Title | Acoustic rotation of non-spherical micro-objects: Characterization of acoustophoresis and quantification of rotational stability |
Author | |
Corresponding Author | Tang,Tianquan |
Publication Years | 2023-06-23
|
DOI | |
Source Title | |
ISSN | 0022-460X
|
EISSN | 1095-8568
|
Volume | 554 |
Abstract | Acoustic radiation force and torque arising from wave scattering have the potential to perform the biocompatible, contact-free, and precise translation and rotation of micro-objects. Controllable rotation of objects mainly relies on the use of sophisticated transducer arrays, while it is limited by the spatial Rayleigh limitation and would be costly to miniaturize the array for manipulated objects on the micron scale. Here, we make use of the shape asymmetry of an object and achieve micro-object trap and rotation using a simple standing wavefield. The conformal transformation approach is employed to map an axisymmetric, non-spherical object into a sphere, allowing fast analysis for design or real-time computer-controlled manipulation. A low-cost, simple rotational tweezing system is built, which confirms the theoretical prediction that micro-particles are trapped in the pressure nodes and remotely rotated by the action of the actuator boundaries. The rotational dynamics are guided by two stabilization modes, and Lyapunov stability analysis reveals that at least one mode leads to a stable equilibrium state. We demonstrate the significance of our approach in stably and controllably rotating micron-scale objects. The robustness and versatility of the new handy design hold promise for clinical applications and microscopic research such as drug delivery and microsurgery. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
WOS Research Area | Acoustics
; Engineering
; Mechanics
|
WOS Subject | Acoustics
; Engineering, Mechanical
; Mechanics
|
WOS Accession No | WOS:000976891400001
|
Publisher | |
ESI Research Field | ENGINEERING
|
Data Source | Web of Science
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/524106 |
Department | Department of Mechanics and Aerospace Engineering |
Affiliation | 1.Foshan University,Foshan,33 Guangyun Road, Shishan, Nanhai District, Guangdong,China 2.Department of Mechanical Engineering,The University of Hong Kong,Pokfulam,Hong Kong SAR,China 3.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,China 4.Lab for Aerodynamics and Acoustics,HKU Zhejiang Institute of Research and Innovation,Hangzhou,1623 Dayuan Road, Lin An District,China |
Recommended Citation GB/T 7714 |
Tang,Tianquan,Shen,Chao,Huang,Lixi. Acoustic rotation of non-spherical micro-objects: Characterization of acoustophoresis and quantification of rotational stability[J]. JOURNAL OF SOUND AND VIBRATION,2023,554.
|
APA |
Tang,Tianquan,Shen,Chao,&Huang,Lixi.(2023).Acoustic rotation of non-spherical micro-objects: Characterization of acoustophoresis and quantification of rotational stability.JOURNAL OF SOUND AND VIBRATION,554.
|
MLA |
Tang,Tianquan,et al."Acoustic rotation of non-spherical micro-objects: Characterization of acoustophoresis and quantification of rotational stability".JOURNAL OF SOUND AND VIBRATION 554(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment