Title | Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network |
Author | |
Corresponding Author | Wang, Zheng |
Publication Years | 2023-03-01
|
DOI | |
Source Title | |
ISSN | 2169-5172
|
EISSN | 2169-5180
|
Abstract | Compared with rigid robots, soft robots are inherently compliant and have advantages in the tasks requiring flexibility and safety. But sensing the high dimensional body deformation of soft robots is a challenge. Encasing soft strain sensors into the internal body of soft robots is the most popular solution to address this challenge. But most of them usually suffer from problems like nonlinearity, hysteresis, and fabrication complexity. To endow the soft robots with body movement awareness, this work presents a bioinspired architecture by taking cues from human proprioception system. Differing from the popular usage of smart material-based sensors embedded in soft actuators, we created a synthetic analog to the human muscle system, using paralleled soft pneumatic chambers to serve as receptors for sensing body deformation. We proposed to build the system with redundant receptors and explored deep learning tools for generating the kinematic model. Based on the proposed methodology, we demonstrated the design of three degrees of freedom continuum joint and how its kinematic model was learned from the unified pressure information of the actuators and receptors. In addition, we investigated the response of the soft system to receptor failures and presented both hardware and software level solutions for achieving graceful degradation. This approach offers an alternative to enable soft robots with proprioception capability, which will be useful for closed-loop control and interaction with environment. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Corresponding
|
Funding Project | Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]
; NSFC[51975268]
|
WOS Research Area | Robotics
|
WOS Subject | Robotics
|
WOS Accession No | WOS:000961052800001
|
Publisher | |
Data Source | Web of Science
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/527719 |
Department | Department of Mechanical and Energy Engineering |
Affiliation | 1.Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Dept Mech & Energy Engn, 605 Innovat Pk 7,1088 Xueyuan Ave, Shenzhen 518055, Peoples R China |
Corresponding Author Affilication | Department of Mechanical and Energy Engineering |
Recommended Citation GB/T 7714 |
Wang, Liangliang,Lam, James,Chen, Xiaojiao,et al. Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network[J]. SOFT ROBOTICS,2023.
|
APA |
Wang, Liangliang.,Lam, James.,Chen, Xiaojiao.,Li, Jing.,Zhang, Runzhi.,...&Wang, Zheng.(2023).Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network.SOFT ROBOTICS.
|
MLA |
Wang, Liangliang,et al."Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network".SOFT ROBOTICS (2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment