中文版 | English

Interface regulation for efficient and stable inverted perovskite solar cells

Name pinyin
School number
Mentor unit
Tutor of External Organizations
Tutor units of foreign institutions
Publication Years
Submission date
Place of Publication

Organic-inorganic halide perovskite solar cells (PSCs), an emerging photovoltaic technology, have received widespread attention in the past several years due to their low cost and high power conversion efficiency (PCE). The highest certified PCE has reached 25.7%, exceeding those of most traditional photovoltaic devices. PSCs can be divided into two types: regular PSCs (n-i-p) and inverted PSCs (p-i-n). Compared to regular PSCs, inverted PSCs show great promise for large-scale commercialization because of the easily scalable fabrication process, good stability against moisture, and wide application for integrating with other narrow-bandgap solar cells. However, their power conversion efficiency (PCE) is yet reported lower than that of regular PSCs due to their different interface contacts; these lead to poor film quality, unfavorable charge transport, and mismatched energy level. Besides, there are high concentrations of trap states at the interfaces between the charge transport layers (CTL) and the perovskites. Especially in inverted PSCs, defects at the HTL/perovskite interface are particularly abundant. Therefore, my works in this thesis focus on the realization of efficient and stable inverted PSCs by interface regulation, which can greatly reduce interfacial defect density, improve interface contact, and optimize energy levels between CTLs and perovskites.
First, an efficient antisolvent-assisted crystallization strategy was adopted to modify the top interface of perovskite. Specifically, the 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) facilitated the crystallization of perovskites along (100) orientation and enhanced the hole-blocking capability of the top interface of perovskite. Upon the incorporation of TPBi, the champion inverted PSCs exhibited a high PCE of 21.79% and good long-term stability.
Then, [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2P) was used to modify the HTL/perovskite interface by a pre-wetting process; it can improve crystallinity, enhance interface contact, and accelerate hole extraction. Upon the incorporation of 2P, inverted PSCs delivered a high PCE of 22.17% with superior stability.
Finally, an interfused interface was constructed to graft the bottom of the formamidinium lead triiodide (FAPbI3) and the NiOx HTL. This unique interface structure effectively stabilized the α phase of FAPbI3, reduced interfacial defects, and facilitated carrier transport. As a result, FAPbI3 inverted PSC exhibited the highest power conversion efficiency of 23.56% (certified 22.58%) and excellent thermo-optical stability.

Training classes
Enrollment Year
Year of Degree Awarded
References List

(1) Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2 (5), 17032 -17040(2) Allen, T. G.; Bullock, J.; Yang, X.; Javey, A.; De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 2019, 4 (11), 914-928.(3) Bullock, J.; Wan, Y.; Hettick, M.; Zhaoran, X.; Phang, S. P.; Yan, D.; Wang, H.; Ji, W.; Samundsett, C.; Hameiri, Z.et al. Dopant-free partial rear contacts enabling 23% silicon solar cells. Adv. Energy Mater. 2019, 9 (9), 1803367.(4) Metaferia, W.; Schulte, K. L.; Simon, J.; Johnston, S.; Ptak, A. J. Gallium arsenide solar cells grown at rates exceeding 300 microm h(-1) by hydride vapor phase epitaxy. Nat. Commun. 2019, 10 (1), 3361.(5) Liu, S. C.; Yang, Y.; Li, Z.; Xue, D. J.; Hu, J. S. GeSe thin-film solar cells. Mater. Chem. Front. 2020, 4 (3), 775-787.(6) Ramanujam, J.; Singh, U. P. Copper indium gallium selenide based solar cells – A review. Energy & Environ. Sci. 2017, 10 (6), 1306-1319.(7) Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17 (2), 119-128.(8) Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.et al. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10 (1), 2152.(9) Lin, Y.; Magomedov, A.; Firdaus, Y.; Kaltsas, D.; El-Labban, A.; Faber, H.; Naphade, D. R.; Yengel, E.; Zheng, X.; Yarali, E.et al. 18.4 % Organic solar122cells using a high ionization energy self-assembled monolayer as hole-extraction interlayer. ChemSusChem 2021, 14 (17), 3569-3578.(10) Lin, Y.; Firdaus, Y.; Nugraha, M. I.; Liu, F.; Karuthedath, S.; Emwas, A. H.; Zhang, W.; Seitkhan, A.; Neophytou, M.; Faber, H.et al. 17.1% efficient single-junction organic solar cells enabled by n-type doping of the bulk-heterojunction. Adv. Sci. (Weinh) 2020, 7 (7), 1903419.(11) Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M.et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11 (6), 372-378.(12) Munoz-Garcia, A. B.; Benesperi, I.; Boschloo, G.; Concepcion, J. J.; Delcamp, J. H.; Gibson, E. A.; Meyer, G. J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50 (22), 12450-12550.(13) Rui, H.; Shen, J.; Yu, Z.; Li, L.; Han, H.; Sun, L. Stable dye-sensitized solar cells based on copper(II/I) redox mediators bearing a pentadentate ligand. Angew. Chem. Int. Ed. 2021, 60 (29), 16156-16163.(14) Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907.(15) Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M. A.; Eickemeyer, F. T.; Kim, M.et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 2021, 592 (7854), 381-385.(16) Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120 (15), 7867-7918.123(17) Huang, Y.; Lei, X.; He, T.; Jiang, Y.; Yuan, M. Recent progress on formamidinium‐dominated perovskite photovoltaics. Adv. Energy Mater. 2021, 2100690.(18) Luo, D.; Li, X.; Dumont, A.; Yu, H.; Lu, Z. H. Recent progress on perovskite surfaces and interfaces in optoelectronic devices. Adv Mater 2021, 33 (30), e2006004.(19) https://www.pengky.cn/tyn-guangfu/07-guangfu-yy/che-chuan-feji-tyn.html. accessed 10 February 2023(20) https://www.fullsuns.com/997/san-jie-shen-hua-jia-tai-yang-neng-dian-chi.html. accessed 10 February 2023(21) Yang, D.; Yang, R.; Priya, S.; Liu, S. F. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed. 2019, 58 (14), 4466-4483.(22) Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, 6408.(23) Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13 (7), 460-466.(24) Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Organometal halide perovskite solar cells: degradation and stability. Energy & Environ. Sci. 2016, 9 (2), 323-356.(25) Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite solar cells: a review of the recent advances. Coatings 2022, 12 (8).124(26) Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; Yusoff, A.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49 (13), 4496-4526.(27) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051.(28) Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598 (7881), 444-450.(29) https://www.nrel.gov/pv/cell-efficiency.html. accessed 10 February 2023.(30) Köhnen, E.; Jošt, M.; Morales-Vilches, A. B.; Tockhorn, P.; Al-Ashouri, A.; Macco, B.; Kegelmann, L.; Korte, L.; Rech, B.; Schlatmann, R.et al. Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain. Energy & Fuels 2019, 3 (8), 1995-2005.(31) Hu, Y.; Song, L.; Chen, Y.; Huang, W. Two‐terminal perovskites tandem solar cells: recent advances and perspectives. Solar RRL 2019, 3 (7), 1900080.(32) Hu, J.; Cheng, Q.; Fan, R.; Zhou, H. Recent development of organic-inorganic perovskite-based tandem solar cells. Solar RRL 2017, 1 (6), 1700045.(33) Song, Z.; Chen, C.; Li, C.; Awni, R. A.; Zhao, D.; Yan, Y. Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semicond. Sci. Technol. 2019, 34 (9), 093001.(34) Han, Q.; Hsieh, Y.; Meng, L.; Wu, J. L.; Sun, P.; Yao, E.; Chang, S.; Bae, S. H.; Kato, T.; Bermudez, V. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 2018, 361, 904-908.125(35) Huang, Y.; Liu, T.; Li, D.; Zhao, D.; Amini, A.; Cheng, C.; Xing, G. Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy 2021, 88, 106219.(36) Lamanna, E.; Matteocci, F.; Calabrò, E.; Serenelli, L.; Salza, E.; Martini, L.; Menchini, F.; Izzi, M.; Agresti, A.; Pescetelli, S.et al. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 2020, 4 (4), 865-881.(37) Rau, U.; Blank, B.; Müller, T. C. M.; Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 2017, 7 (4).(38) Fu, Y.; Zhu, H.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4 (3), 169-188.(39) Li, D.; Zhang, D.; Lim, K. S.; Hu, Y.; Rong, Y.; Mei, A.; Park, N. G.; Han, H. A review on scaling up perovskite solar cells. Adv. Funct. Mater. 2020, 31 (12), 2008621.(40) Mahesh, S.; Ball, J. M.; Oliver, R. D. J.; McMeekin, D. P.; Nayak, P. K.; Johnston, M. B.; Snaith, H. J. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy & Environ. Sci. 2020, 13 (1), 258-267.(41) Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842-3867.(42) Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Perovskites for next-generation optical sources. Chem. Rev. 2019, 119 (12), 7444-7477.126(43) Jung, H. S.; Park, N. G. Perovskite solar cells: From materials to devices. Small 2015, 11 (1), 10-25.(44) Correa-Baena, J.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.(45) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-480.(46) Xiao, J. W.; Liu, L.; Zhang, D.; De Marco, N.; Lee, J. W.; Lin, O.; Chen, Q.; Yang, Y. The Emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 2017, 7 (20), 1700491.(47) Hu, M.; Bi, C.; Yuan, Y.; Bai, Y.; Huang, J. Stabilized wide bandgap MAPbBr xI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. (Weinh) 2016, 3 (6), 1500301.(48) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2015, 28 (1), 284-292.(49) Seo, J.; Noh, J. H.; Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 2016, 49 (3), 562-572.(50) Rolston, N.; Printz, A. D.; Tracy, J. M.; Weerasinghe, H. C.; Vak, D.; Haur, L. J.; Priyadarshi, A.; Mathews, N.; Slotcavage, D. J.; McGehee, M. D.et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. 2017, 8 (9), 1702116.(51) Li, W.; Rothmann, M. U.; Zhu, Y.; Chen, W.; Yang, C.; Yuan, Y.; Choo, Y. Y.; Wen, X.; Cheng, Y.-B.; Bach, U.et al. The critical role of composition-127dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 2021, 6 (6), 624-632.(52) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Envir. Sci. 2014, 7, 982-988.(53) Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. J. Phys. Chem. Lett. 2015, 6 (7), 1249-1253.(54) Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015, 5 (20), 1501310.(55) Wang, Z.; Zhou, Y.; Pang, S.; Xiao, Z.; Zhang, J.; Chai, W.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G. Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 2015, 27 (20), 7149-7155.(56) Yuan, D. X.; Gorka, A.; Xu, M. F.; Wang, Z. K.; Liao, L. S. Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing. Phys. Chem. Chem. Phys. 2015, 17 (30), 19745-19750.(57) Han, Q.; Bae, S. H.; Sun, P.; Hsieh, Y. T.; Yang, Y. M.; Rim, Y. S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G.et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28 (11), 2253-2258.(58) Tianran Chen, B. J. F., Changwon Park, Craig M. Brown, Leland W. Harriger,; Jooseop Lee; Jacob Ruff; Mina Yoon; Joshua J. Choi, S.-H. L. Entropy-driven128structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2016, 2, e1601650.(59) Liu, N.; Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 2018, 20 (10), 6800-6804.(60) Silver-Hamill Turren-Cruz; Anders Hagfeldt, M. S. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362, 449-453.(61) Min, H.; Kim, G.; Paik, M. J.; Lee, S.; Yang, W. S.; Jung, M.; Seok, S. I. Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv. Energy Mater. 2019, 9, 1803476.(62) Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide. Science 2019, 366 (6466), 749-753.(63) Chen, Y.; Lei, Y.; Li, Y.; Yu, Y.; Cai, J.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C.; Choi, W.et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577 (7789), 209-215.(64) Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116 (21), 12956-13008.(65) Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2 (7), 17042.(66) Lang, F.; Shargaieva, O.; Brus, V. V.; Neitzert, H. C.; Rappich, J.; Nickel, N. H. Influence of radiation on the properties and the stability of hybrid129perovskites. Adv. Mater. 2018, 30 (3), 1702905.(67) McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151-155.(68) Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Ballif, C.; Sessolo, M.; Bolink, H. J. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 2016, 7 (8), 1602121.(69) Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 2016, 354, 861-865.(70) Chen, B.; Zheng, X.; Bai, Y.; Padture, N. P.; Huang, J. Progress in tandem solar cells based on hybrid organic-inorganic perovskites. Adv. Energy Mater. 2017, 7 (14), 1602400.(71) Eperon, G. E.; Hörantner, M. T.; Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 2017, 1 (12), 0095.(72) Lal, N. N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.-B.; Bach, U. Perovskite tandem solar cells. Adv. Energy Mater. 2017, 7 (18), 1602761.(73) Rajagopal, A.; Yang, Z.; Jo, S. B.; Braly, I. L.; Liang, P. W.; Hillhouse, H. W.; Jen, A. K. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 2017, 29 (34), 1702140.(74) Sheng, R.; Hörantner, M. T.; Wang, Z.; Jiang, Y.; Zhang, W.; Agosti, A.; Huang,130S.; Hao, X.; Ho-Baillie, A.; Green, M.et al. Monolithic wide band gap perovskite/perovskite Tandem solar cells with organic recombination layers. J. Phys. Chem. C 2017, 121 (49), 27256-27262.(75) Leijtens, T.; Bush, K. A.; Prasanna, R.; McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 2018, 3 (10), 828-838.(76) Yan, Y. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule 2018, 2 (11), 2206-2207.(77) Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 2018, 3 (12), 1093-1100.(78) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.(79) Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.et al. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479.(80) Stranks, S. D.; Eperon, G. E; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal tTrihalide perovskite absorber. Science 2013, 342, 341-344.(81) Yin, X.; Zhai, J.; Wang, T.; Jing, W.; Song, L.; Xiong, J.; Ko, F. Minimalist design of efficient, stable perovskite solar cells. ACS Appl. Mater. Interfaces1312019, 11 (13), 12460-12466.(82) Huang, Y.; Liu, T.; Liang, C.; Xia, J.; Li, D.; Zhang, H.; Amini, A.; Xing, G.; Cheng, C. Towards simplifying the device structure of high‐performance perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2000863.(83) Liao, J. F.; Wu, W. Q.; Jiang, Y.; Zhong, J. X.; Wang, L.; Kuang, D. B. Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chem. Soc. Rev. 2020, 49, 354-381.(84) Ma, Y.; Zhang, H.; Zhang, Y.; Hu, R.; Jiang, M.; Zhang, R.; Lv, H.; Tian, J.; Chu, L.; Zhang, J.et al. Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 2019, 11 (3), 3044-3052.(85) Liu, T.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. 2016, 6 (17), 1600457.(86) Lin, X.; Cui, D.; Luo, X.; Zhang, C.; Han, Q.; Wang, Y.; Han, L. Efficiency progress of inverted perovskite solar cells. Energy & Environ. Sci. 2020, 13, 3823-3847.(87) Guan, Y.; Xu, M.; Zhang, W.; Li, D.; Hou, X.; Hong, L.; Wang, Q.; Zhang, Z.; Mei, A.; Chen, M.et al. In situ transfer of CH3NH3PbI3 single crystals in mesoporous scaffolds for efficient perovskite solar cells. Chem. Sci. 2020, 11 (2), 474-481.(88) Liu, T.; Su, P.; Liu, L.; Wang, J.; Feng, S.; Zhang, J.; Xu, R.; Yang, H.; Fu, W. An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process. J. Mater. Chem. A 2019, 7 (1), 353-362.132(89) Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P.et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590 (7847), 587-593.(90) Park, B.-w.; Kwon, H. W.; Lee, Y.; Lee, D. Y.; Kim, M. G.; Kim, G.; Kim, K.-j.; Kim, Y. K.; Im, J.; Shin, T. J.et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 2021, 6 (4), 419-428.(91) Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620(92) Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of a-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.(93) Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of alpha-formamidinium lead iodide perovskite solar cells. Science 2020, 370 (6512), 108-112.(94) Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 2020, 370 (6512), 74.(95) Hui. W.; Chao, L.; Lu, H.; Xia, F.; Wei, Q.; Su, Z.; Niu, T.; Tao, L.; Du, B.; Li, D.; Wang, Y. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 2021, 371, 1359-1364.(96) Ru, P.; Bi, E.; Zhang, Y.; Wang, Y.; Kong, W.; Sha, Y.; Tang, W.; Zhang, P.; Wu,133Y.; Chen, W.et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 2020, 10 (12), 1903487.(97) Levine, I.; Al-Ashouri, A.; Musiienko, A.; Hempel, H.; Magomedov, A.; Drevilkauskaite, A.; Getautis, V.; Menzel, D.; Hinrichs, K.; Unold, T.et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 2021, 5, 2915-2933.(98) Li, D.; Huang, Y.; Wang, G.; Lian, Q.; Shi, R.; Zhang, L.; Wang, X.; Gao, F.; Kong, W.; Xu, B.et al. Boosting the performance of MA-free inverted perovskite solar cells via multifunctional ion liquid. J. Mater. Chem. A 2021, 9 (21), 12746-12754.(99) Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang. C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao Y. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365, 473-478.(100) Yang, D.; Sano, T.; Yaguchi, Y.; Sun, H.; Sasabe, H.; Kido, J. Achieving 20% efficiency for low‐temperature‐processed inverted perovskite solar cells. Adv. Funct. Mater. 2018, 29 (12), 1807556.(101) Jošt, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F.et al. 21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 2019, 4 (2), 583-590.(102) Nogay, G.; Sahli, F.; Werner, J.; Monnard, R.; Boccard, M.; Despeisse, M.; Haug, F. J.; Jeangros, Q.; Ingenito, A.; Ballif, C. 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured134silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 2019, 4 (4), 844-845.(103) Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 2019, 4 (10), 864-873.(104) Hou, Y.; Aydin, E.; Bastiani, M.; Xiao, C.; Isikgor, F. H.; Xue, J.; Chen, B.; Chen, H.; Bahrami, B.; Chowdhury, A. H. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 2020, 367, 1135-1140.(105) Wang, H.; Yang, F.; Li, N.; Song, J.; Qu, J.; Hayase, S.; Wong, W.-Y. Interface engineering with a novel n-type small organic molecule for efficient inverted perovskite solar cells. Chem. Eng. J. 2020, 392.(106) Wolff, C. M.; Canil, L.; Rehermann, C.; Ngoc Linh, N.; Zu, F.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S., Jr.et al. Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano 2020, 14 (2), 1445-1456.(107) Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5 (2), 131-140.(108) Li, B.; Xiang, Y.; Jayawardena, K. D. G. I.; Luo, D.; Wang, Z.; Yang, X.; Watts, J. F.; Hinder, S.; Sajjad, M. T.; Webb, T.et al. Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy 2020, 78, 105249.135(109) Xu, X.; Ji, X.; Chen, R.; Ye, F.; Liu, S.; Zhang, S.; Chen, W.; Wu, Y.; Zhu, W. H. Improving contact and passivation of Buried Interface for high‐efficiency and large‐area inverted perovskite solar cells. Adv. Funct. Mater. 2021, 32, 2109968.(110) Yang, X.; Luo, D.; Xiang, Y.; Zhao, L.; Anaya, M.; Shen, Y.; Wu, J.; Yang, W.; Chiang, Y. H.; Tu, Y.et al. Buried interfaces in halide perovskite photovoltaics. Adv Mater 2021, 33 (7), e2006435.(111) Jaysankar, M.; Raul, B. A. L.; Bastos, J.; Burgess, C.; Weijtens, C.; Creatore, M.; Aernouts, T.; Kuang, Y.; Gehlhaar, R.; Hadipour, A.et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 2018, 4 (1), 259-264.(112) Khadka, D. B.; Shirai, Y.; Yanagida, M.; Noda, T.; Miyano, K. Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives. ACS Appl. Mater. Interfaces 2018, 10 (26), 22074-22082.(113) Rajagopal, A.; Stoddard, R. J.; Jo, S. B.; Hillhouse, H. W.; Jen, A. K. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett. 2018, 18 (6), 3985-3993.(114) Dang, H. X.; Wang, K.; Ghasemi, M.; Tang, M.-C.; De Bastiani, M.; Aydin, E.; Dauzon, E.; Barrit, D.; Peng, J.; Smilgies, D.-M.et al. Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 2019, 3 (7), 1746-1764.(115) Gharibzadeh, S.; Abdollahi Nejand, B.; Jakoby, M.; Abzieher, T.; Hauschild, D.; Moghadamzadeh, S.; Schwenzer, J. A.; Brenner, P.; Schmager, R.; Haghighirad, A. A.et al. Record open‐circuit voltage wide‐bandgap perovskite136solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 2019, 9 (21), 1803699.(116) Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S. Stable efficiency exceeding 20.6% for inverted perovskite solarcells through polymer-optimized PCBM electron-transport layers. Nano Lett. 2019, 19 (5), 3313-3320.(117) Wu, S.; Zhang, J.; Li, Z.; Liu, D.; Qin, M.; Cheung, S. H.; Lu, X.; Lei, D.; So, S. K.; Zhu, Z.et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 2020, 4 (6), 1248-1262.(118) Chen, B.; Chen, H.; Hou, Y.; Xu, J.; Teale, S.; Bertens, K.; Chen, H.; Proppe, A.; Zhou, Q.; Yu, D.et al. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 2021, 33 (41), e2103394.(119) Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25 (27), 3727-3732.(120) Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 2014, 53 (46), 12571-12575.(121) Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26 (22), 3748-3754.137(122) Zhao, D.; Sexton, M.; Park, H.-Y.; Baure, G.; Nino, J. C.; So, F. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 2015, 5 (6), 1401855.(123) Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei; J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 357, 434-437.(124) Li, Z.; Li; B.; Wu X.; Sheppard, S. A; Zhang, S.; Gao, D.; Long, N. J.; Zhu, Z. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416-420.(125) Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R. A.; Dunfield, S. P.; Xiao, C.; Scheidt, R. A.; Kuciauskas, D.; Wang, X.; Hautzinger, M. P.et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611 (7935), 278-283.(126) Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.(127) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.; Neukirch, A.; Gupta, G.; Crochet, J.; Chhowalla, M.; Tretiak, S.; Alam, M. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522.(128) Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C. High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 2015, 16, 428-437.(129) Liu, Y.; Renna, L. A.; Page, Z. A.; Thompson, H. B.; Kim, P. Y.; Barnes, M. D.; Emrick, T.; Venkataraman, D.; Russell, T. P. A polymer hole extraction layer138for inverted perovskite solar cells from aqueous solutions. Adv. Energy Mater. 2016, 6 (20), 1600664.(130) Bin, Z.; Li, J.; Wang, L.; Duan, L. Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environ. Sci. 2016, 9 (11), 3424-3428.(131) Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.et al. A Breakthrough Efficiency of 19.9% Obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 2017, 139 (22), 7504-7512.(132) Xie, F.; Chen, C.-C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy & Environ.Sci. 2017, 10 (9), 1942-1949.(133) Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442-1446.(134) Chen, H.; Wei, Q.; Saidaminov, M. I.; Wang, F.; Johnston, A.; Hou, Y.; Peng, Z.; Xu, K.; Zhou, W.; Liu, Z.et al. Efficient and stable inverted perovskite solar cells incorporating secondary amines. Adv. Mater. 2019, 31 (46), e1903559.(135) Xu, C. Y.; Hu, W.; Wang, G.; Niu, L.; Elseman, A. M.; Liao, L.; Yao, Y.; Xu, G.; Luo, L.; Liu, D.et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano 2020, 14 (1), 196-203.(136) Li, F.; Deng, X.; Qi, F.; Li, Z.; Liu, D.; Shen, D.; Qin, M.; Wu, S.; Lin, F.; Jang, S. H.et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 2020, 142 (47),13920134–20142.(137) Degani, M.; An, Q.; Albaladejo-Siguan, M.; Hofstetter, Y. J.; Cho, C.; Paulus, F.; Grancini, G.; Vaynzof, Y. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 2021, 7, eabj7930.(138) Kang, Y. J.; Kwon, S. N.; Cho, S. P.; Seo, Y. H.; Choi, M. J.; Kim, S. S.; Na, S. I. Antisolvent additive engineering containing dual-function additive for triple-cation p-i-n perovskite solar cells with over 20% PCE. ACS Energy Lett. 2020, 5, 2535−2545.(139) Cao, Q.; Yang, J.; Wang, T.; Li, Y.; Pu, X.; Zhao, J.; Zhang, Y.; Zhou, H.; Li, X.; Li, X. Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy & Environ. Sci. 2021, 14 (10), 5406-5415.(140) Chen, W.; Zhou, Y.; Chen, G.; Wu, Y.; Tu, B.; Liu, F. Z.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 2019, 9 (19), 1803872.(141) Liu, X.; Cheng, Y.; Liu, C.; Zhang, T.; Zhang, N.; Zhang, S.; Chen, J.; Xu, Q.; Ouyang, J.; Gong, H. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy & Environ. Sci. 2019, 12 (5), 1622-1633.(142) Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 2015, 15 (6), 3723-3728.(143) You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.et al. Improved air stability of perovskite solar140cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11 (1), 75-81.(144) Chiang, C.-H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environ. Sci. 2017, 10 (3), 808-817.