Title | 一种脊柱侧弯检测模型的生成方法和计算机设备 |
Alternative Title | Scoliosis detection model generation method and computer equipment
|
Author | |
First Inventor | 安丰伟
|
Original applicant | 南方科技大学
|
First applicant | 南方科技大学
|
Address of First applicant | 518055 广东省深圳市南山区学苑大道1088号南方科技大学
|
Current applicant | 南方科技大学
|
Address of Current applicant | 518055 广东省深圳市南山区学苑大道1088号南方科技大学 (广东,深圳,南山区)
|
First Current Applicant | 南方科技大学
|
Address of First Current Applicant | 518055 广东省深圳市南山区学苑大道1088号南方科技大学 (广东,深圳,南山区)
|
Application Number | CN202010170575.3
|
Application Date | 2020-03-12
|
Open (Notice) Number | CN111383221A
|
Date Available | 2020-07-07
|
Status of Patent | 实质审查
; 许可
|
Legal Date | 2020-07-31
|
Subtype | 发明申请
|
SUSTech Authorship | First
|
Abstract | 本申请涉及一种脊柱侧弯检测模型的生成方法和计算机设备,所述脊柱侧弯检测模型的生成方法包括:获取训练数据,将训练数据输入初始神经网络,以得到训练数据对应的预测结果,其中,训练数据包括一个训练样本在行进过程中多个时刻的行进参数和训练样本对应的真实结果;根据真实结果和预测结果,调整初始神经网络的参数,并继续执行将所训练数据输入初始神经网络,以得到预测结果的步骤,直至满足预设训练条件,以得到已训练的脊柱侧弯检测模型。所述训练数据包括一个训练样本在行进过程中多个时刻的行进参数,是动态的数据,通过行进过程中的动态数据训练初始神经网络,使得已训练的脊柱侧弯检测模型在实际使用时,能得到更准确的检测结果。 |
Other Abstract | The invention relates to a scoliosis detection model generation method and computer equipment. The scoliosis detection model generation method comprises steps that training data is acquired, the training data are inputted to an initial neural network to acquire a prediction result corresponding to the training data, and the training data comprise advancing parameters of one training sample at multiple moments in an advancing process and a real result corresponding to the training sample; and according to the real result and the prediction result, adjusting parameters of the initial neural network, and continuously executing the step of inputting the training data into the initial neural network to obtain the prediction result until a preset training condition is met so as to obtain a trained scoliosis detection model. The training data comprise advancing parameters of one training sample at multiple moments in the advancing process, the training data is dynamic data, and the initial neural network is trained through the dynamic data in the advancing process, so that a trained scoliosis detection model can obtain a more accurate detection result in actual use. |
CPC Classification Number | G06T7/0012
; G06T2207/10028
; G06T2207/20081
; G06T2207/20084
; G06T2207/30012
|
IPC Classification Number | G06T7/00
|
INPADOC Legal Status | (ENTRY INTO FORCE OF RECORDATION OF PATENT LICENSING CONTRACT)[2021-06-25][CN]
|
INPADOC Patent Family Count | 1
|
Extended Patent Family Count | 1
|
Priority date | 2020-03-12
|
Patent Agent | 吴志益
|
Agency | 深圳市君胜知识产权代理事务所(普通合伙)
|
URL | [Source Record] |
Data Source | PatSnap
|
Document Type | Patent |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/534002 |
Department | SUSTech Institute of Microelectronics 南方科技大学-香港科技大学深港微电子学院筹建办公室 |
Recommended Citation GB/T 7714 |
安丰伟,刘展志. 一种脊柱侧弯检测模型的生成方法和计算机设备.
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment