中文版 | English
Title

Multifunctional Fluorescent Polymer Dots for Super-resolution Imaging

Alternative Title
多功能荧光聚合物点在超分辨显微成像技术中的应用研究
Author
Name pinyin
LIU Jie
School number
11952001
Degree
博士
Discipline
生物学
Supervisor
吴长锋
Mentor unit
生物医学工程系
Tutor of External Organizations
赵中应
Tutor units of foreign institutions
香港浸会大学
Publication Years
2023-04-20
Submission date
2023-05-17
University
香港浸会大学
Place of Publication
香港
Abstract

Conventional optical imaging techniques have encountered fundamental limitations due to the diffraction of light, which constraint the clear visualization of intricate structures and cellular processes. Super-resolution microscopy technologies have revolutionized biological studies by advancing the spatial resolution of optical microscopes to the nanometer scale. However, many currently available fluorescent markers exhibit insufficient brightness and photostability, impeding their ability to extend the use of super-resolution techniques in diverse applications. In this thesis, we demonstrate the development of a series of functional fluorescent polymer dots (Pdots) for different super-resolution imaging modalities. Pdots are widely used in optoelectronic and biological applications because they exhibit extraordinary brightness, robust photostability, and easy-to-modify composition. By varying the polymer species and surface properties, we have developed two types of BODIPY Pdots with narrow fluorescence spectra and pronounced photoblinking properties for two-color high-order super-resolution optical fluctuation imaging (SOFI) applications. Single particle fluorescence brightness of BODIPY Pdots is 6-8 times higher than those of Alexa Fluor dyes. After 8th-order SOFI analysis, the spatial resolution of images of microtubules and mitochondria are enhanced by 5.8-fold and 4.8-fold, respectively, making the best improvements among various fluorescent probes in SOFI studies reported so far. In addition, we have developed three trifunctional MA-Pdots with targeting, anchoring, and fluorescing features for dual-mode super-resolution SOFI and expansion microscopy (ExM) imaging. The covalent anchoring and insensitivity to digestion ensure high labelling efficiency and fluorescence retention of MA-Pdots, alleviating the fluorescence degradation issue in ExM studies. We have demonstrated that MA-Pdots can target different subcellular structures and neuron synapses with high specificity. A surfactant-containing buffer has been developed to enhance the post-expansion fluorescence brightness and fluctuations, which provide sufficient detected photons and photoblinking properties for high-order SOFI applications. The integration of SOFI and ExM allows microtubules to be resolved with a spatial resolution of 30 nm and hollow labelling patterns of mitochondria outer membrane to be observed after three-dimensional analysis. Furthermore, we have developed three types of lifetime-multiplexed Pdots for combinatorial ExM and fluorescence lifetime microscopy imaging (FLIM). These Pdots exhibit overlapping emission spectra but distinct lifetime distributions across a 0.4 ns to 5 ns range. Single particle lifetime multiplex imaging of immunomagnetic beads indicated the potential of the lifetime-multiplexed Pdots for lifetime barcoding, encrypting, and anti-counterfeiting applications. The impressive fluorescence brightness and substantial photon output provided by Pdots facilitate multiplex lifetime imaging in photon-starved expansion microscopy, which has proven to resolve subcellular structures with a spatial resolution of ~49 nm. These results demonstrate that multi-functional Pdots with tunable properties are promising probes for super-resolution microscopy applications.Conventional optical imaging techniques have encountered fundamental limitations due to the diffraction of light, which constraint the clear visualization of intricate structures and cellular processes. Super-resolution microscopy technologies have revolutionized biological studies by advancing the spatial resolution of optical microscopes to the nanometer scale. However, many currently available fluorescent markers exhibit insufficient brightness and photostability, impeding their ability to extend the use of super-resolution techniques in diverse applications. In this thesis, we demonstrate the development of a series of functional fluorescent polymer dots (Pdots) for different super-resolution imaging modalities. Pdots are widely used in optoelectronic and biological applications because they exhibit extraordinary brightness, robust photostability, and easy-to-modify composition. By varying the polymer species and surface properties, we have developed two types of BODIPY Pdots with narrow fluorescence spectra and pronounced photoblinking properties for two-color high-order super-resolution optical fluctuation imaging (SOFI) applications. Single particle fluorescence brightness of BODIPY Pdots is 6-8 times higher than those of Alexa Fluor dyes. After 8th-order SOFI analysis, the spatial resolution of images of microtubules and mitochondria are enhanced by 5.8-fold and 4.8-fold, respectively, making the best improvements among various fluorescent probes in SOFI studies reported so far. In addition, we have developed three trifunctional MA-Pdots with targeting, anchoring, and fluorescing features for dual-mode super-resolution SOFI and expansion microscopy (ExM) imaging. The covalent anchoring and insensitivity to digestion ensure high labelling efficiency and fluorescence retention of MA-Pdots, alleviating the fluorescence degradation issue in ExM studies. We have demonstrated that MA-Pdots can target different subcellular structures and neuron synapses with high specificity. A surfactant-containing buffer has been developed to enhance the post-expansion fluorescence brightness and fluctuations, which provide sufficient detected photons and photoblinking properties for high-order SOFI applications. The integration of SOFI and ExM allows microtubules to be resolved with a spatial resolution of 30 nm and hollow labelling patterns of mitochondria outer membrane to be observed after three-dimensional analysis. Furthermore, we have developed three types of lifetime-multiplexed Pdots for combinatorial ExM and fluorescence lifetime microscopy imaging (FLIM). These Pdots exhibit overlapping emission spectra but distinct lifetime distributions across a 0.4 ns to 5 ns range. Single particle lifetime multiplex imaging of immunomagnetic beads indicated the potential of the lifetime-multiplexed Pdots for lifetime barcoding, encrypting, and anti-counterfeiting applications. The impressive fluorescence brightness and substantial photon output provided by Pdots facilitate multiplex lifetime imaging in photon-starved expansion microscopy, which has proven to resolve subcellular structures with a spatial resolution of ~49 nm. These results demonstrate that multi-functional Pdots with tunable properties are promising probes for super-resolution microscopy applications.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2019
Year of Degree Awarded
2023-06
References List

1. Lakowicz, J. R., Springer: 2006.2. Rottenfusser, R.; Wilson, E. E.; Davidson, M. W. https://zeisscampus.magnet.fsu.edu/articles/basics/fluorescence.html.3. Haberstock, S. https://www.tecan.com/blog/how-to-develop-an-optimal-fluorescence-assay.4. Vangindertael, J.; Camacho, R.; Sempels, W. et al., Methods and applications in fluorescence2018, 6 (2), 1-54.5. Blom, H.; Widengren, J., Chemical reviews 2017, 117 (11), 7377-7427.6. Davidson, M. W. https://www.microscopyu.com/microscopy-basics/resolution.7. Silfies, J. S.; Schwartz, S. A.; Davidson, M. W.https://www.microscopyu.com/techniques/super-resolution/the-diffraction-barrier-in-opticalmicroscopy.8. Klar, T. A.; Jakobs, S.; Dyba, M. et al., Proceedings of the National Academy of Sciences 2000,97 (15), 8206-8210.9. Hell, S. W., Nature Methods 2009, 6 (1), 24-32.10. Rittweger, E.; Han, K. Y.; Irvine, S. E. et al., Nature Photonics 2009, 3 (3), 144-147.11. Hofmann, M.; Eggeling, C.; Jakobs, S. et al., Proceedings of the National Academy of Sciences2005, 102 (49), 17565-17569.12. Fernández-Suárez, M.; Ting, A. Y., Nature Reviews Molecular Cell Biology 2008, 9 (12), 929-943.13. Keller, J.; Schönle, A.; Hell, S. W., Optics Express 2007, 15 (6), 3361-3371.14. Gustafsson, M. G., Proceedings of the National Academy of Sciences 2005, 102 (37), 13081-13086.15. Gustafsson, M. G., Journal of Microscopy 2000, 198 (2), 82-87.16. Rust, M. J.; Bates, M.; Zhuang, X., Nature Methods 2006, 3 (10), 793-796.17. Van de Linde, S.; Löschberger, A.; Klein, T. et al., Nature Protocols 2011, 6 (7), 991-1009.18. Cai, E.; Marchuk, K.; Beemiller, P. et al., Science 2017, 356 (6338), 1-10.9919. Legant, W. R.; Shao, L.; Grimm, J. B. et al., Nature Methods 2016, 13 (4), 359-365.20. Sharonov, A.; Hochstrasser, R. M., Proceedings of the National Academy of Sciences 2006,103 (50), 18911-18916.21. Sengupta, P.; Van Engelenburg, S.; Lippincott-Schwartz, J., Developmental Cell 2012, 23 (6),1092-1102.22. Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B. et al., Nature Methods 2014, 11 (3), 313-318.23. Dertinger, T.; Colyer, R.; Vogel, R. et al., Optics Express 2010, 18 (18), 18875-18885.24. Descloux, A.; Grußmayer, K.; Bostan, E. et al., Nature Photonics 2018, 12 (3), 165-172.25. Chen, F.; Tillberg, P. W.; Boyden, E. S., Science 2015, 347 (6221), 543-548.26. Chozinski, T. J.; Halpern, A. R.; Okawa, H. et al., Nature Methods 2016, 13 (6), 485-488.27. Tillberg, P. W.; Chen, F.; Piatkevich, K. D. et al., Nature Biotechnology 2016, 34 (9), 987-992.28. Truckenbrodt, S.; Maidorn, M.; Crzan, D. et al., EMBO Reports 2018, 19 (9), 1-12.29. Gambarotto, D.; Zwettler, F. U.; Le Guennec, M. et al., Nature Methods 2019, 16 (1), 71-74.30. Sun, D.-e.; Fan, X.; Shi, Y. et al., Nature Methods 2021, 18 (1), 107-113.31. Laporte, M. H.; Klena, N.; Hamel, V. et al., Nature Methods 2022, 19 (2), 216-222.32. Marx, V., Nature Methods 2013, 10 (12), 1157-1163.33. Mandula, O.; Kielhorn, M.; Wicker, K. et al., Optics Express 2012, 20 (22), 24167-24174.34. Huang, B.; Bates, M.; Zhuang, X., Annual Review of Biochemistry 2009, 78, 993-1016.35. Qiao, C.; Li, D.; Guo, Y. et al., Nature Methods 2021, 18 (2), 194-202.36. Willig, K. I.; Harke, B.; Medda, R. et al., Nature Methods 2007, 4 (11), 915-918.37. Thompson, R. E.; Larson, D. R.; Webb, W. W., Biophysical Journal 2002, 82 (5), 2775-2783.38. Huang, B.; Jones, S. A.; Brandenburg, B. et al., Nature Methods 2008, 5 (12), 1047-1052.39. Shroff, H.; Galbraith, C. G.; Galbraith, J. A. et al., Proceedings of the National Academy ofSciences 2007, 104 (51), 20308-20313.40. Dertinger, T.; Colyer, R.; Iyer, G. et al., Proceedings of the National Academy of Sciences 2009,106 (52), 22287-22292.41. Geissbuehler, S.; Sharipov, A.; Godinat, A. et al., Nature Communications 2014, 5 (1), 1-7.10042. Zhao, Y.; Bucur, O.; Irshad, H. et al., Nature Biotechnology 2017, 35 (8), 757-764.43. Chen, F.; Wassie, A. T.; Cote, A. J. et al., Nature Methods 2016, 13 (8), 679-684.44. Ku, T.; Swaney, J.; Park, J.-Y. et al., Nature Biotechnology 2016, 34 (9), 973-981.45. Gao, M.; Maraspini, R.; Beutel, O. et al., ACS Nano 2018, 12 (5), 4178-4185.46. Kim, D.; Kim, T.; Lee, J. et al., ChemBioChem 2019, 20 (10), 1260-1265.47. Li, R.; Chen, X.; Lin, Z. et al., Nanoscale 2018, 10 (37), 17552-17556.48. Wang, Y.; Yu, Z.; Cahoon, C. K. et al., Nature Protocols 2018, 13 (8), 1869-1895.49. Sreedharan, S.; Tiwari, R.; Tyde, D. et al., Materials Chemistry Frontiers 2021, 5 (3), 1268-1282.50. Liu, Z.; Liu, J.; Wang, X. et al., Bioconjugate Chemistry 2020, 31 (8), 1857-1872.51. Zhang, X.; Chen, X.; Zeng, Z. et al., ACS Nano 2015, 9 (3), 2659-2667.52. Bates, M.; Huang, B.; Dempsey, G. T. et al., Science 2007, 317 (5845), 1749-1753.53. Testa, I.; D’Este, E.; Urban, N. T. et al., Nano Letters 2015, 15 (1), 103-106.54. Donnert, G.; Keller, J.; Medda, R. et al., Proceedings of the National Academy of Sciences2006, 103 (31), 11440-11445.55. Dertinger, T.; Heilemann, M.; Vogel, R. et al., Angewandte Chemie International Edition 2010,49 (49), 9441-9443.56. Fölling, J.; Belov, V.; Kunetsky, R. et al., Angewandte Chemie International Edition 2007, 46(33), 6266-6270.57. Betzig, E.; Patterson, G. H.; Sougrat, R. et al., Science 2006, 313 (5793), 1642-1645.58. Juette, M. F.; Gould, T. J.; Lessard, M. D. et al., Nature Methods 2008, 5 (6), 527-529.59. Irvine, S. E.; Staudt, T.; Rittweger, E. et al., Angewandte Chemie 2008, 120 (14), 2725-2728.60. Xu, J.; Tehrani, K. F.; Kner, P., ACS Nano 2015, 9 (3), 2917-2925.61. Ye, S.; Guo, J.; Song, J. et al., Applied Physics Letters 2020, 116 (4), 1-5.62. Liu, Y.; Lu, Y.; Yang, X. et al., Nature 2017, 543 (7644), 229-233.63. Leménager, G.; De Luca, E.; Sun, Y.-P. et al., Nanoscale 2014, 6 (15), 8617-8623.64. He, H.; Liu, X.; Li, S. et al., Analytical Chemistry 2017, 89 (21), 11831-11838.65. Gu, X.; Zhao, E.; Zhao, T. et al., Advanced Materials 2016, 28 (25), 5064-5071.10166. Li, D.; Qin, W.; Xu, B. et al., Advanced Materials 2017, 29 (43), 1-9.67. Li, D.; Ni, X.; Zhang, X. et al., Nano Research 2018, 11 (1), 6023-6033.68. Fang, X.; Chen, X.; Li, R. et al., Small 2017, 13 (41), 1-7.69. Wu, H.; Ying, L.; Yang, W. et al., Chemical Society Reviews 2009, 38 (12), 3391-3400.70. Yan, H.; Chen, Z.; Zheng, Y. et al., Nature 2009, 457 (7230), 679-686.71. Sun, K.; Yang, Y.; Zhou, H. et al., ACS Nano 2018, 12 (6), 5176-5184.72. Chen, H.; Wang, F.; Liu, M. et al., Laser & Photonics Reviews 2019, 13 (2), 1-9.73. Zhang, Z.; Fang, X.; Liu, Z. et al., Angewandte Chemie International Edition 2020, 59 (9),3691-3698.74. Chang, K.; Liu, Z.; Fang, X. et al., Nano Letters 2017, 17 (7), 4323-4329.75. Zhang, B.; Wang, F.; Zhou, H. et al., Angewandte Chemie International Edition 2019, 58 (9),2744-2748.76. Zhang, X.; Yu, J.; Wu, C. et al., ACS Nano 2012, 6 (6), 5429-5439.77. Chen, X.; Li, R.; Liu, Z. et al., Advanced Materials 2017, 29 (5), 1-7.78. Liu, Z.; Liu, J.; Sun, Z. et al., Analytical Chemistry 2019, 91 (6), 4179-4185.79. Wu, C.; Chiu, D. T., Angewandte Chemie International Edition 2013, 52 (11), 3086-3109.80. Liu, Y.; Liu, J.; Chen, D. et al., Angewandte Chemie International Edition 2020, 59 (47),21049-21057.81. MacFarlane, L. R.; Shaikh, H.; Garcia-Hernandez, J. D. et al., Nature Reviews Materials 2021,6 (1), 7-26.82. Jiang, Y.; Hu, Q.; Chen, H. et al., Angewandte Chemie 2020, 132 (37), 16307-16314.83. Wu, Y.; Ruan, H.; Zhao, R. et al., Advanced Optical Materials 2018, 6 (19), 1-6.84. Zhang, X.; Yu, J.; Rong, Y. et al., Chemical Science 2013, 4 (5), 2143-2151.85. Rong, Y.; Yu, J.; Zhang, X. et al., ACS Macro Letters 2014, 3 (10), 1051-1054.86. Ahrens, L.; Schlisske, S.; Strunk, K.-P. et al., Chemistry of Materials 2018, 30 (12), 4157-4167.87. Guizar-Sicairos, M.; Thurman, S. T.; Fienup, J. R., Optics Letters 2008, 33 (2), 156-158.88. Geissbuehler, S.; Bocchio, N. L.; Dellagiacoma, C. et al., Optical Nanoscopy 2012, 1 (4), 1-7.89. Zeng, Z.; Chen, X.; Wang, H. et al., Scientific Reports 2015, 5 (1), 1-7.10290. Yogo, T.; Urano, Y.; Ishitsuka, Y. et al., Journal of the American Chemical Society 2005, 127(35), 12162-12163.91. Jiang, Y.; McNeill, J., Chemical Reviews 2017, 117 (2), 838-859.92. Yu, J.; Wu, C.; Tian, Z. et al., Nano Letters 2012, 12 (3), 1300-1306.93. Jiang, Y.; Novoa, M.; Nongnual, T. et al., Nano Letters 2017, 17 (6), 3896-3901.94. Jiang, Y.; McNeill, J., Nature Communications 2018, 9 (1), 1-9.95. Chizhik, A. M.; Stein, S.; Dekaliuk, M. O. et al., Nano Letters 2016, 16 (1), 237-242.96. Zheng, C.; Zhao, G.; Liu, W. et al., Optics Letters 2018, 43 (7), 1423-1426.97. Wang, G.; Moffitt, J. R.; Zhuang, X., Scientific Reports 2018, 8 (1), 1-13.98. Zhang, Y. S.; Trujillo-de Santiago, G.; Alvarez, M. M. et al., Current Opinion in BiomedicalEngineering 2017, 1 (3), 45-53.99. Freifeld, L.; Odstrcil, I.; Förster, D. et al., Proceedings of the National Academy of Sciences2017, 114 (50), 10799-10808.100. Jiang, N.; Kim, H.-J.; Chozinski, T. J. et al., Molecular Biology of the Cell 2018, 29 (12), 1413-1421.101. Düring, D. N.; Rocha, M. D.; Dittrich, F. et al., Frontiers in Neuroanatomy 2019, 13 (2), 1-7.102. Gao, R.; Asano, S. M.; Upadhyayula, S. et al., Science 2019, 363 (6424), 1-16.103. Yu, C.-C. J.; Barry, N. C.; Wassie, A. T., et al., eLife 2020, 9 (1), 1-78.104. Zwettler, F. U.; Spindler, M.-C.; Reinhard, S. et al., Nature Communications 2020, 11 (1), 1-11.105. Cahoon, C. K.; Yu, Z.; Wang, Y. et al., Proceedings of the National Academy of Sciences 2017,114 (33), 6857-6866.106. Chang, J.-B.; Chen, F.; Yoon, Y.-G. et al., Nature Methods 2017, 14 (6), 593-599.107. Truckenbrodt, S.; Sommer, C.; Rizzoli, S. O. et al., Nature Protocols 2019, 14 (3), 832-863.108. Wu, C.; Szymanski, C.; McNeill, J., Langmuir 2006, 22 (7), 2956-2960.109. Al Attar, H. A.; Monkman, A. P., The Journal of Physical Chemistry B 2007, 111 (43), 12418-12426.110. Kolishetti, N.; Ramakrishnan, S., Journal of Chemical Sciences 2007, 119 (2), 185-193.103111. Heuser, J. E.; Anderson, R. G., Journal of Cell Biology 1989, 108 (2), 389-400.112. Wang, D.; Liu, J.; Liu, Z. et al., ACS Applied Nano Materials 2020, 3 (3), 2214-2220.113. Dani, A.; Huang, B.; Bergan, J. et al., Neuron 2010, 68 (5), 843-856.114. Mo, G. C.; Ross, B.; Hertel, F. et al., Nature Methods 2017, 14 (4), 427-434.115. Berezin, M. Y.; Achilefu, S., Chemical Reviews 2010, 110 (5), 2641-2684.116. Luo, T.; Zhou, T.; Qu, J., ACS Nano 2021, 15 (4), 6257-6265.117. Orte, A.; Alvarez-Pez, J. M.; Ruedas-Rama, M. J., ACS Nano 2013, 7 (7), 6387-6395.118. Petrasek, Z.; Bolivar, J. M.; Nidetzky, B., Analytical Chemistry 2016, 88 (21), 10736-10743.119. Long, Y.; Stahl, Y.; Weidtkamp-Peters, S. et al., Nature 2017, 548 (7665), 97-102.120. Grecco, H. E.; Roda-Navarro, P.; Girod, A. et al., Nature Methods 2010, 7 (6), 467-472.121. Sun, Y.; Day, R. N.; Periasamy, A., Nature Protocols 2011, 6 (9), 1324-1340.122. Niehorster, T.; Loschberger, A.; Gregor, I. et al., Nature Methods 2016, 13 (3), 257-262.123. Sigal, Y. M.; Ruobo, Z.; Xiaowei, Z., Science 2018, 361 (6405), 880-887.124. Huang, B.; Wang, W.; Bates, M. et al., Science 2008, 319 (5864), 810-813.125. Li, D.; Shao, L.; Chen, B. C. et al., Science 2015, 349 (6251), 1-10.126. Hell, S. W.; Wichmann, J., Optics Letters 1994, 19 (11), 780-782.127. Wang, L. W.; Chen, Y.; Yan, W. et al., Journal of Biophotonics 2019, 12 (5), 1-9.128. Thiele, J. C.; Helmerich, D. A.; Oleksiievets, N. et al., ACS Nano 2020, 14 (10), 14190-14200.129. Bucur, O.; Fu, F.; Calderon, M. et al., Nature Protocols 2020, 15 (5), 1649-1672.130. Zwettler, F. U.; Reinhard, S.; Gambarotto, D. et al., Nature Communications 2020, 11 (1), 1-11.131. Acke, A.; Van Belle, S.; Louis, B. et al., Nucleic Acids Research 2022, 50 (17), 1-12.132. Woodworth, M. A.; Ng, K. K.; Halpern, A. R. et al., Nucleic Acids Research 2021, 49 (14), 1-15.133. Götz, R.; Kunz, T. C.; Fink, J. et al., Nature Communications 2020, 11 (1), 1-9.134. Kunz, T. C.; Götz, R.; Sauer, M. et al., Frontiers in Cellular and Infection Microbiology 2019,9 (1), 1-6.135. Jalalvand, E.; Alvelid, J.; Coceano, G. et al., eLife 2022, 11 (1), 1-21.104136. Trinks, N.; Reinhard, S.; Drobny, M. et al., Communications Biology 2021, 4 (1), 1-12.137. Park, C. E.; Cho, Y.; Cho, I. et al., ACS Nano 2020, 14 (11), 14999-15010.138. Wu, C.; Bull, B.; Szymanski, C. et al., ACS Nano 2008, 2 (11), 2415-2423.139. Liu, J.; Li, K.; Liu, B., Advanced Science 2015, 2 (5), 1-7.140. Wu, C.; Schneider, T.; Zeigler, M. et al., Journal of the American Chemical Society 2010, 132(43), 15410-15417.141. Wu, C.; Peng, H.; Jiang, Y. et al., The Journal of Physical Chemistry B 2006, 110 (29), 14148-14154.142. Liu, J.; Fang, X.; Liu, Z. et al., Advanced Materials 2021, 33 (25), 1-9.143. Hide, F.; Díaz-García, M. A.; Schwartz, B. J. et al., Accounts of Chemical Research 1997, 30(10), 430-436.144. Rong, Y.; Wu, C.; Yu, J. et al., ACS Nano 2012, 7 (1), 376-384.145. Jiang, Y.; Upputuri, P. K.; Xie, C. et al., Nano Letters 2017, 17 (8), 4964-4969.146. Chang, K.; Liu, Z.; Chen, H. et al., Small 2014, 10 (21), 4270-4275.147. Feng, L.; Zhu, C.; Yuan, H. et al., Chemical Society Reviews 2013, 42 (16), 6620-6633.148. Kuehne, A. J.; Gather, M. C.; Sprakel, J., Nature Communications 2012, 3 (1), 1-7.149. Wu, C.; Hansen, S. J.; Hou, Q. et al., Angewandte Chemie International Edition 2011, 50 (15),3492-3496.150. Wu, C.; Bull, B.; Christensen, K. et al., Angewandte Chemie 2009, 121 (15), 2779-2783.

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/535672
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
Liu J. Multifunctional Fluorescent Polymer Dots for Super-resolution Imaging[D]. 香港. 香港浸会大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
11952001-刘洁-生物医学工程系.(8227KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘洁]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘洁]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘洁]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.