellular and Molecular Medicine, 2021, 25(9): 4220-4234.
[92] ZHA X, XI X T, FAN X Y, et al. Overexpression of Mettl3 Attenuates HighGlucose Induced Rpe Cell Pyroptosis by Regulating Mir-25-3p/Pten/Akt Signaling Cascade through Dgcr8 [J]. Aging-Us, 2020, 12(9): 8137-8150.
[93] QU X L, ZHU K X, LI Z X, et al. The Alteration of M6a-Tagged Transcript Profiles in the Retina of Rats after Traumatic Optic Neuropathy [J]. Frontiers in Genetics, 2021, 12.
[94] GRUNERT U, MARTIN P R. Cell Types and Cell Circuits in Human and Non-Human Primate Retina [J]. Progress in Retinal and Eye Research, 2020, 78.
[95] MASLAND R H. The Fundamental Plan of the Retina [J]. Nature Neuroscience, 2001, 4(9): 877-886.
[96] SANES J R, MASLAND R H. The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification [J]. Annual Review of Neuroscience, Vol 38, 2015, 38: 221-246.
[97] BADEN T, BERENS P, FRANKE K, et al. The Functional Diversity of Retinal Ganglion Cells in the Mouse [J]. Nature, 2016, 529(7586): 345-350.
[98] TRAN N M, SHEKHAR K, WHITNEY I E, et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes [J]. Neuron, 2019, 104(6): 1039-1055.
[99] LEVICK W R. Receptive Fields and Trigger Features of Ganglion Cells in Visual Streak of Rabbits Retina [J]. Journal of Physiology-London, 1967, 188(3): 285-307.
[100] KIM I J, ZHANG Y F, MEISTER M, et al. Laminar Restriction of Retinal Ganglion Cell Dendrites and Axons: Subtype-Specific Developmental Patterns Revealed with Transgenic Markers [J]. Journal of Neuroscience, 2010, 30(4): 1452-1462.
[101] ZHANG Y F, KIM I J, SANES J R, et al. The Most Numerous Ganglion Cell Type of the Mouse Retina Is a Selective Feature Detector [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(36): E2391-E2398.
[102] VANEY D I, SIVYER B, TAYLOR W R. Direction Selectivity in the Retina: Symmetry and Asymmetry in Structure and Function [J]. Nature Reviews Neuroscience, 2012, 13(3): 194-208.
[103] WENG S J, SUN W Z, HE S G. Identification of on-Off Direction-Selective Ganglion Cells in the Mouse Retina [J]. Journal of Physiology-London, 2005, 562(3): 915-923.
[104] KAY J N, DE LA HUERTA I, KIM I J, et al. Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections [J]. Journal of Neuroscience, 2011, 31(21): 7753-7762.
[105] SUN W Z, DENG Q D, LEVICK W R, et al. On Direction-Selective Ganglion Cells in the Mouse Retina [J]. Journal of Physiology-London, 2006, 576(1): 197-202.
[106] YAMAGATA M, SANES J R. Dscam and Sidekick Proteins Direct LaminaSpecific Synaptic Connections in Vertebrate Retina [J]. Nature, 2008, 451(7177): 465-469.
[107] PANG J J, GAO F, WU S M. Light-Evoked Excitatory and Inhibitory Synaptic Inputs to on and Off Alpha Ganglion Cells in the Mouse Retina [J]. Journal of Neuroscience, 2003, 23(14): 6063-6073.
[108] DUAN X, QIAO M, BEI F F, et al. Subtype-Specific Regeneration of Retinal Ganglion Cells Following Axotomy: Effects of Osteopontin and Mtor Signaling [J]. Neuron, 2015, 85(6): 1244-1256.
[109] MUNCH M, KAWASAKI A. Intrinsically Photosensitive Retinal Ganglion Cells: Classification, Function and Clinical Implications [J]. Current Opinion in Neurology, 2013, 26(1): 45-51.
[110] ALLEN A E, STORCHI R, MARTIAL F P, et al. Melanopsin-Driven Light Adaptation in Mouse Vision [J]. Current Biology, 2014, 24(21): 2481-2490.
[111] LEFEBVRE J L, SANES J R, KAY J N. Development of Dendritic Form and Function [J]. Annual Review of Cell and Developmental Biology, Vol 31, 2015, 31: 741-777.
[112] BLECKERT A, SCHWARTZ G W, TURNER M H, et al. Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types [J]. Current Biology, 2014, 24(3): 310-315.
[113] EYSEL U T, PEICHL L, WASSLE H. Dendritic Plasticity in the Early Postnatal Feline Retina - Quantitative Characteristics and Sensitive Period [J]. Journal of Comparative Neurology, 1985, 242(1): 134-145.
[114] LIN B, WANG S W, MASLAND R H. Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts [J]. Neuron, 2004, 43(4): 475-485.
[115] LIU J Y, REGGIANI J D S, LABOULAYE M A, et al. Tbr1 Instructs Laminar Patterning of Retinal Ganglion Cell Dendrites [J]. Nature Neuroscience, 2018, 21(5): 659-670.
[116] DI PIERDOMENICO J, HENDERSON D C M, GIAMMARIA S, et al. Age and Intraocular Pressure in Murine Experimental Glaucoma [J]. Progress in Retinal and Eye Research, 2022, 88.
[117] QUIGLEY H A. Glaucoma [J]. Lancet, 2011, 377(9774): 1367-1377.
[118] LI Z W, LIU S, WEINREB R N, et al. Tracking Dendritic Shrinkage of Retinal Ganglion Cells after Acute Elevation of Intraocular Pressure [J]. Investigative Ophthalmology & Visual Science, 2011, 52(10): 7205-7212.
[119] WILLIAMS P A, HOWELL G R, BARBAY J M, et al. Retinal Ganglion Cell Dendritic Atrophy in Dba/2j Glaucoma [J]. PLoS One, 2013, 8(8).
[120] FENG L, ZHAO Y, YOSHIDA M, et al. Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location [J]. Investigative Ophthalmology & Visual Science, 2013, 54(2): 1106-1117.
[121] DELLA SANTINA L, INMAN D M, LUPIEN C B, et al. Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma [J]. Journal of Neuroscience, 2013, 33(44): 17444-17457.
[122] LEUNG C K S, WEINREB R N, LI Z W, et al. Long-Term in Vivo Imaging and Measurement of Dendritic Shrinkage of Retinal Ganglion Cells [J]. Investigative Ophthalmology & Visual Science, 2011, 52(3): 1539-1547.
[123] EL-DANAF R N, HUBERMAN A D. Characteristic Patterns of Dendritic Remodeling in Early-Stage Glaucoma: Evidence from Genetically Identified Retinal Ganglion Cell Types [J]. Journal of Neuroscience, 2015, 35(6): 2329-2343.
[124] OU Y, JO R E, ULLIAN E M, et al. Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension [J]. Journal of Neuroscience, 2016, 36(35): 9240-9252.
[125] FRY L E, FAHY E, CHRYSOSTOMOU V, et al. The Coma in Glaucoma: Retinal Ganglion Cell Dysfunction and Recovery [J]. Progress in Retinal and Eye Research, 2018, 65: 77-92.
[126] HUANG H J, ZHANG G P, RUAN G X, et al. Mettl14-Mediated M6a Modification Is Essential for Germinal Center B Cell Response [J]. Journal of Immunology, 2022, 208(9): 1924-1936.
[127] XIE Z, SRIVASTAVA D P, PHOTOWALA H, et al. Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines [J]. Neuron, 2007, 56(4): 640-656.
[128] YAN Y, EIPPER B A, MAINS R E. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching [J]. Cerebral Cortex, 2015, 25(10): 3487-3501.
[129] BREITMAN M, ZILBERBERG A, CASPI M, et al. The Armadillo Repeat Domain of the Apc Tumor Suppressor Protein Interacts with Striatin Family Members [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2008, 1783(10): 1792-1802.
[130] SHIM S Y, WANG J, ASADA N, et al. Protein 600 Is a Microtubule/Endoplasmic Reticulum-Associated Protein in Cns Neurons [J]. Journal of Neuroscience, 2008, 28(14): 3604-3614.
[131] MAINS R E, KIRALY D D, EIPPER-MAINS J E, et al. Kalrn Promoter Usage and Isoform Expression Respond to Chronic Cocaine Exposure [J]. Bmc Neuroscience, 2011, 12.
[132] DOBIN A, DAVIS C A, SCHLESINGER F, et al. Star: Ultrafast Universal Rna-Seq Aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[133] ANDERS S, PYL P T, HUBER W. Htseq-a Python Framework to Work with High-Throughput Sequencing Data [J]. Bioinformatics, 2015, 31(2): 166-169.
[134] SCHINDELIN J, ARGANDA-CARRERAS I, FRISE E, et al. Fiji: An OpenSource Platform for Biological-Image Analysis [J]. Nature Methods, 2012, 9(7): 676-682.
[135] WINZELER A, WANG J T. Purification and Culture of Retinal Ganglion Cells from Rodents [J]. Cold Spring Harbor Protocols, 2013, 2013(7): 643-652.
[136] KECHAD A, JOLICOEUR C, TUFFORD A, et al. Numb Is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina [J]. Journal of Neuroscience, 2012, 32(48): 17197-17210.
[137] SERGEEVA E G, ESPINOSA-GARCIA C, ATIF F, et al. Neurosteroid Allopregnanolone Reduces Ipsilateral Visual Cortex Potentiation Following Unilateral Optic Nerve Injury [J]. Experimental Neurology, 2018, 306: 138-148.
[138] DOUGLAS R M, ALAM N M, SILVER B D, et al. Independent Visual Threshold Measurements in the Two Eyes of Freely Moving Rats and Mice Using a Virtual-Reality Optokinetic System [J]. Visual Neuroscience, 2005, 22(5): 677-684.
[139] BINLEY K E, NG W S, TRIBBLE J R, et al. Sholl Analysis: A Quantitative Comparison of Semi-Automated Methods [J]. Journal of Neuroscience Methods, 2014, 225: 65-70.
[140] IPPOLITO D M, EROGLU C. Quantifying Synapses: An Immunocytochemistry-Based Assay to Quantify Synapse Number [J]. J Vis Exp, 2010, (45).
[141] YOUNG R W. Cell-Differentiation in the Retina of the Mouse [J]. Anatomical Record, 1985, 212(2): 199-205.
[142] CHERRY T J, TRIMARCHI J M, STADLER M B, et al. Development and Diversification of Retinal Amacrine Interneurons at Single Cell Resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(23): 9495-9500.
[143] TURNER D L, CEPKO C L. A Common Progenitor for Neurons and Glia Persists in Rat Retina Late in Development [J]. Nature, 1987, 328(6126): 131-136.
[144] ZAGOZEWSKI J L, ZHANG Q, EISENSTAT D D. Genetic Regulation of Vertebrate Eye Development [J]. Clinical Genetics, 2014, 86(5): 453-460.
[145] BRODIE-KOMMIT J, CLARK B S, SHI Q, et al. Atoh7-Independent Specification of Retinal Ganglion Cell Identity [J]. Science Advances, 2021, 7(11).
[146] PAN L, DENG M, XIE X L, et al. Isl1 and Brn3b Co-Regulate the Differentiation of Murine Retinal Ganglion Cells [J]. Development, 2008, 135(11): 1981-1990.
[147] RODRIGUEZ A R, MULLER L P D, BRECHA N C. The Rna Binding Protein Rbpms Is a Selective Marker of Ganglion Cells in the Mammalian Retina [J]. Journal of Comparative Neurology, 2014, 522(6): 1411-1443.
[148] ROWAN S, CEPKO C L. A Pou Factor Binding Site Upstream of the Chx 10 Homeobox Gene Is Required for Chx 10 Expression in Subsets of Retinal Progenitor Cells and Bipolar Cells [J]. Developmental Biology, 2005, 281(2): 240-255.
[149] HICKS E A, ZAVERI M, DESCHAMPS P A, et al. Conditional Deletion of Ap-2 Alpha and Ap-2 Beta in the Developing Murine Retina Leads to Altered Amacrine Cell Mosaics and Disrupted Visual Function [J]. Investigative Ophthalmology & Visual Science, 2018, 59(6): 2229-2239.
[150] MITCHELL C K, ROWERENDLEMAN C, ASHRAF S, et al. Calbindin Immunoreactivity of Horizontal Cells in the Developing Rabbit Retina [J]. Experimental Eye Research, 1995, 61(6): 691-698.
[151] LU Q, IVANOVA E, GANJAWALA T H, et al. Cre-Mediated Recombination Efficiency and Transgene Expression Patterns of Three Retinal Bipolar CellExpressing Cre Transgenic Mouse Lines [J]. Molecular vision, 2013, 19: 1310-1320.
[152] MORSHEDIAN A, WOODRUFF M L, FAIN G L. Role of Recoverin in Rod Photoreceptor Light Adaptation [J]. Journal of Physiology-London, 2018, 596(8): 1513-1526.
[153] FURUTA Y, LAGUTIN O, HOGAN B L M, et al. Retina- and Ventral Forebrain-Specific Cre Recombinase Activity in Transgenic Mice [J]. Genesis, 2000, 26(2): 130-132.
[154] KRISHNASWAMY A, YAMAGATA M, DUAN X, et al. Sidekick 2 Directs Formation of a Retinal Circuit That Detects Differential Motion [J]. Nature, 2015, 524(7566): 466-470.
[155] LUO H J, JIN K X, XIE Z H, et al. Forkhead Box N4 (Foxn4) Activates Dll4-Notch Signaling to Suppress Photoreceptor Cell Fates of Early Retinal Progenitors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): E553-E562.
[156] SAPKOTA D, CHINTALA H, WU F G, et al. Onecut1 and Onecut2 Redundantly Regulate Early Retinal Cell Fates During Development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): E4086-E4095.
[157] LI J Z, LIU F, LV Y X, et al. Prpf31 Is Essential for the Survival and Differentiation of Retinal Progenitor Cells by Modulating Alternative Splicing [J]. Nucleic Acids Research, 2021, 49(4): 2027-2043.
[158] AGATHOCLEOUS M, HARRIS W A. From Progenitors to Differentiated Cells in the Vertebrate Retina [J]. Annual Review of Cell and Developmental Biology, 2009, 25: 45-69.
[159] DE MELO J, ZIBETTI C, CLARK B S, et al. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling [J]. Journal of Neuroscience, 2016, 36(8): 2391-2405.
[160] VECINO E, RODRIGUEZ F D, RUZAFA N, et al. Glia-Neuron Interactions in the Mammalian Retina [J]. Progress in Retinal and Eye Research, 2016, 51: 1-40.
[161] CHANG G Q, SHI L, YE Y Q, et al. Ythdf3 Induces the Translation of M(6)aEnriched Gene Transcripts to Promote Breast Cancer Brain Metastasis [J]. Cancer Cell, 2020, 38(6): 857-871.
[162] BOO S H, HA H, LEE Y, et al. Upf1 Promotes Rapid Degradation of M(6)aContaining Rnas [J]. Cell Reports, 2022, 39(8).
[163] DE LA CRUZ B M, MARKUS R, MALLA S, et al. Modifying the M(6)a Brain Methylome by Alkbh5-Mediated Demethylation: A New Contender for Synaptic Tagging [J]. Molecular Psychiatry, 2021, 26(12): 7141-7153.
[164] LI A, CHEN Y S, PING X L, et al. Cytoplasmic M(6)a Reader Ythdf3 Promotes Mrna Translation [J]. Cell Research, 2017, 27(3): 444-447.
[165] WANG Y J, YANG B, LAI Q, et al. Reprogramming of M(6)a Epitranscriptome Is Crucial for Shaping of Transcriptome and Proteome in Response to Hypoxia [J]. Rna Biology, 2021, 18(1): 131-143.
[166] LIU X C, GONZALEZ G, DAI X X, et al. Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an M(6)a-Based Epitranscriptomic Mechanism [J]. Molecular Therapy, 2020, 28(12): 2593-2604.
[167] PETROSINO J M, HINGER S A, GOLUBEVA V A, et al. The M6a Methyltransferase Mettl3 Regulates Muscle Maintenance and Growth in Mice [J]. Nature Communications, 2022, 13(1): 168.
[168] PRIGGE C L, KAY J N. Dendrite Morphogenesis from Birth to Adulthood [J]. Current Opinion in Neurobiology, 2018, 53: 139-145.
[169] AGOSTINONE J, DI POLO A. Retinal Ganglion Cell Dendrite Pathology and Synapse Loss: Implications for Glaucoma [J]. New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual System, Pt A, 2015, 220: 199-216.
[170] SHOU T D, LIU J, WANG W, et al. Differential Dendritic Shrinkage of Alpha and Beta Retinal Ganglion Cells in Cats with Chronic Glaucoma [J]. Investigative Ophthalmology & Visual Science, 2003, 44(7): 3005-3010.
[171] WEBER A J, KAUFMAN P L, HUBBARD W C. Morphology of Single Ganglion Cells in the Glaucomatous Primate Retina [J]. Investigative Ophthalmology & Visual Science, 1998, 39(12): 2304-2320.
[172] MORGAN J E, DATTA A V, ERICHSEN J T, et al. Retinal Ganglion Cell Remodelling in Experimental Glaucoma [J]. Retinal Degenerative Diseases, 2006, 572: 397-402.
[173] MI X S, FENG Q, LO A C Y, et al. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension [J]. PLoS One, 2012, 7(10).
[174] WANG K, PENG B, LIN B. Fractalkine Receptor Regulates Microglial Neurotoxicity in an Experimental Mouse Glaucoma Model [J]. Glia, 2014, 62(12): 1943-1954.
[175] HATTAR S, LIAO H W, TAKAO M, et al. Melanopsin-Containing Retinal. Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity [J].Science, 2002, 295(5557): 1065-1070.
[176] TAN H Y, LI X T, HUANG K, et al. Morphological and Distributional Properties of Smi-32 Immunoreactive Ganglion Cells in the Rat Retina [J]. Journal of Comparative Neurology, 2022, 530(8): 1276-1287.
[177] WANG F, LI E, DE L, et al. Off-Transient Alpha Rgcs Mediate Looming Triggered Innate Defensive Response [J]. Current Biology, 2021, 31(11): 2263-2273.
[178] FENG G P, MELLOR R H, BERNSTEIN M, et al. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of Gfp [J]. Neuron, 2000, 28(1): 41-51.
[179] CHERRY T J, WANG S, BORMUTH I, et al. Neurod Factors Regulate Cell Fate and Neurite Stratification in the Developing Retina [J]. Journal of Neuroscience, 2011, 31(20): 7365-7379.
[180] KAY J N, VOINESCU P E, CHU M W, et al. Neurod6 Expression Defines New Retinal Amacrine Cell Subtypes and Regulates Their Fate [J]. Nature Neuroscience, 2011, 14(8): 965-972.
[181] MOSER T, GRABNER C P, SCHMITZ F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea [J]. Physiological Reviews, 2020, 100(1): 103-144.
[182] KOH S, CHEN W J, DEJNEKA N S, et al. Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Muller Glial Reactivity [J]. Journal of Neuroscience, 2018, 38(12): 2923-2943.
[183] LIU J Y, SANES J R. Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion [J]. Journal of Neuroscience, 2017, 37(50): 12247-12262.
[184] UMINO Y, SOLESSIO E, BARLOW R B. Speed, Spatial, and Temporal Tuning of Rod and Cone Vision in Mouse [J]. Journal of Neuroscience, 2008, 28(1): 189-198.
[185] PRUSKY G T, ALAM N M, BEEKMAN S, et al. Rapid Quantification of Adult and Developing Mouse Spatial Vision Using a Virtual Optomotor System [J]. Investigative Ophthalmology & Visual Science, 2004, 45(12): 4611-4616.
[186] SHI C, YUAN X D, CHANG K R, et al. Optimization of Optomotor Response-Based Visual Function Assessment in Mice [J]. Scientific Reports, 2018, 8.
[187] XIE Z, CAHILL M E, PENZES P. Kalirin Loss Results in Cortical Morphological Alterations [J]. Molecular and Cellular Neuroscience, 2010, 43(1): 81-89.
[188] HERRING B E, NICOLL R A. Kalirin and Trio Proteins Serve Critical Roles in Excitatory Synaptic Transmission and Ltp [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 2264-2269.
[189] LU J N, LUO C, BALI K K, et al. A Role for Kalirin-7 in Nociceptive Sensitization Via Activity-Dependent Modulation of Spinal Synapses [J]. Nature Communications, 2015, 6.
[190] RUSSELL T A, BLIZINSKY K D, COBIA D J, et al. A Sequence Variant in Human Kalrn Impairs Protein Function and Coincides with Reduced Cortical Thickness [J]. Nature Communications, 2014, 5.
[191] CAHILL M E, XIE Z, DAY M, et al. Kalirin Regulates Cortical Spine Morphogenesis and Disease-Related Behavioral Phenotypes (Vol 106, Pg 13058, 2009) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(39): 16890-16890.
[192] PENZES P, JOHNSON R C, SATTLER R, et al. The Neuronal Rho-Gef Kalirin-7 Interacts with Pdz Domain-Containing Proteins and Regulates Dendritic Morphogenesis [J]. Neuron, 2001, 29(1): 229-242.
[193] BENOIST M, GAILLARD S, CASTETS F. The Striatin Family: A New Signaling Platform in Dendritic Spines [J]. Journal of Physiology-Paris, 2006, 99(2-3): 146-153.
[194] LI D, MUSANTE V, ZHOU W L, et al. Striatin-1 Is a B Subunit of Protein Phosphatase Pp2a That Regulates Dendritic Arborization and Spine Development in Striatal Neurons [J]. Journal of Biological Chemistry, 2018, 293(28): 11179-11194.
[195] PARSONS K, NAKATANI Y, NGUYEN M D. P600/Ubr4 in the Central Nervous System [J]. Cellular and Molecular Life Sciences, 2015, 72(6): 1149-1160.
[196] KOBA M, KONOPA J. [Actinomycin D and Its Mechanisms of Action] [J]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2005, 59: 290-298.
[197] MAO Y, KONG Q Y, LI R R, et al. Heat Shock Protein A12a Encodes a Novel Prosurvival Pathway During Ischaemic Stroke [J]. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2018, 1864(5): 1862-1872.
[198] PONGRAC J L, MIDDLETON F A, PENG L, et al. Heat Shock Protein 12a Shows Reduced Expression in the Prefrontal Cortex of Subjects with Schizophrenia [J]. Biological Psychiatry, 2004, 56(12): 943-950.
[199] MIN X X, ZHANG X J, LI Y F, et al. Hspa12a Unstabilizes Cd147 to Inhibit Lactate Export and Migration in Human Renal Cell Carcinoma [J]. Theranostics, 2020, 10(19): 8573-8590.
[200] ALAZAMI A M, MADDIREVULA S, SEIDAHMED M Z, et al. A Novel Islr2-Linked Autosomal Recessive Syndrome of Congenital Hydrocephalus, Arthrogryposis and Abdominal Distension [J]. Human Genetics, 2019, 138(1): 105-107.
[201] ABUDUREYIMU S, ASAI N, ENOMOTO A, et al. Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure [J]. Scientific Reports, 2018, 8.
Edit Comment