中文版 | English

Long-Term In Vivo Glucose Monitoring by Luminescent Nanoparticles

Name pinyin
LIU Jing
School number
Biomedical Sciences
Mentor unit
Publication Years
Submission date
Place of Publication

Diabetes mellitus is a chronic and noncommunicable disease with complications found in the retina, heart, kidneys and neural system. Effective monitoring of blood glucose levels is an important tool for the prevention, diagnosis and management of diabetes. Optical sensors with an extended service time and infection risk mitigation have attracted a great deal of research interest in continuous glucose detection. However, their practical application for glucose monitoring is still constrained by the side effects of ultraviolet excitation light and operational reliability in subcutaneous tissues. Herein, glucose transducers were engineered with an optimized excitation wavelength and injectable platform.

We developed a continuous glucose monitoring system based on a visible-light excited nanoparticle transducer. We experimentally demonstrated that the nanoparticle transducer showed promise for sensitive glucose detection. The visible-light-excited transducer demonstrated potential in long-term and high-frequency monitoring in practical applications with reduced side effects compared with ultraviolet radiation.

Furthermore, we showed an implantable hydrogel platform embedded with luminescent polymer dots (Pdots) for sensitive and long-term glucose monitoring. We used Pdots in a polyacrylamide hydrogel matrix to construct an implantable transducer. The hydrogel-Pdot transducer showed bright luminescence with a ratiometric response to glucose changes. The in vitro and in vivo sensitivities of the hydrogel implant were enhanced by varying the enzyme concentration and injection volume. After implantation, the hydrogel with the Pdot transducer remained at the implant site for 1 month without migration and could be removed from the subcutaneous tissue for further analysis.

Training classes
Enrollment Year
Year of Degree Awarded
References List

Aberer, F., Hajnsek, M., Rumpler, M., Zenz, S., Baumann, P. M., Elsayed, H., . . . Mader, J. K. (2017). Evaluation of Subcutaneous Glucose Monitoring Systems Under Routine Environmental Conditions in Patients with Type 1 Diabetes. Diabetes, Obes. Metab., 19(7), 1051-1055. doi:10.1111/dom.12907Aguilar, L. M. C., Duchi, S., Onofrillo, C., O'Connell, C. D., Di Bella, C., & Moulton, S. E. (2021). Formation of Alginate Microspheres Prepared by Optimized Microfluidics Parameters for High Encapsulation of Bioactive Molecules. J. Colloid Interface Sci., 587, 240-251. doi:10.1016/j.jcis.2020.12.026Akkaya, I., Selim, E., Altintas, M., & Engin, M. (2018). Power Spectral Density-Based Nearinfrared Sub-Band Detection for Noninvasive Blood Glucose Prediction in Both in-vitro and in-vivo Studies. J. Innovative Opt. Health Sci., 11(6), 180035. doi:10.1142/s1793545818500359Algar, W. R., Massey, M., Rees, K., Higgins, R., Krause, K. D., Darwish, G. H., . . . Kim, H. (2021). Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 121(15), 9243-9358. doi:10.1021/acs.chemrev.0c01176Amer Diabet, A. (2013). Economic Costs of Diabetes in the U.S. in 2012. Diabetes Care, 36(4), 1033-1046. doi:10.2337/dc12-2625Amer Diabet, A. (2021). 7. Diabetes Technology: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44, S85-S99. doi:10.2337/dc21-S007American Diabetes, A. (2014). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 37 Suppl 1, S81-S90. doi:10.2337/dc14-S081Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign Body Reaction to Biomaterials. Semin. Immunol., 20(2), 86-100. doi:10.1016/j.smim.2007.11.004Aslan, K., Lakowicz, J. R., & Geddes, C. D. (2004). Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Analytica Chimica Acta, 517(1-2), 139-144. doi:10.1016/j.aca.2004.04.060Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. Lancet, 383(9911), 69-82. doi:10.1016/s0140-6736(13)60591-7Awasthi, S., Gaur, J. K., Bobji, M. S., & Srivastava, C. (2022). Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. Journal of Materials Science, 57(17), 8041-8063. doi:10.1007/s10853-022-07146-3Balabiyev, A., Podolnikova, N. P., Kilbourne, J. A., Baluch, D. P., Lowry, D., Zare, A., . . . Ugarova, T. P. (2021). Fibrin Polymer on the Surface of Biomaterial Implants Drives the Foreign Body Reaction. Biomaterials, 277, 121087. doi:10.1016/j.biomaterials.2021.121087Ballerstadt, R., Evans, C., Gowda, A., & McNichols, R. (2006). In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring. Diabetes Technology & Therapeutics, 8(3), 296-311. doi:10.1089/dia.2006.8.296Ballerstadt, R., Polak, A., Beuhler, A., & Frye, J. (2004). In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring. Biosensors & Bioelectronics, 19(8), 905-914. doi:10.1016/j.bios.2003.08.019Ballerstadt, R., & Schultz, J. S. (2000). A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring. Analytical Chemistry, 72(17), 4185-4192. doi:10.1021/ac000215rBarone, P. W., Baik, S., Heller, D. A., & Strano, M. S. (2005). Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 4(1), 86-U16. doi:10.1038/nmat1276Biniek K, Levi K, & Dauskardt RH. (2012). Solar UV radiation reduces the barrier function of human skin. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 17111-17116. doi:10.1073/pnas.1206851109Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Barnighausen, T., . . . Vollmer, S. (2018). Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care, 41(5), 963-970. doi:10.2337/dc17-1962Buchanan, T. A., Xiang, A. H., & Page, K. A. (2012). Gestational diabetes mellitus: risks and management during and after pregnancy. Nature Reviews Endocrinology, 8(11), 639-649. doi:10.1038/nrendo.2012.96Buenger, D., Topuz, F., & Groll, J. (2012). Hydrogels in Sensing Applications. Prog. Polym. Sci., 37(12), 1678-1719. doi:10.1016/j.progpolymsci.2012.09.001Burnham, M. R., Turner, J. N., Szarowski, D., & Martin, D. L. (2006). Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials, 27(35), 5883-5891. doi:10.1016/j.biomaterials.2006.08.001Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T., & Hennink, W. E. (2014). Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, 190, 254-273. doi:10.1016/j.jconrel.2014.03.052Changfeng Wu, & Chiu, D. T. (2013). Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angewandte Chemie-International Edition, 52(11), 3086-3109. doi:10.1002/anie.201205133Chen, H. B., Yu, J. B., Men, X. X., Zhang, J. C., Ding, Z. Y., Jiang, Y. F., . . . Chiu, D. T. (2021). Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie-International Edition, 60(21), 12007-12012. doi:10.1002/anie.202100774Chen, H. B., Yu, J. B., Zhang, J. C., Sun, K., Ding, Z. Y., Jiang, Y. F., . . . Chiu, D. T. (2021). Monitoring Metabolites Using an NAD(P)H-sensitive Polymer Dot and a Metabolite-Specific Enzyme. Angewandte Chemie-International Edition, 60(35), 19331-19336. doi:10.1002/anie.202106156Chen S J, Wang H, Hong Y N, & Tang B Z. (2016). Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Materials Horizons, 3(4), 283-293. doi:10.1039/c6mh00060fChiefari, E., Arcidiacono, B., Foti, D., & Brunetti, A. (2017). Gestational diabetes mellitus: an updated overview. Journal of Endocrinological Investigation, 40(9), 899-909. doi:10.1007/s40618-016-0607-5Daly, A. C., Riley, L., Segura, T., & Burdick, J. A. (2020). Hydrogel microparticles for biomedical applications. Nat Rev Mater, 5(1), 20-43. doi:10.1038/s41578-019-0148-6Danne T, Nimri R, Battelino T, Bergenstal, R. M., Close, K. L., DeVries, J. H., . . . Phillip, M. (2017). International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 40(12), 1631-1640. doi:10.2337/dc17-1600Darnell, M. C., Sun, J. Y., Mehta, M., Johnson, C., Arany, P. R., Suo, Z., & Mooney, D. J. (2013). Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials, 34(33), 8042-8048. doi:10.1016/j.biomaterials.2013.06.061Dong, D. Y., Tsao, C., Hung, H. C., Yao, F. L., Tang, C. J., Niu, L. Q., . . . Jiang, S. Y. (2021). High-Strength and Fibrous Capsule–Resistant Zwitterionic Elastomers. Sci. Adv., 7, eabc5442. Doong, R. A., & Shih, H. M. (2010). Array-based titanium dioxide biosensors for ratiometric determination of glucose, glutamate and urea. Biosensors & Bioelectronics, 25(6), 1439-1446. doi:10.1016/j.bios.2009.10.044Edelman S V, Argento N B, Pettus J, & Hirsch I B. (2018). Clinical Implications of Real-time and Intermittently Scanned Continuous Glucose Monitoring. Diabetes Care, 41(11), 2265-2274. doi:10.2337/dc18-1150Elsherif, M., Hassan, M. U., Yetisen, A. K., & Butt, H. (2019). Hydrogel Optical Fibers for Continuous Glucose Monitoring. Biosens. Bioelectron., 137, 25-32. doi:10.1016/j.bios.2019.05.002Endo, H., Yonemori, Y., Musiya, K., Maita, M., Shibuya, T., Ren, H., . . . Mitsubayashi, K. (2006). A needle-type optical enzyme sensor system for determining glucose levels in fish blood. Analytica Chimica Acta, 573, 117-124. doi:10.1016/j.aca.2006.04.068Endo, T., Ikeda, R., Yanagida, Y., & Hatsuzawa, T. (2008). Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Analytica Chimica Acta, 611(2), 205-211. doi:10.1016/j.aca.2008.01.078Erathodiyil, N., Chan, H.-M., Wu, H., & Ying, J. Y. (2020). Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Materials Today, 38, 84-98. doi:10.1016/j.mattod.2020.03.024Ertekin, K., Cinar, S., Aydemir, T., & Alp, S. (2005). Glucose sensing employing fluorescent pH indicator: 4- (p-N,N-dimethylamino)benzylidene -2-phenyloxazole-5-one. Dyes and Pigments, 67(2), 133-138. doi:10.1016/j.dyepig.2004.11.001Fang X F, Chen X Z, Li R Q, Liu, Z., Chen, H., Sun, Z., . . . Wu, C. (2017). Multicolor Photo-Crosslinkable AIEgens toward Compact Nanodots for Subcellular Imaging and STED Nanoscopy. Small, 13(41), 1702128. doi:10.1002/smll.201702128Feng, X. L., Liu, L. B., Wang, S., & Zhu, D. B. (2010). Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chemical Society Reviews, 39(7), 2411-2419. doi:10.1039/b909065gGaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite Hydrogels for Biomedical Applications. Biotechnology and Bioengineering, 111(3), 441-453. doi:10.1002/bit.25160Gauthier, M. A., Luo, J., Calvet, D., Ni, C., Zhu, X. X., Garon, M., & Buschmann, M. D. (2004). Degree of crosslinking and mechanical properties of crosslinked poly(vinyl alcohol) beads for use in solid-phase organic synthesis. Polymer, 45(24), 8201-8210. doi:10.1016/j.polymer.2004.09.055Gregg, E. W., Li, Y. F., Wang, J., Burrows, N. R., Ali, M. K., Rolka, D., . . . Geiss, L. (2014). Changes in Diabetes-Related Complications in the United States, 1990-2010. New England Journal of Medicine, 370(16), 1514-1523. doi:10.1056/NEJMoa1310799Gregg, E. W., Sattar, N., & Ali, M. K. (2016). The Changing Face of Diabetes Complications. Lancet Diabetes Endocrinol., 4(6), 537-547. doi:10.1016/s2213-8587(16)30010-9Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., & Segura, T. (2015). Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled from Annealed Building Blocks. Nat Mater, 14(7), 737-744. doi:10.1038/nmat4294Gu, B., & Zhang, Q. (2018). Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems. Advanced Science, 5(3). doi:10.1002/advs.201700609Guan, X., Lu, B., Jin, Q., Li, Z., Wang, L., Wang, K., . . . Lei, Z. (2018). AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging. Industrial & Engineering Chemistry Research, 57(44), 14889-14898. doi:10.1021/acs.iecr.8b03776Gyles, D. A., Castro, L. D., Silva, J. O. C., & Ribeiro-Costa, R. M. (2017). A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal, 88, 373-392. doi:10.1016/j.eurpolymj.2017.01.027Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3-16. doi:10.1007/s00125-018-4711-2Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 54(1), 13-36. doi:10.1016/s0169-409x(01)00240-xHeo Y J, Shibata H, Okitsu T, Kawanishi, T., & Takeuchi, S. (2011). Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13399-13403. doi:10.1073/pnas.1104954108Heo, Y. J., & Takeuchi, S. (2013). Towards Smart Tattoos: Implantable Biosensors for Continuous Glucose Monitoring. Adv. Healthcare Mater., 2(1), 43-56. doi:10.1002/adhm.201200167Hernandez, J. L., Park, J., Yao, S., Blakney, A. K., Nguyen, H. V., Katz, B. H., . . . Woodrow, K. A. (2021). Effect of Tissue Microenvironment on Fibrous Capsule Formation to Biomaterial-Coated Implants. Biomaterials, 273, 120806. doi:10.1016/j.biomaterials.2021.120806Hood, K. K., DiMeglio, L. A., & Riddle, M. C. (2020). Putting Continuous Glucose Monitoring to Work for People With Type 1 Diabetes. Diabetes Care, 43(1), 19-21. doi:10.2337/dci19-0054Hu, W. K., Wang, Z. J., Xiao, Y., Zhang, S. M., & Wang, J. L. (2019). Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science, 7(3), 843-855. doi:10.1039/c8bm01246fJoseph W. (2008). Electrochemical Glucose Biosensors. Chemical Reviews, 108(2), 814-825. Kharkar, P. M., Kiick, K. L., & Kloxin, A. M. (2013). Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev, 42(17), 7335-7372. doi:10.1039/c3cs60040hKim, S. K., Lee, G. H., Jeon, C., Han, H. H., Kim, S. J., Mok, J. W., . . . Hahn, S. K. (2022). Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Long-Term Robust Continuous Glucose Monitoring of Smart Contact Lens. Adv Mater, e2110536. doi:10.1002/adma.202110536Kim, Y., Hilderbrand, S. A., Weissleder, R., & Tung, C. H. (2007). Sugar sensing based on induced pH changes. Chemical Communications(22), 2299-2301. doi:10.1039/b700741hKoetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science & Engineering R-Reports, 93, 1-49. doi:10.1016/j.mser.2015.04.001Lee I, Probst D, Klonoff D, & Sode K. (2021). Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research. Biosensors & Bioelectronics, 181, 113054. doi:10.1016/j.bios.2021.113054Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nat Rev Mater, 1(12). doi:10.1038/natrevmats.2016.71Li, L., & Walt, D. R. (1995). DUAL-ANALYTE FIBEROPTIC SENSOR FOR THE SIMULTANEOUS AND CONTINUOUS MEASUREMENT OF GLUCOSE AND OXYGEN. Analytical Chemistry, 67(20), 3746-3752. doi:10.1021/ac00116a021Li, Y., Yang, H. Y., & Lee, D. S. (2021). Advances in biodegradable and injectable hydrogels for biomedical applications. Journal of Controlled Release, 330, 151-160. doi:10.1016/j.jconrel.2020.12.008Liang, Z., Zhang, J. Y., Wu, C., Hu, X. F., Lu, Y. H., Wang, G. F., . . . Wang, Y. B. (2020). Flexible and Self-Healing Electrochemical Hydrogel Sensor with High Efficiency Toward Glucose Monitoring. Biosens. Bioelectron., 155, 112105. doi:10.1016/j.bios.2020.112105Liu, J., Fang, X. F., Liu, Z. H., Li, R. Q., Yang, Y. C., Sun, Y. J., . . . Wu, C. F. (2021). Expansion Microscopy with Multifunctional Polymer Dots. Advanced Materials, 33(25). doi:10.1002/adma.202007854Liu, X. Y., Liu, J., Lin, S. T., & Zhao, X. H. (2020). Hydrogel Machines. Mater. Today, 36, 102-124. doi:10.1016/j.mattod.2019.12.026Mader, H. S., & Wolfbeis, O. S. (2008). Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchimica Acta, 162(1-2), 1-34. doi:10.1007/s00604-008-0947-8Mansouri, S., & Schultz, J. S. (1984). A MINIATURE OPTICAL GLUCOSE SENSOR BASED ON AFFINITY BINDING. Bio-Technology, 2(10), 885-890. doi:10.1038/nbt1084-885McCartney, L. J., Pickup, J. C., Rolinski, O. J., & Birch, D. J. S. (2001). Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Analytical Biochemistry, 292(2), 216-221. doi:10.1006/abio.2001.5060McIntyre, H. D., Catalano, P., Zhang, C. L., Desoye, G., Mathiesen, E. R., & Damm, P. (2019). Gestational diabetes mellitus. Nature Reviews Disease Primers, 5. doi:10.1038/s41572-019-0098-8Men, X., Wang, F., Chen, H., Liu, Y., Men, X., Yuan, Y., . . . Yuan, Z. (2020). Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Advanced Functional Materials, 30(24). doi:10.1002/adfm.201909673Menke, A., Casagrande, S., Geiss, L., & Cowie, C. C. (2015). Prevalence of and Trends in Diabetes Among Adults in the United States, 1988-2012. Jama-Journal of the American Medical Association, 314(10), 1021-1029. doi:10.1001/jama.2015.10029Mo, F. L., Jiang, K., Zhao, D., Wang, Y. Q., Song, J., & Tan, W. H. (2021). DNA hydrogel-based gene editing and drug delivery systems. Advanced Drug Delivery Reviews, 168, 79-98. doi:10.1016/j.addr.2020.07.018Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., . . . Meerholz, K. (2003). Multi-colour organic light-emitting displays by solution processing. Nature, 421(6925), 829-833. doi:10.1038/nature01390Nathan, D. M. (2015). Diabetes Advances in Diagnosis and Treatment. Jama-Journal of the American Medical Association, 314(10), 1052-1062. doi:10.1001/jama.2015.9536Nayak, S. R., & McShane, M. J. (2006). Fluorescence glucose monitoring based on transduction of enzymatically-driven pH changes within microcapsules. Sensor Letters, 4(4), 433-439. doi:10.1166/sl.2006.062Nicodemus, G. D., & Bryant, S. J. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev, 14(2), 149-165. doi:10.1089/ten.teb.2007.0332Nightingale, A. M., Leong, C. L., Burnish, R. A., Hassan, S. U., Zhang, Y., Clough, G. F., . . . Niu, X. Z. (2019). Monitoring Biomolecule Concentrations in Tissue Using a Wearable Droplet Microfluidic-Based Sensor. Nat. Commun., 10(1), 2741. doi:10.1038/s41467-019-10401-yOvchinnikov, A. N., Ogurtsov, V. I., Trettnak, W., & Papkovsky, D. B. (1999). Enzymatic flow-injection analysis of metabolites using new type of oxygen sensor membranes and phosphorescence phase measurements. Analytical Letters, 32(4), 701-716. doi:10.1080/00032719908542850Papkovsky, D. B. (1993). LUMINESCENT PORPHYRINS AS PROBES FOR OPTICAL (BIO)SENSORS. Sensors and Actuators B-Chemical, 11(1-3), 293-300. doi:10.1016/0925-4005(93)85267-ePecher, J., & Mecking, S. (2010). Nanoparticles of Conjugated Polymers. Chemical Reviews, 110(10), 6260-6279. doi:10.1021/cr100132yPiletsky, S. A., Panasyuk, T. L., Piletskaya, E. V., Sergeeva, T. A., El'skaya, A. V., Pringsheim, E., & Wolfbeis, O. S. (2000). Polyaniline-coated microtiter plates for use in longwave optical bioassays. Fresenius Journal of Analytical Chemistry, 366(8), 807-810. doi:10.1007/s002160051575Pu, K. Y., & Liu, B. (2011). Fluorescent Conjugated Polyelectrolytes for Bioimaging. Advanced Functional Materials, 21(18), 3408-3423. doi:10.1002/adfm.201101153Reisch A, & Klymchenko A S. (2016). Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small, 12(15), 1968-1992. doi:10.1002/smll.201503396Sawayama, J., Okitsu, T., Nakamata, A., Kawahara, Y., & Takeuchi, S. (2020). Hydrogel Glucose Sensor with In Vivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring. iScience, 23(6), 101243. doi:10.1016/j.isci.2020.101243Sawayama, J., & Takeuchi, S. (2020). Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor. Adv. Healthcare Mater., 10, 2001286. doi:10.1002/adhm.202001286Schaferling, M., Wu, M., & Wolfbeis, O. S. (2004). Time-resolved fluorescent imaging of glucose. Journal of Fluorescence, 14(5), 561-568. doi:10.1023/b:Jofl.0000039343.02843.12Schultz, J. S., Mansouri, S., & Goldstein, I. J. (1982). AFFINITY SENSOR - A NEW TECHNIQUE FOR DEVELOPING IMPLANTABLE SENSORS FOR GLUCOSE AND OTHER METABOLITES. Diabetes Care, 5(3), 245-253. doi:10.2337/diacare.5.3.245Selvin, E., Parrinello, C. M., Sacks, D. B., & Coresh, J. (2014). Trends in Prevalence and Control of Diabetes in the United States, 1988-1994 and 1999-2010. Annals of Internal Medicine, 160(8), 517-+. doi:10.7326/m13-2411Shibata H, Heo Y J, Okitsu T, Matsunaga, Y., Kawanishi, T., & Takeuchi, S. (2010). Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17894-17898. doi:10.1073/pnas.1006911107Steiner, M. S., Duerkop, A., & Wolfbeis, O. S. (2011). Optical Methods for Sensing Glucose. Chem. Soc. Rev., 40(9), 4805-4839. doi:10.1039/c1cs15063dSun K, Ding Z Y, Zhang J C, Chen, H. B., Qin, Y. L., Xu, S. H., . . . Chiu, D. T. (2021). Enhancing the Long-Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Advanced Healthcare Materials, 10(4), 2001019. doi:10.1002/adhm.202001019Sun K, Liu S Y, Liu J, Ding, Z. Y., Jiang, Y. F., Zhang, J. C., . . . Chiu, D. T. (2021). Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 93(4), 2359-2366. doi:10.1021/acs.analchem.0c04223Sun K, Tang Y, Li Q, Yin, S. Y., Qin, W. P., Yu, J. B., . . . Wu, C. F. (2016). In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano, 10(7), 6769-6781. doi:10.1021/acsnano.6b02386Sun K, Yang Y K, Zhou H, Sun, K., Yang, Y. K., Zhou, H., . . . Wu, C. F. (2018). Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring via a Smartphone. ACS Nano, 12(6), 5176-5184. doi:10.1021/acsnano.8b02188Tan, J., Zhang, M., Hai, Z., Wu, C., Lin, J., Kuang, W., . . . Liang, G. (2019). Sustained Release of Two Bioactive Factors from Supramolecular Hydrogel Promotes Periodontal Bone Regeneration. ACS Nano, 13(5), 5616-5622. doi:10.1021/acsnano.9b00788Teymourian, H., Barfidokht, A., & Wang, J. (2020). Electrochemical Glucose Sensors in Diabetes Management: an Updated Review (2010-2020). Chem. Soc. Rev., 49, 7671-7709. doi:10.1039/d0cs00304bThomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Tohda, K., & Gratzl, M. (2006). Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: Color responses to pH, K+ and glucose. Analytical Sciences, 22(7), 937-941. doi:10.2116/analsci.22.937Trettnak, W., Leiner, M. J. P., & Wolfbeis, O. S. (1988). OPTICAL SENSORS .34. FIBER OPTIC GLUCOSE BIOSENSOR WITH AN OXYGEN OPTRODE AS THE TRANSDUCER. Analyst, 113(10), 1519-1523. doi:10.1039/an9881301519Trikkalinou, A., Papazafiropoulou, A. K., & Melidonis, A. (2017). Type 2 diabetes and quality of life. World Journal of Diabetes, 8(4), 120-129. doi:10.4239/wjd.v8.i4.120Veiseh, O., Doloff, J. C., Ma, M., Vegas, A. J., Tam, H. H., Bader, A. R., . . . Anderson, D. G. (2015). Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater, 14(6), 643-651. doi:10.1038/nmat4290Wagner, R., Heni, M., Tabak, A. G., Machann, J., Schick, F., Randrianarisoa, E., . . . Fritsche, A. (2021). Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nature Medicine, 27(1), 49-+. doi:10.1038/s41591-020-1116-9Wang, X. D., Chen, H. X., Zhou, T. Y., Lin, Z. J., Zeng, J. B., Xie, Z. X., . . . Wang, X. R. (2009). Optical colorimetric sensor strip for direct readout glucose measurement. Biosensors & Bioelectronics, 24(12), 3702-3705. doi:10.1016/j.bios.2009.05.018Watanabe, T., Okitsu, T., Ozawa, F., Nagata, S., Matsunari, H., Nagashima, H., . . . Takeuchi, S. (2020). Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials, 255, 120162. doi:10.1016/j.biomaterials.2020.120162Wei, S., Yin, R., Tang, T., Wu, Y., Liu, Y., Wang, P., . . . Duan, X. (2019). Gas-Permeable, Irritation-Free, Transparent Hydrogel Contact Lens Devices with Metal-Coated Nanofiber Mesh for Eye Interfacing. ACS Nano, 13(7), 7920-7929. doi:10.1021/acsnano.9b02305Wolfbeis, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44(14), 4743-4768. doi:10.1039/c4cs00392fWolfbeis, O. S., Schaferling, M., & Durkop, A. (2003). Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchimica Acta, 143(4), 221-227. doi:10.1007/s00604-003-0090-5Wu C F, Bull B, Christensen K, & McNeill J. (2009). Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angewandte Chemie-International Edition, 48(15), 2741-2745. doi:10.1002/anie.200805894Wu C F, Peng H S, Jiang Y F, & McNeill J. (2006). Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. Journal of Physical Chemistry B, 110(29), 14148-14154. doi:10.1021/jp0618126Wu C F, Szymanski C, & McNeill J. (2006). Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir, 22(7), 2956-2960. doi:10.1021/la060188lWu, C. F., Jin, Y. H., Schneider, T., Burnham, D. R., Smith, P. B., & Chiu, D. T. (2010). Ultrabright and Bioorthogonal Labeling of Cellular Targets Using Semiconducting Polymer Dots and Click Chemistry. Angewandte Chemie-International Edition, 49(49), 9436-9440. doi:10.1002/anie.201004260Wu, C. F., Schneider, T., Zeigler, M., Yu, J. B., Schiro, P. G., Burnham, D. R., . . . Chiu, D. T. (2010). Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal of the American Chemical Society, 132(43), 15410-15417. doi:10.1021/ja107196sWu, H. B., Ying, L., Yang, W., & Cao, Y. (2009). Progress and perspective of polymer white light-emitting devices and materials. Chemical Society Reviews, 38(12), 3391-3400. doi:10.1039/b816352aWu, M., Lin, Z. H., Durkop, A., & Wolfbeis, O. S. (2004). Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide. Analytical and Bioanalytical Chemistry, 380(4), 619-626. doi:10.1007/s00216-004-2785-9Wu M X, Zhang Y J, Liu Q, Huang, H., Wang, X., Shi, Z. K., . . . Lei, Y. F. (2019). A smart hydrogel system for visual detection of glucose. Biosensors & Bioelectronics, 142, 111547. doi:10.1016/j.bios.2019.111547Wu, W. T., Shen, J., Li, Y. X., Zhu, H. B., Banerjee, P., & Zhou, S. Q. (2012). Specific Glucose-to-SPR Signal Transduction at Physiological pH by Molecularly Imprinted Responsive Hybrid Microgels. Biomaterials, 33(29), 7115-7125. doi:10.1016/j.biomaterials.2012.06.031Wu, Y. L., Ding, Y. P., Tanaka, Y., & Zhang, W. (2014). Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. International Journal of Medical Sciences, 11(11), 1185-1200. doi:10.7150/ijms.10001Xue, X., Hu, Y., Deng, Y., & Su, J. (2021). Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 31(19). doi:10.1002/adfm.202009432Yang, W. Y., Dall, T. M., Beronjia, K., Lin, J., Semilla, A. P., Chakrabarti, R., . . . Amer Diabet, A. (2018). Economic Costs of Diabetes in the US in 2017. Diabetes Care, 41(5), 917-928. doi:10.2337/dci18-0007Yetisen, A. K., Jiang, N., Fallahi, A., Montelongo, Y., Ruiz-Esparza, G. U., Tamayol, A., . . . Yun, S. H. (2017). Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater., 29(15), 1606380. doi:10.1002/adma.201606380Zaidi, S. A., & Shin, J. H. (2016). Recent developments in nanostructure based electrochemical glucose sensors. Talanta, 149, 30-42. doi:10.1016/j.talanta.2015.11.033Zamboni, F., Vieira, S., Reis, R. L., Oliveira, J. M., & Collins, M. N. (2018). The Potential of Hyaluronic Acid in Immunoprotection and Immunomodulation: Chemistry, Processing and Function. Prog. Mater. Sci., 97, 97-122. doi:10.1016/j.pmatsci.2018.04.003Zhang, J., Roll, D., Geddes, C. D., & Lakowicz, J. R. (2004). Aggregation of silver nanoparticle-dextran adducts with concanavalin A and competitive complexation with glucose. Journal of Physical Chemistry B, 108(32), 12210-12214. doi:10.1021/jp037772cZhang, J. M., Zhu, Y. N., Song, J. Y., Xu, T., Yang, J., Du, Y., & Zhang, L. (2019). Rapid and Long‐Term Glycemic Regulation with a Balanced Charged Immune‐Evasive Hydrogel in T1DM Mice. Adv. Funct. Mater., 29(19), 1900140. doi:10.1002/adfm.201900140Zhang, L., Cao, Z. Q., Bai, T., Carr, L., Ella-Menye, J. R., Irvin, C., . . . Jiang, S. Y. (2013). Zwitterionic Hydrogels Implanted in Mice Resist the Foreign-Body Reaction. Nat. Biotechnol., 31(6), 553-556. doi:10.1038/nbt.2580Zhang, X. J., Yu, J. B., Wu, C. F., Jin, Y. H., Rang, Y., Ye, F. M., & Chiu, D. T. (2012). Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots. ACS Nano, 6(6), 5429-5439. doi:10.1021/nn301308wZhao, F. J., Bonmarin, M., Chen, Z. C., Larson, M., Fay, D., Runnoe, D., & Heikenfeld, J. (2020). Ultra-Simple Wearable Local Sweat Volume Monitoring Patch Based on Swellable Hydrogels. Lab Chip, 20(1), 168-174. doi:10.1039/c9lc00911fZhao, H., Zhao, Y. B., Xu, J. B., Feng, X., Liu, G. Y., Zhao, Y. B., & Yang, X. L. (2020). Programmable Co-Assembly of Various Drugs with Temperature Sensitive Nanogels for Optimizing Combination Chemotherapy. Chem. Eng. J., 398, 125614. doi:10.1016/j.cej.2020.125614Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88-98. doi:10.1038/nrendo.2017.151Zhu, C. L., Liu, L. B., Yang, Q., Lv, F. T., & Wang, S. (2012). Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews, 112(8), 4687-4735. doi:10.1021/cr200263wZhu, Y. N., Zhang, J. M., Song, J. Y., Yang, J., Du, Z., Zhao, W. Q., . . . Zhang, L. (2020). A Multifunctional Pro‐Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of pH and Glucose in Diabetic Wound Treatment. Adv. Funct. Mater., 30(6), 1905493. doi:10.1002/adfm.201905493Zhu, Y. Y., & Zhang, C. L. (2016). Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Current Diabetes Reports, 16(1). doi:10.1007/s11892-015-0699-xZhuo, X. H., Zhang, P., & Hoerger, T. J. (2013). Lifetime Direct Medical Costs of Treating Type 2 Diabetes and Diabetic Complications. American Journal of Preventive Medicine, 45(3), 253-261. doi:10.1016/j.amepre.2013.04.017

Data Source
Document TypeThesis
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
Liu J. Long-Term In Vivo Glucose Monitoring by Luminescent Nanoparticles[D]. 澳门. 澳门大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11753003-刘静-生物医学工程系.(3175KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘静]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘静]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘静]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.