[1] BOCCALETTO P, STEFANIAK F, RAY A, et al. MODOMICS: a database of RNA modification pathways. 2021 update[J]. Nucleic Acids Research, 2022, 50(D1): D231-D235.
[2] NACHTERGAELE S, HE C. Erratum: Publisher's Note[J]. RNA Biology, 2017, 14(9): 1269.
[3] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nature Chemical Biology, 2011, 7(12): 885-887.
[4] XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing[J]. Molecular Cell, 2016, 61(4): 507-519.
[5] HSU P J, ZHU Y, MA H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Research, 2017, 27(9): 1115-1127.
[6] XU D, SHAO J, SONG H, et al. The YTH domain family of N6-methyladenosine "Readers" in the diagnosis and prognosis of colonic adenocarcinoma[J]. Biomedical Research International, 2020, 2020: 9502560.
[7] HUANG H, WENG H, SUN W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nature Cell Biology, 2018, 20(3): 285-295.
[8] MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m(6)A promotes cap-independent translation[J]. Cell, 2015, 163(4): 999-1010.
[9] YANG X, YANG Y, SUN B F, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader[J]. Cell Research, 2017, 27(5): 606-625.
[10] CHEN X, LI A, SUN B F, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs[J]. Nature Cell Biology, 2019, 21(8): 978-990.
[11] YANG Y, WANG L, HAN X, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay[J]. Molecular Cell, 2019, 75(6): 1188-1202 e1111.
[12] AGUILO F, ZHANG F, SANCHO A, et al. Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J]. Cell Stem Cell, 2015, 17(6): 689-704.
[13] CHEN T, HAO Y J, ZHANG Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency[J]. Cell Stem Cell, 2015, 16(3): 289-301.
[14] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006.
[15] CUI Q, SHI H, YE P, et al. m(6)A RNA Methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Reports, 2017, 18(11): 2622-2634.
[16] LI H B, TONG J, ZHU S, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342.
[17] LI Z, WENG H, SU R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1): 127-141.
[18] XU K, YANG Y, FENG G, et al. Mettl3-mediated mA regulates spermatogonial differentiation and meiosis initiation[J]. Cell Research, 2017, 27(9): 1100-1114.
[19] ZHANG C, CHEN Y, SUN B, et al. m(6)A modulates haematopoietic stem and progenitor cell specification[J]. Nature, 2017, 549(7671): 273-276.
[20] LEWIS C J, PAN T, KALSOTRA A. RNA modifications and structures cooperate to guide RNA-protein interactions[J]. Nature Reviews Molecular Cell Biology, 2017, 18(3): 202-210.
[21] BOKAR J A, RATH-SHAMBAUGH M E, LUDWICZAK R, et al. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex[J]. Journal of Biological Chemistry, 1994, 269(26): 17697-17704.
[22] BOKAR J A, SHAMBAUGH M E, POLAYES D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J]. RNA, 1997, 3(11): 1233-1247.
[23] WANG Y, LI Y, TOTH J I, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nature Cell Biology, 2014, 16(2): 191-198.
[24] AKICHIKA S, HIRANO S, SHICHINO Y, et al. Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase[J]. Science, 2019, 363(6423).
[25] BOULIAS K, TOCZYDLOWSKA-SOCHA D, HAWLEY B R, et al. Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome[J]. Molecular Cell, 2019, 75(3): 631-643 e638.
[26] JOUNG J, KONERMANN S, GOOTENBERG J S, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening[J]. Nature Protocol, 2017, 12(4): 828-863.
[27] ZHOU Y, ZHU S, CAI C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J]. Nature, 2014, 509(7501): 487-491.
[28] KODAMA M, KODAMA T, NEWBERG J Y, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer[J]. Proceedings of the National Academy of Sciences U S A, 2017, 114(35): E7301-E7310.
[29] HENRIKSSON J, CHEN X, GOMES T, et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation[J]. Cell, 2019, 176(4): 882-896 e818.
[30] SHIFRUT E, CARNEVALE J, TOBIN V, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function[J]. Cell, 2018, 175(7): 1958-1971 e1915.
[31] TAOKA M, NOBE Y, YAMAKI Y, et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome[J]. Nucleic Acids Research, 2018, 46(18): 9289-9298.
[32] LORENZ C, LUNSE C E, MORL M. tRNA Modifications: impact on structure and thermal adaptation[J]. Biomolecules, 2017, 7(2).
[33] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger-RNA from novikoff hepatoma-cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(10): 3971-3975.
[34] PERRY R P, KELLEY D E, FRIDERICI K, et al. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5' terminus[J]. Cell, 1975, 4(4): 387-394.
[35] LI X, XIONG X, WANG K, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome[J]. Nature Chemical Biology, 2016, 12(5): 311-316.
[36] DOMINISSINI D, NACHTERGAELE S, MOSHITCH-MOSHKOVITZ S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA[J]. Nature, 2016, 530(7591): 441-446.
[37] MORSE D P, BASS B L. Detection of inosine in messenger RNA by inosine-specific cleavage[J]. Biochemistry, 1997, 36(28): 8429-8434.
[38] CARLILE T M, ROJAS-DURAN M F, ZINSHTEYN B, et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells[J]. Nature, 2014, 515(7525): 143-146.
[39] LOVEJOY A F, RIORDAN D P, BROWN P O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae[J]. Plos One, 2014, 9(10): e110799.
[40] SCHWARTZ S, BERNSTEIN D A, MUMBACH M R, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA[J]. Cell, 2014, 159(1): 148-162.
[41] DUBIN D T, TAYLOR R H. The methylation state of poly A-containing messenger RNA from cultured hamster cells[J]. Nucleic Acids Research, 1975, 2(10): 1653-1668.
[42] SOMMER S, SALDITT-GEORGIEFF M, BACHENHEIMER S, et al. The methylation of adenovirus-specific nuclear and cytoplasmic RNA[J]. Nucleic Acids Research, 1976, 3(3): 749-765.
[43] HUBER S M, VAN DELFT P, MENDIL L, et al. Formation and abundance of 5-hydroxymethylcytosine in RNA[J]. Chembiochem, 2015, 16(5): 752-755.
[44] DELATTE B, WANG F, NGOC L V, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine[J]. Science, 2016, 351(6270): 282-285.
[45] KARIJOLICH J, YU Y T. Converting nonsense codons into sense codons by targeted pseudouridylation[J]. Nature, 2011, 474(7351): 395-398.
[46] FERNANDEZ I S, NG C L, KELLEY A C, et al. Unusual base pairing during the decoding of a stop codon by the ribosome[J]. Nature, 2013, 500(7460): 107-110.
[47] HARCOURT E M, KIETRYS A M, KOOL E T. Chemical and structural effects of base modifications in messenger RNA[J]. Nature, 2017, 541(7637): 339-346.
[48] MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.
[49] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
[50] SQUIRES J E, PATEL H R, NOUSCH M, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA[J]. Nucleic Acids Research, 2012, 40(11): 5023-5033.
[51] KHODDAMI V, CAIRNS B R. Identification of direct targets and modified bases of RNA cytosine methyltransferases[J]. Nature Biotechnology, 2013, 31(5): 458-464.
[52] SAKURAI M, YANO T, KAWABATA H, et al. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome[J]. Nature Chemical Biology, 2010, 6(10): 733-740.
[53] RAMASWAMI G, ZHANG R, PISKOL R, et al. Identifying RNA editing sites using RNA sequencing data alone[J]. Nature Methods, 2013, 10(2): 128-132.
[54] GARCIA-CAMPOS M A, EDELHEIT S, TOTH U, et al. Deciphering the "m(6)A Code" via antibody-independent quantitative profiling[J]. Cell, 2019, 178(3): 731-747 e716.
[55] MEYER K D. DART-seq: an antibody-free method for global m(6)A detection[J]. Nature Methods, 2019, 16(12): 1275-1280.
[56] ZHANG Z, CHEN L Q, ZHAO Y L, et al. Single-base mapping of m(6)A by an antibody-independent method[J]. Science Advances, 2019, 5(7): eaax0250.
[57] LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J]. Nature Methods, 2015, 12(8): 767-772.
[58] HAUSSMANN I U, BODI Z, SANCHEZ-MORAN E, et al. m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination[J]. Nature, 2016, 540(7632): 301-304.
[59] LENCE T, AKHTAR J, BAYER M, et al. m(6)A modulates neuronal functions and sex determination in Drosophila[J]. Nature, 2016, 540(7632): 242-247.
[60] KNUCKLES P, LENCE T, HAUSSMANN I U, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d[J]. Genes and Development, 2018, 32(5-6): 415-429.
[61] ZHAO X, YANG Y, SUN B F, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Research, 2014, 24(12): 1403-1419.
[62] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Molecular Cell, 2013, 49(1): 18-29.
[63] TANG C, KLUKOVICH R, PENG H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells[J]. Proceedings of the National Academy of Sciences U S A, 2018, 115(2): E325-E333.
[64] YANG X, YANG Y, SUN B F, et al. 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m(5)C reader[J]. Cell Research, 2017, 27(5): 606-625.
[65] SARAMAGO M, DA COSTA P J, VIEGAS S C, et al. The implication of mRNA degradation disorders on human DISease: focus on DIS3 and DIS3-Like Enzymes[J]. Advances in Experimental Medicine and Biology, 2019, 1157: 85-98.
[66] SCHMID M, JENSEN T H. The nuclear RNA exosome and its cofactors[J]. Advances in Experimental Medicine and Biology, 2019, 1203: 113-132.
[67] WOLIN S L, MAQUAT L E. Cellular RNA surveillance in health and disease[J]. Science, 2019, 366(6467): 822-827.
[68] WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120.
[69] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Research, 2017, 27(3): 315-328.
[70] ZHANG X, LIU Z, YI J, et al. The tRNA methyltransferase NSun2 stabilizes p16INK(4) mRNA by methylating the 3'-untranslated region of p16[J]. Nature Communications, 2012, 3: 712.
[71] ANISIMOVA A, AKULICH K, ABAKUMOVA T, et al. mRNA 5 ' UTR modulates positive effect of incorporated m5C and N1 m Psi nucleotides on mRNA expression[J]. Febs Open Bio, 2018, 8: 124-125.
[72] YANG Y, WANG L, HAN X, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay[J]. Molecular Cell, 2019.
[73] NAKAMOTO M A, LOVEJOY A F, CYGAN A M, et al. mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii[J]. RNA, 2017, 23(12): 1834-1849.
[74] CHOI J, IEONG K W, DEMIRCI H, et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics[J]. Nature Structural & Molecular Biology, 2016, 23(2): 110-115.
[75] HOERNES T P, CLEMENTI N, FASERL K, et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code[J]. Nucleic Acids Research, 2016, 44(2): 852-862.
[76] SCHUMANN U, ZHANG H N, SIBBRITT T, et al. Multiple links between 5-methylcytosine content of mRNA and translation[J]. BMC Biology, 2020, 18(1): 40.
[77] COOTS R A, LIU X M, MAO Y, et al. m(6)A Facilitates eIF4F-Independent mRNA Translation[J]. Molecular Cell, 2017, 68(3): 504-514 e507.
[78] TANABE A, TANIKAWA K, TSUNETOMI M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated[J]. Cancer Letter, 2016, 376(1): 34-42.
[79] KUDLA G, LIPINSKI L, CAFFIN F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells[J]. Plos Biology, 2006, 4(6): e180.
[80] LIMA S A, CHIPMAN L B, NICHOLSON A L, et al. Short poly(A) tails are a conserved feature of highly expressed genes[J]. Nature Structural & Molecular Biology, 2017, 24(12): 1057-1063.
[81] LEPPEK K, DAS R, BARNA M. Author Correction: Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them[J]. Nature Reviews Molecular Cell Biology, 2018, 19(10): 673.
[82] MU X, GREENWALD E, AHMAD S, et al. An origin of the immunogenicity of in vitro transcribed RNA[J]. Nucleic Acids Research, 2018, 46(10): 5239-5249.
[83] CHAUDHARY N, WEISSMAN D, WHITEHEAD K A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation[J]. Nature Reviews Drug Discovery, 2021, 20(11): 817-838.
[84] KARIKO K, MURAMATSU H, WELSH F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Molecular Therapy, 2008, 16(11): 1833-1840.
[85] VAIDYANATHAN S, AZIZIAN K T, HAQUE A, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification[J]. Molecular Therapy-Nucleic Acids, 2018, 12: 530-542.
[86] WANG X, FENG J, XUE Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608): 575-578.
[87] PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Research, 2014, 24(2): 177-189.
[88] ZHONG S, LI H, BODI Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J]. Plant Cell, 2008, 20(5): 1278-1288.
[89] BODI Z, ZHONG S, MEHRA S, et al. Adenosine methylation in arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J]. Frontiers in Plant Science, 2012, 3: 48.
[90] CLANCY M J, SHAMBAUGH M E, TIMPTE C S, et al. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene[J]. Nucleic Acids Research, 2002, 30(20): 4509-4518.
[91] BODI Z, BUTTON J D, GRIERSON D, et al. Yeast targets for mRNA methylation[J]. Nucleic Acids Research, 2010, 38(16): 5327-5335.
[92] LIANG X, ZHANG Z, WANG L, et al. Mechanism of methyltransferase like 3 in epithelial-mesenchymal transition process, invasion, and metastasis in esophageal cancer[J]. Bioengineered, 2021, 12(2): 10023-10036.
[93] ZHANG F, YAN Y, CAO X, et al. Methylation of microRNA-338-5p by EED promotes METTL3-mediated translation of oncogene CDCP1 in gastric cancer[J]. Aging (Albany NY), 2021, 13(8): 12224-12238.
[94] CUI X, WANG Z, LI J, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/beta-catenin signalling pathway[J]. Cell Proliferation, 2020, 53(3): e12768.
[95] CHEN X, XU M, XU X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer[J]. Molecular Cancer, 2020, 19(1): 106.
[96] YANG X, ZHANG S, HE C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Molecular Cancer, 2020, 19(1): 46.
[97] LIN Z, HSU P J, XING X, et al. Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis[J]. Cell Research, 2017, 27(10): 1216-1230.
[98] JIA G, YANG C G, YANG S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO[J]. FEBS Letters, 2008, 582(23-24): 3313-3319.
[99] YUE C, CHEN J, LI Z, et al. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKalpha2-FTO-m6A/MYC axis[J]. Journal of Experimental & Clinical Cancer Research, 2020, 39(1): 240.
[100] ELKASHEF S M, LIN A P, MYERS J, et al. IDH Mutation, Competitive inhibition of FTO, and RNA Methylation[J]. Cancer Cell, 2017, 31(5): 619-620.
[101] HUANG Y, SU R, SHENG Y, et al. Small-Molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia[J]. Cancer Cell, 2019, 35(4): 677-691 e610.
[102] HEISSENBERGER C, ROLLINS J A, KRAMMER T L, et al. The ribosomal RNA m(5)C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans[J]. Elife, 2020, 9.
[103] LIAO H, GAUR A, MCCONIE H, et al. hNOP2/NSUN1 Regulates ribosome biogenesis through stabilization of snoRNP complexes and cytosine-5 methylation of 28S rRNA[J]. bioRxiv, 2022: 2021.2011.2012.468419.
[104] METODIEV M D, SPAHR H, LOGUERCIO POLOSA P, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly[J]. PLoS Genetics, 2014, 10(2): e1004110.
[105] BLANCO S, DIETMANN S, FLORES J V, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders[J]. EMBO Journal, 2014, 33(18): 2020-2039.
[106] FU L, GUERRERO C R, ZHONG N, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA[J]. Journal of the American Chemical Society, 2014, 136(33): 11582-11585.
[107] KAWARADA L, SUZUKI T, OHIRA T, et al. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications[J]. Nucleic Acids Research, 2017, 45(12): 7401-7415.
[108] MACARI F, EL-HOUFI Y, BOLDINA G, et al. TRM6/61 connects PKCalpha with translational control through tRNAi(Met) stabilization: impact on tumorigenesis[J]. Oncogene, 2016, 35(14): 1785-1796.
[109] SAFRA M, SAS-CHEN A, NIR R, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution[J]. Nature, 2017, 551(7679): 251-255.
[110] ZHOU H, RAUCH S, DAI Q, et al. Evolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNA[J]. Nature Methods, 2019, 16(12): 1281-1288.
[111] LIU F, CLARK W, LUO G, et al. ALKBH1-mediated tRNA demethylation regulates translation[J]. Cell, 2016, 167(7): 1897.
[112] CHEN Z, QI M, SHEN B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Research, 2019, 47(5): 2533-2545.
[113] WOO H H, CHAMBERS S K. Human ALKBH3-induced m(1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2019, 1862(1): 35-46.
[114] NAKAO S, MABUCHI M, SHIMIZU T, et al. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs[J]. Bioorganic and Medicinal Chemistry Letters, 2014, 24(4): 1071-1074.
[115] BARBIERI I, KOUZARIDES T. Role of RNA modifications in cancer[J]. Nature Reviews Cancer, 2020, 20(6): 303-322.
[116] HONG B, BROCKENBROUGH J S, WU P, et al. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast[J]. Molecular and Cellular Biology, 1997, 17(1): 378-388.
[117] WU P, BROCKENBROUGH J S, PADDY M R, et al. NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae[J]. Gene, 1998, 220(1-2): 109-117.
[118] MOTORIN Y, GROSJEAN H. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme[J]. RNA, 1999, 5(8): 1105-1118.
[119] BRZEZICHA B, SCHMIDT M, MAKALOWSKA I, et al. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA)[J]. Nucleic Acids Research, 2006, 34(20): 6034-6043.
[120] FRYE M, WATT F M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors[J]. Current Biology, 2006, 16(10): 971-981.
[121] BLANCO S, KUROWSKI A, NICHOLS J, et al. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate[J]. PLoS Genetics, 2011, 7(12): e1002403.
[122] HUSSAIN S, TUORTO F, MENON S, et al. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation[J]. Molecular and Cellular Biology, 2013, 33(8): 1561-1570.
[123] BLANCO S, BANDIERA R, POPIS M, et al. Stem cell function and stress response are controlled by protein synthesis[J]. Nature, 2016, 534(7607): 335-340.
[124] ABBASI-MOHEB L, MERTEL S, GONSIOR M, et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability[J]. American Journal of Human Genetics, 2012, 90(5): 847-855.
[125] KHAN M A, RAFIQ M A, NOOR A, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability[J]. American Journal of Human Genetics, 2012, 90(5): 856-863.
[126] MARTINEZ F J, LEE J H, LEE J E, et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome[J]. Journal of Medical Genetics, 2012, 49(6): 380-385.
[127] HAAG S, SLOAN K E, RANJAN N, et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation[J]. EMBO Journal, 2016, 35(19): 2104-2119.
[128] NAKANO S, SUZUKI T, KAWARADA L, et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met)[J]. Nature Chemical Biology, 2016, 12(7): 546-551.
[129] VAN HAUTE L, DIETMANN S, KREMER L, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3[J]. Nature Communications, 2016, 7: 12039.
[130] GOLL M G, KIRPEKAR F, MAGGERT K A, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J]. Science, 2006, 311(5759): 395-398.
[131] HAAG S, WARDA A S, KRETSCHMER J, et al. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs[J]. RNA, 2015, 21(9): 1532-1543.
[132] LI J, LI H, LONG T, et al. Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs[J]. Nucleic Acids Research, 2019, 47(4): 2041-2055.
[133] LI C, WANG S, XING Z, et al. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis[J]. Nature Cell Biology, 2017, 19(2): 106-119.
[134] YANG R, LIANG X, WANG H, et al. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation[J]. Ebiomedicine, 2021, 63: 103195.
[135] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433.
[136] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182.
[137] BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology (Reading), 2005, 151(Pt 8): 2551-2561.
[138] POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology (Reading), 2005, 151(Pt 3): 653-663.
[139] MAKAROVA K S, ARAVIND L, GRISHIN N V, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J]. Nucleic Acids Research, 2002, 30(2): 482-496.
[140] JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575.
[141] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[142] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[143] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[144] WANG J Y, PAUSCH P, DOUDNA J A. Structural biology of CRISPR-Cas immunity and genome editing enzymes[J]. Nat Rev Microbiol, 2022, 20(11): 641-656.
[145] KOIKE-YUSA H, LI Y, TAN E P, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library[J]. Nature Biotechnology, 2014, 32(3): 267-273.
[146] SHALEM O, SANJANA N E, HARTENIAN E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87.
[147] WANG T, WEI J J, SABATINI D M, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166): 80-84.
[148] LARSON M H, GILBERT L A, WANG X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression[J]. Nature Protocol, 2013, 8(11): 2180-2196.
[149] KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588.
[150] BOCK C, DATLINGER P, CHARDON F, et al. High-content CRISPR screening[J]. Nature Reviews Methods Primers, 2022, 2(1).
[151] WAN C, MAHARA S, SUN C, et al. Genome-scale CRISPR-Cas9 screen of Wnt/beta-catenin signaling identifies therapeutic targets for colorectal cancer[J]. Science Advances, 2021, 7(21).
[152] DONG M B, WANG G, CHOW R D, et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells[J]. Cell, 2019, 178(5): 1189-1204 e1123.
[153] GURUSAMY D, HENNING A N, YAMAMOTO T N, et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies[J]. Cancer Cell, 2020, 37(6): 818-833 e819.
[154] SHANG W, JIANG Y, BOETTCHER M, et al. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation[J]. Proceedings of the National Academy of Sciences U S A, 2018, 115(17): E4051-E4060.
[155] HENRIKSSON J, CHEN X, GOMES T, et al. Genome-wide CRISPR screens in T helper cells Reveal Pervasive Crosstalk between Activation and Differentiation[J]. Cell, 2019, 176(4): 882-896.
[156] LAFLEUR M W, NGUYEN T H, COXE M A, et al. PTPN2 regulates the generation of exhausted CD8(+) T cell subpopulations and restrains tumor immunity[J]. Nature Immunology, 2019, 20(10): 1335-1347.
[157] CHEN Z, ARAI E, KHAN O, et al. In vivo CD8(+) T cell CRISPR screening reveals control by Fli1 in infection and cancer[J]. Cell, 2021, 184(5): 1262-1280 e1222.
[158] WHEELER E C, VU A Q, EINSTEIN J M, et al. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors[J]. Nature Methods, 2020, 17(6): 636-642.
[159] LIN S, SCHORPP K, ROTHENAIGNER I, et al. Image-based high-content screening in drug discovery[J]. Drug Discovery Today, 2020, 25(8): 1348-1361.
[160] HASLE N, COOKE A, SRIVATSAN S, et al. High-throughput, microscope-based sorting to dissect cellular heterogeneity[J]. Molecular Systems Biology, 2020, 16(6): e9442.
[161] KANFER G, SARRAF S A, MAMAN Y, et al. Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes[J]. Journal of Cell Biology, 2021, 220(2).
[162] YAN X, STUURMAN N, RIBEIRO S A, et al. High-content imaging-based pooled CRISPR screens in mammalian cells[J]. Journal of Cell Biology, 2021, 220(2).
[163] ADAMSON B, NORMAN T M, JOST M, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response[J]. Cell, 2016, 167(7): 1867-1882 e1821.
[164] DIXIT A, PARNAS O, LI B, et al. Perturb-Seq: Dissecting molecular circuits with scalable single-Cell RNA profiling of pooled genetic screens[J]. Cell, 2016, 167(7): 1853-1866 e1817.
[165] JAITIN D A, WEINER A, YOFE I, et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq[J]. Cell, 2016, 167(7): 1883-1896 e1815.
[166] DATLINGER P, RENDEIRO A F, SCHMIDL C, et al. Pooled CRISPR screening with single-cell transcriptome readout[J]. Nature Methods, 2017, 14(3): 297-301.
[167] XIE S, DUAN J, LI B, et al. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells[J]. Molecular Cell, 2017, 66(2): 285-299 e285.
[168] JIN X, SIMMONS S K, GUO A, et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes[J]. Science, 2020, 370(6520): 1057-+.
[169] HILL A J, MCFALINE-FIGUEROA J L, STARITA L M, et al. On the design of CRISPR-based single-cell molecular screens[J]. Nature Methods, 2018, 15(4): 271-274.
[170] REPLOGLE J M, NORMAN T M, XU A, et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing[J]. Nature Biotechnology, 2020, 38(8): 954-961.
[171] MIMITOU E P, CHENG A, MONTALBANO A, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells[J]. Nature Methods, 2019, 16(5): 409-412.
[172] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
[173] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology, 2019, 37(8): 907-915.
[174] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
[175] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[176] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
[177] WAGIH O. ggseqlogo: a versatile R package for drawing sequence logos[J]. Bioinformatics, 2017, 33(22): 3645-3647.
[178] HUANG T, CHEN W, LIU J, et al. Genome-wide identification of mRNA 5-methylcytosine in mammals[J]. Nature Structural & Molecular Biology, 2019, 26(5): 380-388.
[179] BATISTA P J, MOLINIE B, WANG J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6): 707-719.
[180] GUO Y, YU H, SAMUELS D C, et al. Single-nucleotide variants in human RNA: RNA editing and beyond[J]. Briefings in Functional Genomics, 2019, 18(1): 30-39.
[181] MERKLE T, MERZ S, REAUTSCHNIG P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides[J]. Nature Biotechnology, 2019, 37(2): 133-138.
[182] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
[183] EVERS B, JASTRZEBSKI K, HEIJMANS J P, et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes[J]. Nature Biotechnology, 2016, 34(6): 631-633.
[184] JUSZKIEWICZ S, HEGDE R S. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination[J]. Molecular Cell, 2017, 65(4): 743-750 e744.
[185] HELM M. Post-transcriptional nucleotide modification and alternative folding of RNA[J]. Nucleic Acids Research, 2006, 34(2): 721-733.
[186] AGRIS P F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications[J]. EMBO Reports, 2008, 9(7): 629-635.
[187] SCHAEFER M, POLLEX T, HANNA K, et al. RNA cytosine methylation analysis by bisulfite sequencing[J]. Nucleic Acids Research, 2009, 37(2): e12.
[188] LI X, XIONG X, ZHANG M, et al. Base-Resolution Mapping Reveals Distinct m(1)A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts[J]. Molecular Cell, 2017, 68(5): 993-1005 e1009.
[189] FRYE M, HARADA B T, BEHM M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349.
[190] BOHNSACK K E, HOBARTNER C, BOHNSACK M T. Eukaryotic 5-methylcytosine (m(5)C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease[J]. Genes (Basel), 2019, 10(2).
[191] GAO Y, FANG J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark[J]. RNA Biology, 2021, 18(sup1): 117-127.
[192] LIU J, HUANG T, ZHANG Y, et al. Sequence- and structure-selective mRNA m(5)C methylation by NSUN6 in animals[J]. Natl Sci Rev, 2021, 8(6): nwaa273.
[193] SELMI T, HUSSAIN S, DIETMANN S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6[J]. Nucleic Acids Research, 2021, 49(2): 1006-1022.
[194] SCHAEFER M, POLLEX T, HANNA K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage[J]. Genes and Development, 2010, 24(15): 1590-1595.
[195] CAMARA Y, ASIN-CAYUELA J, PARK C B, et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome[J]. Cell Metab, 2011, 13(5): 527-539.
[196] SCHOSSERER M, MINOIS N, ANGERER T B, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan[J]. Nature Communications, 2015, 6: 6158.
[197] SHEN H, ONTIVEROS R J, OWENS M C, et al. TET-mediated 5-methylcytosine oxidation in tRNA promotes translation[J]. Journal of Biological Chemistry, 2021, 296: 100087.
[198] FANG L, WANG W, LI G, et al. CIGAR-seq, a CRISPR/Cas-based method for unbiased screening of novel mRNA modification regulators[J]. Molecular Systems Biology, 2020, 16(11): e10025.
[199] LEWIS S M, WILLIAMS A, EISENBARTH S C. Structure and function of the immune system in the spleen[J]. Sci Immunol, 2019, 4(33).
[200] MARSH B J, HOWELL K E. The mammalian Golgi--complex debates[J]. Nature Reviews Molecular Cell Biology, 2002, 3(10): 789-795.
[201] CARLTON J G, JONES H, EGGERT U S. Membrane and organelle dynamics during cell division[J]. Nature Reviews Molecular Cell Biology, 2020, 21(3): 151-166.
[202] SUAN D, SUNDLING C, BRINK R. Plasma cell and memory B cell differentiation from the germinal center[J]. Current Opinion in Immunology, 2017, 45: 97-10
Edit Comment