中文版 | English
Title

神经网络的压缩方法和装置、设备、介质

Alternative Title
Neural network compression method and device, equipment and medium
Author
First Inventor
洪文静
Original applicant
南方科技大学
First applicant
南方科技大学
Address of First applicant
518055 广东省深圳市南山区西丽学苑大道1088号
Current applicant
南方科技大学
Address of Current applicant
518055 广东省深圳市南山区西丽学苑大道1088号 (广东,深圳,南山区)
First Current Applicant
南方科技大学
Address of First Current Applicant
518055 广东省深圳市南山区西丽学苑大道1088号 (广东,深圳,南山区)
Application Number
CN202111311435.4
Application Date
2021-11-08
Open (Notice) Number
CN114154634A
Date Available
2022-03-08
Status of Patent
实质审查
Legal Date
2022-03-25
Subtype
发明申请
SUSTech Authorship
First
Abstract
本实施例提供一种神经网络的压缩方法和装置、设备、介质,属于计算机应用技术领域。该方法包括:获取在硬件上运行的预设神经网络;对所述预设神经网络进行压缩处理,以生成至少两个第一压缩神经网络;获取每一所述第一压缩神经网络对应于所述硬件的硬件性能指标;计算所述预设神经网络的第一准确率和每一所述第一压缩神经网络的第二准确率;根据所述硬件性能指标、所述第一准确率、多个所述第二准确率对多个所述第一压缩神经网络进行初步筛选,得到初始神经网络集;根据预设条件对所述初始神经网络集进行二次筛选,得到目标压缩神经网络。根据硬件性能指标和准确率来指导神经网络的压缩,能够实现神经网络在多种硬件上的快速部署。
Other Abstract
The embodiment of the invention provides a neural network compression method and device, equipment and a medium, and belongs to the technical field of computer application. The method comprises the following steps: acquiring a preset neural network running on hardware; performing compression processing on the preset neural network to generate at least two first compression neural networks; obtaining a hardware performance index, corresponding to the hardware, of each first compression neural network; calculating a first accuracy rate of the preset neural network and a second accuracy rate of each first compression neural network; according to the hardware performance index, the first accuracy rate and the plurality of second accuracy rates, carrying out preliminary screening on the plurality of first compression neural networks to obtain an initial neural network set; and performing secondary screening on the initial neural network set according to a preset condition to obtain a target compressed neural network. Compression of the neural network is guided according to the hardware performance index and the accuracy, and rapid deployment of the neural network on various kinds of hardware can be achieved.
CPC Classification Number
G06N3/082
IPC Classification Number
G06N3/08
INPADOC Legal Status
(ENTRY INTO FORCE OF REQUEST FOR SUBSTANTIVE EXAMINATION)[2022-03-25][CN]
INPADOC Patent Family Count
1
Extended Patent Family Count
1
Priority date
2021-11-08
Patent Agent
洪铭福
Agency
广州嘉权专利商标事务所有限公司
URL[Source Record]
Data Source
PatSnap
Document TypePatent
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/532889
DepartmentDepartment of Computer Science and Engineering
工学院_斯发基斯可信自主研究院
Recommended Citation
GB/T 7714
洪文静,李皈颖,杨鹏,等. 神经网络的压缩方法和装置、设备、介质.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[洪文静]'s Articles
[李皈颖]'s Articles
[杨鹏]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[洪文静]'s Articles
[李皈颖]'s Articles
[杨鹏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[洪文静]'s Articles
[李皈颖]'s Articles
[杨鹏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.