中文版 | English
Title

基于权重预编码的稀疏卷积神经网络加速器和计算设备

Alternative Title
Sparse convolutional neural network accelerator based on weight precoding and computing device
Author
First Inventor
余浩
Original applicant
南方科技大学
First applicant
南方科技大学
Address of First applicant
518055 广东省深圳市南山区桃源街道学苑大道1088号
Current applicant
南方科技大学
Address of Current applicant
518055 广东省深圳市南山区桃源街道学苑大道1088号 (广东,深圳,南山区)
First Current Applicant
南方科技大学
Address of First Current Applicant
518055 广东省深圳市南山区桃源街道学苑大道1088号 (广东,深圳,南山区)
Application Number
CN202210963479.3
Application Date
2022-08-11
Open (Notice) Number
CN115456152A
Date Available
2022-12-09
Status of Patent
实质审查
Legal Date
2022-12-27
Subtype
发明申请
SUSTech Authorship
First
Abstract
本发明公开了基于权重预编码的稀疏卷积神经网络加速器和计算设备,稀疏卷积神经网络加速器包括若干引擎和预编码模块,每一引擎包括若干块;预编码模块用于对每一引擎的权重数据进行编码,得到该引擎中各块的编码权重数据;每一块包括:激活选择器用于获取掩码数据和若干激活数据,根据掩码数据从各激活数据中确定若干目标激活数据;乘法模块用于根据编码权重数据和各目标激活数据,确定部分积数据;加法树用于对各部分积数据进行累加,得到乘加运算数据。本发明通过掩码数据对激活数据进行筛选,实现了各种稀疏度场景下的卷积神经网络加速。解决了可变稀疏密度约束块受权重稀疏度限制,导致低权重稀疏度场景下难以实现卷积神经网络加速的问题。
Other Abstract
The invention discloses a sparse convolutional neural network accelerator based on weight precoding and computing equipment, the sparse convolutional neural network accelerator comprises a plurality of engines and a precoding module, and each engine comprises a plurality of blocks; the pre-coding module is used for coding the weight data of each engine to obtain coding weight data of each block in the engine; each block comprises an activation selector used for obtaining mask data and a plurality of activation data, and determining a plurality of target activation data from the activation data according to the mask data; the multiplication module is used for determining partial product data according to the coding weight data and the target activation data; and the adder tree is used for accumulating the partial product data to obtain multiply-add operation data. According to the method, the activation data is screened through the mask data, so that the convolutional neural network acceleration in various sparseness scenes is realized. The problem that a variable sparse density constraint block is limited by weight sparseness, so that convolutional neural network acceleration is difficult to realize in a low-weight sparseness scene is solved.
CPC Classification Number
Y02D10/00
IPC Classification Number
G06N3/063 ; G06N3/04
INPADOC Legal Status
(ENTRY INTO FORCE OF REQUEST FOR SUBSTANTIVE EXAMINATION)[2022-12-27][CN]
INPADOC Patent Family Count
1
Extended Patent Family Count
1
Priority date
2022-08-11
Patent Agent
陈专 ; 吴志益
Agency
深圳市君胜知识产权代理事务所(普通合伙)
URL[Source Record]
Data Source
PatSnap
Document TypePatent
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/531841
DepartmentSUSTech Institute of Microelectronics
南方科技大学-香港科技大学深港微电子学院筹建办公室
Recommended Citation
GB/T 7714
余浩,毛伟,程全,等. 基于权重预编码的稀疏卷积神经网络加速器和计算设备.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[余浩]'s Articles
[毛伟]'s Articles
[程全]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[余浩]'s Articles
[毛伟]'s Articles
[程全]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[余浩]'s Articles
[毛伟]'s Articles
[程全]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.