中文版 | English
Title

m6A修饰调控小鼠视网膜神经发育和退行性病变的机制研究

Alternative Title
REGULATION OF MOUSE RETINAL NEURODEVELOPMENT AND NEURODEGENERATIVE DISEASE BY m6A MODIFICATION
Author
Name pinyin
NIU Fugui
School number
11849496
Degree
博士
Discipline
083100 生物医学工程
Subject category of dissertation
08 工学
Supervisor
姬生健
Mentor unit
神经生物学系
Publication Years
2022-10-27
Submission date
2023-03-17
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

N6-甲基腺嘌呤 (m6A) 修饰是信使核糖核酸(mRNA)中最丰富的化学修饰。m6A甲基化转移酶和去甲基化酶动态调控m6A修饰水平,m6A阅读器蛋白识别、介导m6A修饰的功能。YTH结构域家族蛋白--YTHDF1、YTHDF2和YTHDF3是主要的m6A阅读器蛋白。传统观点认为YTHDF1调控mRNA翻译,YTHDF2促进mRNA降解,YTHDF3协同辅助YTHDF1和YTHDF2的功能;然而最新的观点则认为YTHDF1/2/3冗余地调控mRNA稳定性从而影响生理功能。研究表明m6A修饰可以调节大脑皮层和小脑等区域的神经发育过程,但以视网膜为模型,对m6A修饰在神经元产生和视觉神经环路形成中的功能研究仍然有待进行。视网膜神经节细胞作为视网膜中唯一能够将神经信号传递到大脑的神经元类型,其树突发育对于接收和整合视觉信号极为重要。此外,视网膜神经节细胞的退行性病变和死亡也是青光眼疾病发生中的重要表征,同时其树突衰退与青光眼的疾病发生也有着密切联系,因此探究m6A修饰在视网膜神经节细胞树突发育乃至青光眼疾病发生过程的影响同样尤为重要。

本研究采用Six3-cre在视网膜中条件性敲除的m6A甲基转移酶基因Mettl14,通过组织切片与免疫荧光分析了Mettl14缺失后视网膜神经元产生的变化。实验结果表明:缺失Mettl14会导致视网膜前体细胞增殖后延,无长突细胞和双极细胞等后期神经元的产生受阻,以及视网膜片层化结构紊乱等视网膜发育异常。此外,m6A阅读器蛋白Ythdf1/2/3的单独缺失和Ythdf1/2双重敲除均不影响视网膜神经元产生过程,只有Ythdf1/2/3三重敲除的小鼠视网膜才能重现Mettl14敲除后神经元产生的发育异常。小鼠视网膜YTHDF1和YTHDF2 RIP-seq基因功能注释分析结果表明YTHDF1和YTHDF2共同调控一批与神经元产生相关的靶mRNAs,进一步证明了YTHDF1/2/3在调控视网膜神经元产生过程中具有冗余性。

针对YTHDF2在视网膜神经节细胞中的高表达,本研究继续探索了YTHDF2在视网膜神经节细胞树突发育过程中的作用。通过体外原代培养的视网膜细胞和Ythdf2 条件性敲除小鼠视网膜铺片,证明了YTHDF2缺失会导致视网膜神经节细胞的树突分支明显增加。通过组织切片分析和视动反应行为学实验,发现Ythdf2条件性敲除会导致视网膜内丛状层变厚并产生更多的突触,并且能够轻微提升小鼠视动反应的能力。结合YTHDF2 RIP-seq和Ythdf2敲低后蛋白质组质谱的结果,本研究鉴定了YTHDF2的靶mRNAs--KalrnStrnUbr4;证明了YTHDF2能够识别与结合这些m6A修饰的mRNAs,促进靶mRNAs的降解进而影响蛋白表达水平。研究在体外条件下明确了Kalrn、StrnUbr4能够调控视网膜神经节细胞树突发育,还通过体外培养和玻璃体腔AAV感染等实验,证明了干扰YTHDF2靶mRNAs的表达能够有效地拯救YTHDF2缺失引起的视网膜神经节细胞树突分支增加的现象。

本研究最后利用急性高眼压这一青光眼病理模型,分析了YTHDF2及其靶mRNAs在青光眼疾病发生中的功能和机制。研究发现YTHDF2在急性高眼压模型中表达量上升,条件性敲除Ythdf2能够有效缓解急性高眼压导致的视网膜神经节细胞的树突衰退和细胞凋亡。本研究还鉴定了YTHDF2在青光眼模型中的另一组靶mRNAs--Hapa12aIslr2,其表达水平在急性高眼压模型中下降;AAV过表达Hapa12aIslr2则能够增强视网膜神经节细胞对急性高眼压诱发的病理性变性的抵御能力。

本研究发现了m6A修饰可以调控视网膜神经元产生,证实了m6A阅读器蛋白YTHDF1/2/3在介导m6A修饰调控神经元产生中存在冗余性。这些结果有助于更好地理解m6A阅读器蛋白作用的分子协助机制,对理解不同的m6A阅读器蛋白在神经元产生中的功能关系也有着重要意义。此外,本研究还阐明了YTHDF2参与调控视网膜神经节细胞树突发育和青光眼疾病发生的分子机制,证明了YTHDF2与m6A修饰能够介导调节视网膜神经节细胞树突发育和维持过程,YTHDF2及其靶mRNAs在青光眼疾病发生中的功能对于开发新的治疗手段也很有价值。

Other Abstract

N6-methyladenosine (m6A) modification, as the most abundant chemical modification on mRNA, is dynamically regulated by its "writers" and "erasers", and recognized by its "readers". The YTH domain family proteins are the most important m6A readers. In the traditional theory, YTHDF1 regulates mRNA translation, YTHDF2 enhances mRNA degradation, and YTHDF3 acts as the helper proteins cooperating with YTHDF1 and YTHDF2. However, some initial studies have suggested that YTHDF1/2/3 functions redundantly to regulate mRNA stability and functions. Recent studies have shown that m6A modification regulates neurogenesis in the cortex and cerebellum, but how m6A modification regulates retinal neurogenesis and neural circuit formation is still unknown. Retinal ganglion cells (RGCs) are the last and only output neurons of the vertebrate retina and their dendrites collect and integrate electrical information concerning the visual signal from all the other cells preceding them. Furthermore, death of RGCs is a feature of glaucoma processes and degeneration of RGC dendrites is closely related to glaucoma processes. Exploring the function of m6A modification in RGC dendrite development and even glaucoma processes is of great importance.

In this study, the m6A writer Mettl14 was conditionally knocked out by Six3-cre in the retina, and immunostaining of tissue sections was applied to identify differences in retinal neurogenesis after METTL14 depletion. It reveals that deletion of METTL14 leads to severely impaired retinal neurogenesis, including delayed proliferation of retinal progenitors, decreased generation of late-born neurons amacrine cells and bipolar cells, and deformed retinal patterning. Single deletion of Ythdf1/2/3 or double deletion of Ythdf1/2 did not affect retinal neurogenesis. Only triple knockout of Ythdf1/2/3 recapitulated defects in retinal neurogenesis caused by conditional knockout of Mettl14 in the retina. Gene ontology of genes identified by anti-YTHDF1 and anti-YTHDF2 RNA immunoprecipitation followed by RNA sequencing of elutes (RIP-seq) demonstrated that YTHDF1 and YTHDF2 share a large pool of target mRNAs related to neurogenesis in the mouse retina, supporting their redundant functions in mediating m6A regulation of retinal neurogenesis.

This study discovered the function of YTHDFs in the development of RGC dendrites. Results of primary cultured RGCs and retinal Ythdf2 cKO immunofluorescence (IF) showed that loss of YTHDF2 increased branching of RGC dendrites. Using tissue analysis and optomotor testing, it was elucidated that deletion of Ythdf2 increased synapses in the inner plexiform layer and slightly improved visual ability in mice. By anti-YTHDF2 RIP-seq and protein mass spectrometry after Ythdf2 knockdown, we identified Kalrn, Strn and Ubr4 as target genes of YTHDF2, revealed that YTHDF2 binds to these m6A-tagged mRNAs and enhances mRNA degradation to regulate mRNA and protein expression levels. Silencing YTHDF2 target genes--Kalrn, Strn, and Ubr4 decreased RGC dendrite branching. Rescue of Ythdf2 cKO increased RGC dendrite branching by silencing YTHDF2 target genes was achieved in cultured RGCs in vitro and AAV infection in vivo.

Finally, the functions of YTHDF2 and its target genes in glaucomatous processes were identified by an acute glaucoma model caused by acute ocular hypertension (AOH). YTHDF2 expression level was increased after AOH. Knockout of Ythdf2 protected the retina from RGC dendrite degeneration and soma loss caused by AOH. Hspa12a and Islr2, as YTHDF2 target genes, were down-regulated after AOH. Overexpression of Hspa12a and Islr2 by AAV had neuroprotective roles on RGC degeneration in the glaucomatous retina.

This study confirms that the regulation of m6A modification in retinal neurogenesis is redundantly mediated by m6A reader proteins YTHDF1/2/3. It is helpful to understand the molecular mechanism of m6A reader proteins and how different m6A reader proteins mediate the regulation of m6A modification in neurogenesis. Furthermore, this study sheds light on the molecular mechanism of YTHDF2 in regulating RGC dendrite development and glaucomatous progress. It firstly reveals the perspective that YTHDF2 and m6A modification could regulate the development and maintenance of RGC dendrites. Functions of YTHDF2 and its target mRNAs in glaucomatous processes might also be valuable in developing new treatment approaches.

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] GOLDBERG A D, ALLIS C D, BERNSTEIN E. Epigenetics: A Landscape Takes Shape [J]. Cell, 2007, 128(4): 635-638.
[2] HWANG J Y, AROMOLARAN K A, ZUKIN R S. The Emerging Field of Epigenetics in Neurodegeneration and Neuroprotection [J]. Nature Reviews Neuroscience, 2017, 18(6): 347-361.
[3] YAO B, CHRISTIAN K M, HE C, et al. Epigenetic Mechanisms in Neurogenesis [J]. Nature Reviews Neuroscience, 2016, 17(9): 537-549.
[4] DOMINISSINI D. Genomics and Proteomics Roadmap to the Epitranscriptome [J]. Science, 2014, 346(6214): 1192-1192.
[5] LI X Y, XIONG X S, YI C Q. Epitranscriptome Sequencing Technologies: Decoding Rna Modifications [J]. Nature Methods, 2017, 14(1): 23-31.
[6] LIVNEH I, MOSHITCH-MOSHKOVITZ S, AMARIGLIO N, et al. The M(6)a Epitranscriptome: Transcriptome Plasticity in Brain Development and Function [J]. Nature Reviews Neuroscience, 2020, 21(1): 36-51.
[7] ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic Rna Modifications in Gene Expression Regulation [J]. Cell, 2017, 169(7): 1187-1200.
[8] JIA G F, FU Y, ZHAO X, et al. N6-Methyladenosine in Nuclear Rna Is a Major Substrate of the Obesity-Associated Fto [J]. Nature Chemical Biology, 2011, 7(12): 885-887.
[9] ZHENG G Q, DAHL J A, NIU Y M, et al. Alkbh5 Is a Mammalian Rna Demethylase That Impacts Rna Metabolism and Mouse Fertility [J]. Molecular Cell, 2013, 49(1): 18-29.
[10] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the Human and Mouse M(6)a Rna Methylomes Revealed by M(6)a-Seq [J]. Nature, 2012, 485(7397): 201-206.
[11] MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive Analysis of Mrna Methylation Reveals Enrichment in 3 ' Utrs and near Stop Codons [J]. Cell, 2012, 149(7): 1635-1646.
[12] SANEYOSHI M, HARADA F, NISHIMURA S. Isolation and Characterization of N6-Methyladenosine from Escherichia Coli Valine Transfer Rna [J]. Biochimica Et Biophysica Acta, 1969, 190(2): 264-273.
[13] IWANAMI Y, BROWN G M. Methylated Bases of Ribosomal Ribonucleic Acid from Hela Cells [J]. Archives of Biochemistry and Biophysics, 1968, 126(1): 8-15.
[14] BEEMON K, KEITH J. Localization of N6-Methyladenosine in RousSarcoma Virus Genome [J]. Journal of Molecular Biology, 1977, 113(1): 165-179.
[15] HOROWITZ S, HOROWITZ A, NILSEN T W, et al. Mapping of N-6-Methyladenosine Residues in Bovine Prolactin Messenger-Rna [J]. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1984, 81(18): 5667-5671.
[16] HE P C, HE C. M(6)a Rna Methylation: From Mechanisms to Therapeutic Potential [J]. Embo Journal, 2021, 40(3).
[17] ZACCARA S, RIES R J, JAFFREY S R. Reading, Writing and Erasing Mrna Methylation [J]. Nature Reviews Molecular Cell Biology, 2019, 20(10): 608-624.
[18] ZHAO B X S, ROUNDTREE I A, HE C. Post-Transcriptional Gene Regulation by Mrna Modifications [J]. Nature Reviews Molecular Cell Biology, 2017, 18(1): 31-42.
[19] SHI H L, WEI J B, HE C. Where, When, and How: Context-Dependent Functions of Rna Methylation Writers, Readers, and Erasers [J]. Molecular Cell, 2019, 74(4): 640-650.
[20] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. M(6)a Mrna Methylation Facilitates Resolution of Naive Pluripotency toward Differentiation [J]. Science, 2015, 347(6225): 1002-1006.
[21] SLEDZ P, JINEK M. Structural Insights into the Molecular Mechanism of the M(6)a Writer Complex [J]. Elife, 2016, 5.
[22] WANG P, DOXTADER K A, NAM Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases [J]. Molecular Cell, 2016, 63(2): 306-317.
[23] WANG X, FENG J, XUE Y, et al. Structural Basis of N-6-Adenosine Methylation by the Mettl3-Mettl14 Complex [J]. Nature, 2016, 534(7608): 575-578.
[24] PING X L, SUN B F, WANG L, et al. Mammalian Wtap Is a Regulatory Subunit of the Rna N6-Methyladenosine Methyltransferase [J]. Cell Research, 2014, 24(2): 177-189.
[25] SCHWARTZ S, MUMBACH M R, JOVANOVIC M, et al. Perturbation of M6a Writers Reveals Two Distinct Classes of Mrna Methylation at Internal and 5 ' Sites [J]. Cell Reports, 2014, 8(1): 284-296.
[26] CHURCH C, MOIR L, MCMURRAY F, et al. Overexpression of Fto Leads to Increased Food Intake and Results in Obesity [J]. Nature Genetics, 2010, 42(12): 1086-1092.
[27] FISCHER J, KOCH L, EMMERLING C, et al. Inactivation of the Fto Gene Protects from Obesity [J]. Nature, 2009, 458(7240): 894-898.
[28] GERKEN T, GIRARD C A, TUNG Y C L, et al. The Obesity-Associated Fto Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase [J]. Science, 2007, 318(5855): 1469-1472.
[29] WEI J B, LIU F G, LU Z K, et al. Differential M(6)a, M(6)a(M), and M(1)a Demethylation Mediated by Fto in the Cell Nucleus and Cytoplasm [J]. Molecular Cell, 2018, 71(6): 973-985.
[30] MAUER J, LUO X B, BLANJOIE A, et al. Reversible Methylation of M(6)a(M) in the 5 ' Cap Controls Mrna Stability [J]. Nature, 2017, 541(7637): 371-375.
[31] YU J, SHE Y C, JI S J. M(6)a Modification in Mammalian Nervous System Development, Functions, Disorders, and Injuries [J]. Frontiers in Cell and Developmental Biology, 2021, 9.
[32] FU Y, JIA G F, PANG X Q, et al. Fto-Mediated Formation of N-6-Hydroxymethyladenosine and N-6-Formyladenosine in Mammalian Rna [J]. Nature Communications, 2013, 4.
[33] MURAKAMI S, JAFFREY S R. Hidden Codes in Mrna: Control of Gene Expression by M(6)A [J]. Molecular Cell, 2022, 82(12): 2236-2251.
[34] WANG X, ZHAO B S, ROUNDTREE I A, et al. N-6-Methyladenosine Modulates Messenger Rna Translation Efficiency [J]. Cell, 2015, 161(6): 1388-1399.
[35] WANG X, LU Z K, GOMEZ A, et al. N-6-Methyladenosine-Dependent Regulation of Messenger Rna Stability [J]. Nature, 2014, 505(7481): 117-120.
[36] SHI H L, WANG X, LU Z K, et al. Ythdf3 Facilitates Translation and Decay of N-6-Methyladenosine-Modified Rna [J]. Cell Research, 2017, 27(3): 315-328.
[37] XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear M(6)a Reader Ythdc1 Regulates Mrna Splicing [J]. Molecular Cell, 2016, 61(4): 507-519.
[38] ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. Ythdc1 Mediates Nuclear Export of N-6 - Methyladenosine Methylated Mrnas [J]. Elife, 2017, 6.
[39] HSU P J, ZHU Y F, MA H H, et al. Ythdc2 Is an N-6-Methyladenosine Binding Protein That Regulates Mammalian Spermatogenesis [J]. Cell Research, 2017, 27(9): 1115-1127.
[40] LIU N A, ZHOU K I, PARISIEN M, et al. N-6-Methyladenosine Alters Rna Structure to Regulate Binding of a Low-Complexity Protein [J]. Nucleic Acids Research, 2017, 45(10): 6051-6063.
[41] HUANG H L, WENG H Y, SUN W J, et al. Recognition of Rna N-6-Methyladenosine by Igf2bp Proteins Enhances Mrna Stability and Translation [J]. Nature Cell Biology, 2018, 20(3): 285-295.
[42] ZHANG F R, KANG Y, WANG M L, et al. Fragile X Mental Retardation Protein Modulates the Stability of Its M(6)a-Marked Messenger Rna Targets [J]. Human Molecular Genetics, 2018, 27(22): 3936-3950.
[43] ZACCARA S, JAFFREY S R. A Unified Model for the Function of Ythdf Proteins in Regulating M(6)a-Modified Mrna [J]. Cell, 2020, 181(7): 1582-1595.
[44] LASMAN L, KRUPALNIK V, VIUKOV S, et al. Context-Dependent Functional Compensation between Ythdf M(6)a Reader Proteins [J]. Genes & Development, 2020, 34(19-20): 1373-1391.
[45] KONTUR C, JEONG M, CIFUENTES D, et al. Ythdf M(6)a Readers Function Redundantly During Zebrafish Development [J]. Cell Reports, 2020, 33(13).
[46] LI Y Z, BEDI R K, MOROZ-OMORI E V, et al. Structural and Dynamic Insights into Redundant Function of Ythdf Proteins [J]. Journal of Chemical Information and Modeling, 2020, 60(12): 5932-5935.
[47] CHANG M Q, LV H Y, ZHANG W L, et al. Region-Specific Rna M(6)a Methylation Represents a New Layer of Control in the Gene Regulatory Network in the Mouse Brain [J]. Open Biology, 2017, 7(9).
[48] HESS M E, HESS S, MEYER K D, et al. The Fat Mass and Obesity Associated Gene (Fto) Regulates Activity of the Dopaminergic Midbrain Circuitry [J]. Nature Neuroscience, 2013, 16(8): 1042-1048.
[49] MA C H, CHANG M Q, LV H Y, et al. Rna M(6)a Methylation Participates in Regulation of Postnatal Development of the Mouse Cerebellum [J]. Genome Biology, 2018, 19.
[50] FISHELL G, KRIEGSTEIN A R. Neurons from Radial Glia: The Consequences of Asymmetric Inheritance [J]. Current Opinion in Neurobiology, 2003, 13(1): 34-41.
[51] WOODWORTH M B, GREIG L C, KRIEGSTEIN A R, et al. Snapshot: Cortical Development [J]. Cell, 2012, 151(4): 918-918.
[52] YOON K J, RINGELING F R, VISSERS C, et al. Temporal Control of Mammalian Cortical Neurogenesis by M(6)a Methylation [J]. Cell, 2017, 171(4): 877-889.
[53] WANG Y, LI Y, YUE M H, et al. N-6-Methyladenosine Rna Modification Regulates Embryonic Neural Stem Cell Self-Renewal through Histone Modifications [J]. Nature Neuroscience, 2018, 21(2): 195-206.
[54] WANG C X, CUI G S, LIU X Y, et al. Mettl3-Mediated M(6) a Modification Is Required for Cerebellar Development [J]. Plos Biology, 2018, 16(6).
[55] DU K Z, ZHANG Z, ZENG Z W, et al. Distinct Roles of Fto and Mettl3 in Controlling Development of the Cerebral Cortex through Transcriptional and Translational Regulations [J]. Cell Death & Disease, 2021, 12(7).
[56] LI M M, ZHAO X, WANG W, et al. Ythdf2-Mediated M(6)a Mrna Clearance Modulates Neural Development in Mice [J]. Genome Biology, 2018, 19.
[57] EDENS B M, VISSERS C, SU J, et al. Fmrp Modulates Neural Differentiation through M(6)a-Dependent Mrna Nuclear Export [J]. Cell Reports, 2019, 28(4): 845-854.
[58] YU J, CHEN M X, HUANG H J, et al. Dynamic M(6)a Modification Regulates Local Translation of Mrna in Axons [J]. Nucleic Acids Research, 2018, 46(3): 1412-1423.
[59] YU J, SHE Y C, YANG L X, et al. The M(6)a Readers Ythdf1 and Ythdf2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons [J]. Advanced Science, 2021, 8(22).
[60] ZHUANG M R, LI X B, ZHU J D, et al. The M(6)a Reader Ythdf1 Regulates Axon Guidance through Translational Control of Robo3.1 Expression [J]. Nucleic Acids Research, 2019, 47(9): 4765-4777.
[61] WENG Y L, WANG X, AN R, et al. Epitranscriptomic M(6)a Regulation of Axon Regeneration in the Adult Mammalian Nervous System [J]. Neuron, 2018, 97(2): 313-325.
[62] FLAMAND M N, MEYER K D. M(6)a and Ythdf Proteins Contribute to the Localization of Select Neuronal Mrnas [J]. Nucleic Acids Research, 2022, 50(8): 4464-4483.
[63] MERKURJEV D, HONG W T, IIDA K, et al. Synaptic N-6-Methyladenosine (M(6)a) Epitranscriptome Reveals Functional Partitioning of Localized Transcripts [J]. Nature Neuroscience, 2018, 21(7): 1004-1014.
[64] ZHANG Z Y, WANG M, XIE D F, et al. Mettl3-Mediated N-6-Methyladenosine Mrna Modification Enhances Long-Term Memory Consolidation [J]. Cell Research, 2018, 28(11): 1050-1061.
[65] KORANDA J L, DORE L, SHI H L, et al. Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning [J]. Neuron, 2018, 99(2): 283-292.
[66] ENGEL M, EGGERT C, KAPLICK P M, et al. The Role of M(6)a/M-Rna Methylation in Stress Response Regulation [J]. Neuron, 2018, 99(2): 389-403.
[67] WIDAGDO J, ZHAO Q Y, KEMPEN M J, et al. Experience-Dependent Accumulation of N-6-Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice [J]. Journal of Neuroscience, 2016, 36(25): 6771-6777.
[68] WALTERS B J, MERCALDO V, GILLON C J, et al. The Role of the Rna Demethylase Fto (Fat Mass and Obesity-Associated) and Mrna Methylation in Hippocampal Memory Formation [J]. Neuropsychopharmacology, 2017, 42(7): 1502-1510.
[69] LI L P, ZANG L Q, ZHANG F R, et al. Fat Mass and Obesity-Associated (Fto) Protein Regulates Adult Neurogenesis [J]. Human Molecular Genetics, 2017, 26(13): 2398-2411.
[70] SHI H L, ZHANG X L, WENG Y L, et al. M(6)a Facilitates HippocampusDependent Learning and Memory through Ythdf1 [J]. Nature, 2018, 563(7730): 249-253.
[71] BURNS A, ILIFFE S. Alzheimer's Disease [J]. Bmj-British Medical Journal, 2009, 338.
[72] SHAFIK A M, ZHANG F R, GUO Z X, et al. N6-Methyladenosine Dynamics in Neurodevelopment and Aging, and Its Potential Role in Alzheimer's Disease [J]. Genome Biology, 2021, 22(1).
[73] HAN M, LIU Z, XU Y Y, et al. Abnormality of M6a Mrna Methylation Is Involved in Alzheimer's Disease [J]. Frontiers in Neuroscience, 2020, 14.
[74] ZHAO F P, XU Y, GAO S C, et al. Mettl3-Dependent Rna M(6)a Dysregulation Contributes to Neurodegeneration in Alzheimer's Disease through Aberrant Cell Cycle Events [J]. Molecular Neurodegeneration, 2021, 16(1).
[75] MARINO B L B, DE SOUZA L R, SOUSA K P A, et al. Parkinson's Disease: A Review from Pathophysiology to Treatment [J]. Mini-Reviews in Medicinal Chemistry, 2020, 20(9): 754-767.
[76] CHEN X C, YU C Y, GUO M J, et al. Down-Regulation of M6a Mrna Methylation Is Involved in Dopaminergic Neuronal Death [J]. Acs Chemical Neuroscience, 2019, 10(5): 2355-2363.
[77] SELBERG S, YU L Y, BONDARENKO O, et al. Small-Molecule Inhibitors of the Rna M6a Demethylases Fto Potently Support the Survival of Dopamine Neurons [J]. International Journal of Molecular Sciences, 2021, 22(9): 4537.
[78] CENTANIN L, WITTBRODT J. Retinal Neurogenesis [J]. Development, 2014, 141(2): 241-244.
[79] CEPKO C. Intrinsically Different Retinal Progenitor Cells Produce Specific Types of Progeny [J]. Nature Reviews Neuroscience, 2014, 15(9): 615-627.
[80] LIVESEY F J, CEPKO C L. Vertebrate Neural Cell-Fate Determination: Lessons from the Retina [J]. Nature Reviews Neuroscience, 2001, 2(2): 109-118.
[81] LI L, SUN Y, DAVIS A E, et al. Mettl14-Mediated M6a Modification Ensures the Cell Cycle Progression of Late-Born Retinal Progenitor Cells [J]. bioRxiv, 2022: 2022.2006.2011.495708.
[82] XIN Y, HE Q, LIANG H, et al. M6a Epitranscriptomic Modification Regulates Neural Progenitor-to-Glial Cell Transition in the Retina [J]. bioRxiv, 2022: 2022.2005.2008.491092.
[83] YANG Y M, SHUAI P, LI X, et al. Mettl14-Mediated M6a Modification Is Essential for Visual Function and Retinal Photoreceptor Survival [J]. Bmc Biology, 2022, 20(1).
[84] LI X R, SUNG X D, CARMELIET P. Hallmarks of Endothelial Cell Metabolism in Health and Disease [J]. Cell Metabolism, 2019, 30(3): 414-433.
[85] LEE J, KIM K E, CHOI D K, et al. Angiopoietin-1 Guides Directional Angiogenesis through Integrin Alpha(V)Beta(5) Signaling for Recovery of Ischemic Retinopathy [J]. Science Translational Medicine, 2013, 5(203).
[86] YAO M D, JIANG Q, MA Y, et al. Role of Mettl3-Dependent N-6-Methyladenosine Mrna Modification in the Promotion of Angiogenesis [J]. Molecular Therapy, 2020, 28(10): 2191-2202.
[87] PENG Y Q, WANG Z C, LI B Y, et al. N-6-Methyladenosine Modifications of Mrnas and Long Noncoding Rnas in Oxygen-Induced Retinopathy in Mice [J]. Experimental Eye Research, 2022, 220.
[88] SUO L, LIU C, ZHANG Q Y, et al. Mettl3-Mediated N-6-Methyladenosine Modification Governs Pericyte Dysfunction During Diabetes-Induced Retinal Vascular Complication [J]. Theranostics, 2022, 12(1): 277-289.
[89] FUHRMANN S, ZOU C J, LEVINE E M. Retinal Pigment Epithelium Development, Plasticity, and Tissue Homeostasis [J]. Experimental Eye Research, 2014, 123: 141-150.
[90] YIN L, MA C, HOU S P, et al. Methyltransferase-Like (Mettl)14-Mediated N6-Methyladenosine Modification Modulates Retinal Pigment Epithelial (Rpe) Activity by Regulating the Methylation of Microtubule-Associated Protein (Map)2 [J]. Bioengineered, 2022, 13(3): 4773-4785.
[91] MA X Q, LONG C D, WANG F Y, et al. Mettl3 Attenuates Proliferative Vitreoretinopathy and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells Via Wnt/Beta-Catenin Pathway [J]. Journal of Cellular and Molecular Medicine, 2021, 25(9): 4220-4234.
[92] ZHA X, XI X T, FAN X Y, et al. Overexpression of Mettl3 Attenuates HighGlucose Induced Rpe Cell Pyroptosis by Regulating Mir-25-3p/Pten/Akt Signaling Cascade through Dgcr8 [J]. Aging-Us, 2020, 12(9): 8137-8150.
[93] QU X L, ZHU K X, LI Z X, et al. The Alteration of M6a-Tagged Transcript Profiles in the Retina of Rats after Traumatic Optic Neuropathy [J]. Frontiers in Genetics, 2021, 12.
[94] GRUNERT U, MARTIN P R. Cell Types and Cell Circuits in Human and Non-Human Primate Retina [J]. Progress in Retinal and Eye Research, 2020, 78.
[95] MASLAND R H. The Fundamental Plan of the Retina [J]. Nature Neuroscience, 2001, 4(9): 877-886.
[96] SANES J R, MASLAND R H. The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification [J]. Annual Review of Neuroscience, Vol 38, 2015, 38: 221-246.
[97] BADEN T, BERENS P, FRANKE K, et al. The Functional Diversity of Retinal Ganglion Cells in the Mouse [J]. Nature, 2016, 529(7586): 345-350.
[98] TRAN N M, SHEKHAR K, WHITNEY I E, et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes [J]. Neuron, 2019, 104(6): 1039-1055.
[99] LEVICK W R. Receptive Fields and Trigger Features of Ganglion Cells in Visual Streak of Rabbits Retina [J]. Journal of Physiology-London, 1967, 188(3): 285-307.
[100] KIM I J, ZHANG Y F, MEISTER M, et al. Laminar Restriction of Retinal Ganglion Cell Dendrites and Axons: Subtype-Specific Developmental Patterns Revealed with Transgenic Markers [J]. Journal of Neuroscience, 2010, 30(4): 1452-1462.
[101] ZHANG Y F, KIM I J, SANES J R, et al. The Most Numerous Ganglion Cell Type of the Mouse Retina Is a Selective Feature Detector [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(36): E2391-E2398.
[102] VANEY D I, SIVYER B, TAYLOR W R. Direction Selectivity in the Retina: Symmetry and Asymmetry in Structure and Function [J]. Nature Reviews Neuroscience, 2012, 13(3): 194-208.
[103] WENG S J, SUN W Z, HE S G. Identification of on-Off Direction-Selective Ganglion Cells in the Mouse Retina [J]. Journal of Physiology-London, 2005, 562(3): 915-923.
[104] KAY J N, DE LA HUERTA I, KIM I J, et al. Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections [J]. Journal of Neuroscience, 2011, 31(21): 7753-7762.
[105] SUN W Z, DENG Q D, LEVICK W R, et al. On Direction-Selective Ganglion Cells in the Mouse Retina [J]. Journal of Physiology-London, 2006, 576(1): 197-202.
[106] YAMAGATA M, SANES J R. Dscam and Sidekick Proteins Direct LaminaSpecific Synaptic Connections in Vertebrate Retina [J]. Nature, 2008, 451(7177): 465-469.
[107] PANG J J, GAO F, WU S M. Light-Evoked Excitatory and Inhibitory Synaptic Inputs to on and Off Alpha Ganglion Cells in the Mouse Retina [J]. Journal of Neuroscience, 2003, 23(14): 6063-6073.
[108] DUAN X, QIAO M, BEI F F, et al. Subtype-Specific Regeneration of Retinal Ganglion Cells Following Axotomy: Effects of Osteopontin and Mtor Signaling [J]. Neuron, 2015, 85(6): 1244-1256.
[109] MUNCH M, KAWASAKI A. Intrinsically Photosensitive Retinal Ganglion Cells: Classification, Function and Clinical Implications [J]. Current Opinion in Neurology, 2013, 26(1): 45-51.
[110] ALLEN A E, STORCHI R, MARTIAL F P, et al. Melanopsin-Driven Light Adaptation in Mouse Vision [J]. Current Biology, 2014, 24(21): 2481-2490.
[111] LEFEBVRE J L, SANES J R, KAY J N. Development of Dendritic Form and Function [J]. Annual Review of Cell and Developmental Biology, Vol 31, 2015, 31: 741-777.
[112] BLECKERT A, SCHWARTZ G W, TURNER M H, et al. Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types [J]. Current Biology, 2014, 24(3): 310-315.
[113] EYSEL U T, PEICHL L, WASSLE H. Dendritic Plasticity in the Early Postnatal Feline Retina - Quantitative Characteristics and Sensitive Period [J]. Journal of Comparative Neurology, 1985, 242(1): 134-145.
[114] LIN B, WANG S W, MASLAND R H. Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts [J]. Neuron, 2004, 43(4): 475-485.
[115] LIU J Y, REGGIANI J D S, LABOULAYE M A, et al. Tbr1 Instructs Laminar Patterning of Retinal Ganglion Cell Dendrites [J]. Nature Neuroscience, 2018, 21(5): 659-670.
[116] DI PIERDOMENICO J, HENDERSON D C M, GIAMMARIA S, et al. Age and Intraocular Pressure in Murine Experimental Glaucoma [J]. Progress in Retinal and Eye Research, 2022, 88.
[117] QUIGLEY H A. Glaucoma [J]. Lancet, 2011, 377(9774): 1367-1377.
[118] LI Z W, LIU S, WEINREB R N, et al. Tracking Dendritic Shrinkage of Retinal Ganglion Cells after Acute Elevation of Intraocular Pressure [J]. Investigative Ophthalmology & Visual Science, 2011, 52(10): 7205-7212.
[119] WILLIAMS P A, HOWELL G R, BARBAY J M, et al. Retinal Ganglion Cell Dendritic Atrophy in Dba/2j Glaucoma [J]. PLoS One, 2013, 8(8).
[120] FENG L, ZHAO Y, YOSHIDA M, et al. Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location [J]. Investigative Ophthalmology & Visual Science, 2013, 54(2): 1106-1117.
[121] DELLA SANTINA L, INMAN D M, LUPIEN C B, et al. Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma [J]. Journal of Neuroscience, 2013, 33(44): 17444-17457.
[122] LEUNG C K S, WEINREB R N, LI Z W, et al. Long-Term in Vivo Imaging and Measurement of Dendritic Shrinkage of Retinal Ganglion Cells [J]. Investigative Ophthalmology & Visual Science, 2011, 52(3): 1539-1547.
[123] EL-DANAF R N, HUBERMAN A D. Characteristic Patterns of Dendritic Remodeling in Early-Stage Glaucoma: Evidence from Genetically Identified Retinal Ganglion Cell Types [J]. Journal of Neuroscience, 2015, 35(6): 2329-2343.
[124] OU Y, JO R E, ULLIAN E M, et al. Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension [J]. Journal of Neuroscience, 2016, 36(35): 9240-9252.
[125] FRY L E, FAHY E, CHRYSOSTOMOU V, et al. The Coma in Glaucoma: Retinal Ganglion Cell Dysfunction and Recovery [J]. Progress in Retinal and Eye Research, 2018, 65: 77-92.
[126] HUANG H J, ZHANG G P, RUAN G X, et al. Mettl14-Mediated M6a Modification Is Essential for Germinal Center B Cell Response [J]. Journal of Immunology, 2022, 208(9): 1924-1936.
[127] XIE Z, SRIVASTAVA D P, PHOTOWALA H, et al. Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines [J]. Neuron, 2007, 56(4): 640-656.
[128] YAN Y, EIPPER B A, MAINS R E. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching [J]. Cerebral Cortex, 2015, 25(10): 3487-3501.
[129] BREITMAN M, ZILBERBERG A, CASPI M, et al. The Armadillo Repeat Domain of the Apc Tumor Suppressor Protein Interacts with Striatin Family Members [J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2008, 1783(10): 1792-1802.
[130] SHIM S Y, WANG J, ASADA N, et al. Protein 600 Is a Microtubule/Endoplasmic Reticulum-Associated Protein in Cns Neurons [J]. Journal of Neuroscience, 2008, 28(14): 3604-3614.
[131] MAINS R E, KIRALY D D, EIPPER-MAINS J E, et al. Kalrn Promoter Usage and Isoform Expression Respond to Chronic Cocaine Exposure [J]. Bmc Neuroscience, 2011, 12.
[132] DOBIN A, DAVIS C A, SCHLESINGER F, et al. Star: Ultrafast Universal Rna-Seq Aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[133] ANDERS S, PYL P T, HUBER W. Htseq-a Python Framework to Work with High-Throughput Sequencing Data [J]. Bioinformatics, 2015, 31(2): 166-169.
[134] SCHINDELIN J, ARGANDA-CARRERAS I, FRISE E, et al. Fiji: An OpenSource Platform for Biological-Image Analysis [J]. Nature Methods, 2012, 9(7): 676-682.
[135] WINZELER A, WANG J T. Purification and Culture of Retinal Ganglion Cells from Rodents [J]. Cold Spring Harbor Protocols, 2013, 2013(7): 643-652.
[136] KECHAD A, JOLICOEUR C, TUFFORD A, et al. Numb Is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina [J]. Journal of Neuroscience, 2012, 32(48): 17197-17210.
[137] SERGEEVA E G, ESPINOSA-GARCIA C, ATIF F, et al. Neurosteroid Allopregnanolone Reduces Ipsilateral Visual Cortex Potentiation Following Unilateral Optic Nerve Injury [J]. Experimental Neurology, 2018, 306: 138-148.
[138] DOUGLAS R M, ALAM N M, SILVER B D, et al. Independent Visual Threshold Measurements in the Two Eyes of Freely Moving Rats and Mice Using a Virtual-Reality Optokinetic System [J]. Visual Neuroscience, 2005, 22(5): 677-684.
[139] BINLEY K E, NG W S, TRIBBLE J R, et al. Sholl Analysis: A Quantitative Comparison of Semi-Automated Methods [J]. Journal of Neuroscience Methods, 2014, 225: 65-70.
[140] IPPOLITO D M, EROGLU C. Quantifying Synapses: An Immunocytochemistry-Based Assay to Quantify Synapse Number [J]. J Vis Exp, 2010, (45).
[141] YOUNG R W. Cell-Differentiation in the Retina of the Mouse [J]. Anatomical Record, 1985, 212(2): 199-205.
[142] CHERRY T J, TRIMARCHI J M, STADLER M B, et al. Development and Diversification of Retinal Amacrine Interneurons at Single Cell Resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(23): 9495-9500.
[143] TURNER D L, CEPKO C L. A Common Progenitor for Neurons and Glia Persists in Rat Retina Late in Development [J]. Nature, 1987, 328(6126): 131-136.
[144] ZAGOZEWSKI J L, ZHANG Q, EISENSTAT D D. Genetic Regulation of Vertebrate Eye Development [J]. Clinical Genetics, 2014, 86(5): 453-460.
[145] BRODIE-KOMMIT J, CLARK B S, SHI Q, et al. Atoh7-Independent Specification of Retinal Ganglion Cell Identity [J]. Science Advances, 2021, 7(11).
[146] PAN L, DENG M, XIE X L, et al. Isl1 and Brn3b Co-Regulate the Differentiation of Murine Retinal Ganglion Cells [J]. Development, 2008, 135(11): 1981-1990.
[147] RODRIGUEZ A R, MULLER L P D, BRECHA N C. The Rna Binding Protein Rbpms Is a Selective Marker of Ganglion Cells in the Mammalian Retina [J]. Journal of Comparative Neurology, 2014, 522(6): 1411-1443.
[148] ROWAN S, CEPKO C L. A Pou Factor Binding Site Upstream of the Chx 10 Homeobox Gene Is Required for Chx 10 Expression in Subsets of Retinal Progenitor Cells and Bipolar Cells [J]. Developmental Biology, 2005, 281(2): 240-255.
[149] HICKS E A, ZAVERI M, DESCHAMPS P A, et al. Conditional Deletion of Ap-2 Alpha and Ap-2 Beta in the Developing Murine Retina Leads to Altered Amacrine Cell Mosaics and Disrupted Visual Function [J]. Investigative Ophthalmology & Visual Science, 2018, 59(6): 2229-2239.
[150] MITCHELL C K, ROWERENDLEMAN C, ASHRAF S, et al. Calbindin Immunoreactivity of Horizontal Cells in the Developing Rabbit Retina [J]. Experimental Eye Research, 1995, 61(6): 691-698.
[151] LU Q, IVANOVA E, GANJAWALA T H, et al. Cre-Mediated Recombination Efficiency and Transgene Expression Patterns of Three Retinal Bipolar CellExpressing Cre Transgenic Mouse Lines [J]. Molecular vision, 2013, 19: 1310-1320.
[152] MORSHEDIAN A, WOODRUFF M L, FAIN G L. Role of Recoverin in Rod Photoreceptor Light Adaptation [J]. Journal of Physiology-London, 2018, 596(8): 1513-1526.
[153] FURUTA Y, LAGUTIN O, HOGAN B L M, et al. Retina- and Ventral Forebrain-Specific Cre Recombinase Activity in Transgenic Mice [J]. Genesis, 2000, 26(2): 130-132.
[154] KRISHNASWAMY A, YAMAGATA M, DUAN X, et al. Sidekick 2 Directs Formation of a Retinal Circuit That Detects Differential Motion [J]. Nature, 2015, 524(7566): 466-470.
[155] LUO H J, JIN K X, XIE Z H, et al. Forkhead Box N4 (Foxn4) Activates Dll4-Notch Signaling to Suppress Photoreceptor Cell Fates of Early Retinal Progenitors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): E553-E562.
[156] SAPKOTA D, CHINTALA H, WU F G, et al. Onecut1 and Onecut2 Redundantly Regulate Early Retinal Cell Fates During Development [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): E4086-E4095.
[157] LI J Z, LIU F, LV Y X, et al. Prpf31 Is Essential for the Survival and Differentiation of Retinal Progenitor Cells by Modulating Alternative Splicing [J]. Nucleic Acids Research, 2021, 49(4): 2027-2043.
[158] AGATHOCLEOUS M, HARRIS W A. From Progenitors to Differentiated Cells in the Vertebrate Retina [J]. Annual Review of Cell and Developmental Biology, 2009, 25: 45-69.
[159] DE MELO J, ZIBETTI C, CLARK B S, et al. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling [J]. Journal of Neuroscience, 2016, 36(8): 2391-2405.
[160] VECINO E, RODRIGUEZ F D, RUZAFA N, et al. Glia-Neuron Interactions in the Mammalian Retina [J]. Progress in Retinal and Eye Research, 2016, 51: 1-40.
[161] CHANG G Q, SHI L, YE Y Q, et al. Ythdf3 Induces the Translation of M(6)aEnriched Gene Transcripts to Promote Breast Cancer Brain Metastasis [J]. Cancer Cell, 2020, 38(6): 857-871.
[162] BOO S H, HA H, LEE Y, et al. Upf1 Promotes Rapid Degradation of M(6)aContaining Rnas [J]. Cell Reports, 2022, 39(8).
[163] DE LA CRUZ B M, MARKUS R, MALLA S, et al. Modifying the M(6)a Brain Methylome by Alkbh5-Mediated Demethylation: A New Contender for Synaptic Tagging [J]. Molecular Psychiatry, 2021, 26(12): 7141-7153.
[164] LI A, CHEN Y S, PING X L, et al. Cytoplasmic M(6)a Reader Ythdf3 Promotes Mrna Translation [J]. Cell Research, 2017, 27(3): 444-447.
[165] WANG Y J, YANG B, LAI Q, et al. Reprogramming of M(6)a Epitranscriptome Is Crucial for Shaping of Transcriptome and Proteome in Response to Hypoxia [J]. Rna Biology, 2021, 18(1): 131-143.
[166] LIU X C, GONZALEZ G, DAI X X, et al. Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an M(6)a-Based Epitranscriptomic Mechanism [J]. Molecular Therapy, 2020, 28(12): 2593-2604.
[167] PETROSINO J M, HINGER S A, GOLUBEVA V A, et al. The M6a Methyltransferase Mettl3 Regulates Muscle Maintenance and Growth in Mice [J]. Nature Communications, 2022, 13(1): 168.
[168] PRIGGE C L, KAY J N. Dendrite Morphogenesis from Birth to Adulthood [J]. Current Opinion in Neurobiology, 2018, 53: 139-145.
[169] AGOSTINONE J, DI POLO A. Retinal Ganglion Cell Dendrite Pathology and Synapse Loss: Implications for Glaucoma [J]. New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual System, Pt A, 2015, 220: 199-216.
[170] SHOU T D, LIU J, WANG W, et al. Differential Dendritic Shrinkage of Alpha and Beta Retinal Ganglion Cells in Cats with Chronic Glaucoma [J]. Investigative Ophthalmology & Visual Science, 2003, 44(7): 3005-3010.
[171] WEBER A J, KAUFMAN P L, HUBBARD W C. Morphology of Single Ganglion Cells in the Glaucomatous Primate Retina [J]. Investigative Ophthalmology & Visual Science, 1998, 39(12): 2304-2320.
[172] MORGAN J E, DATTA A V, ERICHSEN J T, et al. Retinal Ganglion Cell Remodelling in Experimental Glaucoma [J]. Retinal Degenerative Diseases, 2006, 572: 397-402.
[173] MI X S, FENG Q, LO A C Y, et al. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension [J]. PLoS One, 2012, 7(10).
[174] WANG K, PENG B, LIN B. Fractalkine Receptor Regulates Microglial Neurotoxicity in an Experimental Mouse Glaucoma Model [J]. Glia, 2014, 62(12): 1943-1954.
[175] HATTAR S, LIAO H W, TAKAO M, et al. Melanopsin-Containing Retinal. Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity [J].Science, 2002, 295(5557): 1065-1070.
[176] TAN H Y, LI X T, HUANG K, et al. Morphological and Distributional Properties of Smi-32 Immunoreactive Ganglion Cells in the Rat Retina [J]. Journal of Comparative Neurology, 2022, 530(8): 1276-1287.
[177] WANG F, LI E, DE L, et al. Off-Transient Alpha Rgcs Mediate Looming Triggered Innate Defensive Response [J]. Current Biology, 2021, 31(11): 2263-2273.
[178] FENG G P, MELLOR R H, BERNSTEIN M, et al. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of Gfp [J]. Neuron, 2000, 28(1): 41-51.
[179] CHERRY T J, WANG S, BORMUTH I, et al. Neurod Factors Regulate Cell Fate and Neurite Stratification in the Developing Retina [J]. Journal of Neuroscience, 2011, 31(20): 7365-7379.
[180] KAY J N, VOINESCU P E, CHU M W, et al. Neurod6 Expression Defines New Retinal Amacrine Cell Subtypes and Regulates Their Fate [J]. Nature Neuroscience, 2011, 14(8): 965-972.
[181] MOSER T, GRABNER C P, SCHMITZ F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea [J]. Physiological Reviews, 2020, 100(1): 103-144.
[182] KOH S, CHEN W J, DEJNEKA N S, et al. Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Muller Glial Reactivity [J]. Journal of Neuroscience, 2018, 38(12): 2923-2943.
[183] LIU J Y, SANES J R. Cellular and Molecular Analysis of Dendritic Morphogenesis in a Retinal Cell Type That Senses Color Contrast and Ventral Motion [J]. Journal of Neuroscience, 2017, 37(50): 12247-12262.
[184] UMINO Y, SOLESSIO E, BARLOW R B. Speed, Spatial, and Temporal Tuning of Rod and Cone Vision in Mouse [J]. Journal of Neuroscience, 2008, 28(1): 189-198.
[185] PRUSKY G T, ALAM N M, BEEKMAN S, et al. Rapid Quantification of Adult and Developing Mouse Spatial Vision Using a Virtual Optomotor System [J]. Investigative Ophthalmology & Visual Science, 2004, 45(12): 4611-4616.
[186] SHI C, YUAN X D, CHANG K R, et al. Optimization of Optomotor Response-Based Visual Function Assessment in Mice [J]. Scientific Reports, 2018, 8.
[187] XIE Z, CAHILL M E, PENZES P. Kalirin Loss Results in Cortical Morphological Alterations [J]. Molecular and Cellular Neuroscience, 2010, 43(1): 81-89.
[188] HERRING B E, NICOLL R A. Kalirin and Trio Proteins Serve Critical Roles in Excitatory Synaptic Transmission and Ltp [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 2264-2269.
[189] LU J N, LUO C, BALI K K, et al. A Role for Kalirin-7 in Nociceptive Sensitization Via Activity-Dependent Modulation of Spinal Synapses [J]. Nature Communications, 2015, 6.
[190] RUSSELL T A, BLIZINSKY K D, COBIA D J, et al. A Sequence Variant in Human Kalrn Impairs Protein Function and Coincides with Reduced Cortical Thickness [J]. Nature Communications, 2014, 5.
[191] CAHILL M E, XIE Z, DAY M, et al. Kalirin Regulates Cortical Spine Morphogenesis and Disease-Related Behavioral Phenotypes (Vol 106, Pg 13058, 2009) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(39): 16890-16890.
[192] PENZES P, JOHNSON R C, SATTLER R, et al. The Neuronal Rho-Gef Kalirin-7 Interacts with Pdz Domain-Containing Proteins and Regulates Dendritic Morphogenesis [J]. Neuron, 2001, 29(1): 229-242.
[193] BENOIST M, GAILLARD S, CASTETS F. The Striatin Family: A New Signaling Platform in Dendritic Spines [J]. Journal of Physiology-Paris, 2006, 99(2-3): 146-153.
[194] LI D, MUSANTE V, ZHOU W L, et al. Striatin-1 Is a B Subunit of Protein Phosphatase Pp2a That Regulates Dendritic Arborization and Spine Development in Striatal Neurons [J]. Journal of Biological Chemistry, 2018, 293(28): 11179-11194.
[195] PARSONS K, NAKATANI Y, NGUYEN M D. P600/Ubr4 in the Central Nervous System [J]. Cellular and Molecular Life Sciences, 2015, 72(6): 1149-1160.
[196] KOBA M, KONOPA J. [Actinomycin D and Its Mechanisms of Action] [J]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2005, 59: 290-298.
[197] MAO Y, KONG Q Y, LI R R, et al. Heat Shock Protein A12a Encodes a Novel Prosurvival Pathway During Ischaemic Stroke [J]. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2018, 1864(5): 1862-1872.
[198] PONGRAC J L, MIDDLETON F A, PENG L, et al. Heat Shock Protein 12a Shows Reduced Expression in the Prefrontal Cortex of Subjects with Schizophrenia [J]. Biological Psychiatry, 2004, 56(12): 943-950.
[199] MIN X X, ZHANG X J, LI Y F, et al. Hspa12a Unstabilizes Cd147 to Inhibit Lactate Export and Migration in Human Renal Cell Carcinoma [J]. Theranostics, 2020, 10(19): 8573-8590.
[200] ALAZAMI A M, MADDIREVULA S, SEIDAHMED M Z, et al. A Novel Islr2-Linked Autosomal Recessive Syndrome of Congenital Hydrocephalus, Arthrogryposis and Abdominal Distension [J]. Human Genetics, 2019, 138(1): 105-107.
[201] ABUDUREYIMU S, ASAI N, ENOMOTO A, et al. Essential Role of Linx/Islr2 in the Development of the Forebrain Anterior Commissure [J]. Scientific Reports, 2018, 8.

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
Q189
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/501551
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
牛富贵. m6A修饰调控小鼠视网膜神经发育和退行性病变的机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849496-牛富贵-生物系.pdf(12010KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[牛富贵]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[牛富贵]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[牛富贵]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.