(145) Ma, J.; Zheng, M.; Chen, C.; Zhu, Z.; Zheng, X.; Chen, Z.; Guo, Y.; Liu, C.; Yan, Y.; Fang, G. Efficient and stable nonfullerene-graded heterojunction inverted perovskite solar cells with inorganic Ga2O3 tunneling protective nanolayer. Adv. Funct. Mater. 2018, 28 (41), 1804128.(146) Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z.; Chen, C.; Chen, W.; Huang, Y.et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 2019, 10 (1), 1161.(147) Liu, C.; Kong, W.; Li, W.; Chen, H.; Li, D.; Wang, W.; Xu, B.; Cheng, C.; Jen, A. K. Y. Enhanced stability and photovoltage for inverted perovskite solar cells via precursor engineering. J. Mater. Chem. A 2019, 7 (26), 15880-15886.(148) Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett. 2021, 6 (4), 1596-1606.(149) Chen, H.; Teale, S.; Chen, B.; Hou, Y.; Grater, L.; Zhu, T.; Bertens, K.; Park, S. M.; Atapattu, H. R.; Gao, Y.et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 2022, 16 (5), 352-358.(150) Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A. S.; Liu, J.; Harrison, G. T.; Nugraha, M. I.; Eswaran, M. K.; Babics, M. et al. Damp heat–141stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 2022, 376, 73–77.(151) Chen, W.-Y.; Deng, L.-L.; Dai, S.-M.; Wang, X.; Tian, C.-B.; Zhan, X.-X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3 (38), 19353-19359.(152) Huang, J.; Wang, K.-X.; Chang, J.-J.; Jiang, Y.-Y.; Xiao, Q.-S.; Li, Y. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J. Mater. Chem. A 2017, 5 (26), 13817-13822.(153) Wang, Q.; Chueh, C. C.; Eslamian, M.; Jen, A. K. Modulation of PEDOT:PSS pH for Efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 2016, 8 (46), 32068-32076.(154) Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environ. Sci. 2019, 12 (11), 3356-3369.(155) Magomedov, A.; Al-Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 2018, 8 (32), 1801892.(156) Ma, F.; Zhao, Y.; Li, J.; Zhang, X.; Gu, H.; You, J. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 2021, 52, 393-411.142(157) Zhang, B.; Su, J.; Guo, X.; Zhou, L.; Lin, Z.; Feng, L.; Zhang, J.; Chang, J.; Hao, Y. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. (Weinh) 2020, 7 (11), 1903044.(158) Wang, S.; Li, Y.; Yang, J.; Wang, T.; Yang, B.; Cao, Q.; Pu, X.; Etgar, L.; Han, J.; Zhao, J.et al. Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew. Chem. Int. Ed. 2022, 61 (18), e202116534.(159) Chauhan, A.; Chauhan, P. Powder XRD technique and its applications in science and technology. J. Anal. & Bioanal. Techn. 2014, 5 (6), 1000212.(160) Khan, H.; Yerramilli, A. S.; D'Oliveira, A.; Alford, T. L.; Boffito, D. C.; Patience, G. S. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 2020, 98 (6), 1255-1266.(161) Stanjek, H.; Hausler, W. Basics of X-ray diffraction. Hyperfine Interact. 2004, 154, 107-119.(162) Smith, K. C. A.; Oatley, C. W. The scanning electron microscope and its fields of application. Br. J. Appl. Phys. 1955, 6, 391.(163) Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56 (9), 930-933.(164) M. Nonnenmacher, M. P. O. B.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921-2923.(165) Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci.e Rep. 2011, 66 (1), 1-27.(166) Giessibl, F. J. Advances in atomic force microscopy. Rev. Modern Phys. 2003, 745, 949-983.(167) Rubén, G. R. P. Dynamic atomic force microscopy methods. Surf. Sci. Rep.1432002, 47, 197-301.(168) Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency modulation detection using high‐Qcantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69 (2), 668-673.(169) Fadley, C. S. X-ray photoelectron spectroscopy: Progress and perspectives. J. Electron Spectrosc. Relate. Phenomena 2010, 178-179, 2-32.(170) Moulder, J. F.; Stickle, W. F.; ESobol, P.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy: United Stales of America, 1992.(171) Empedocles, S. A.; Neuhauser, R.; Shimizu, K.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 1999, 11 (15), 1243-1256.(172) Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 2014, 136 (35), 12205-12208.(173) Berera, R.; Grondelle, R.; Kennis, J. T. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 2009, 101 (2), 105-118.(174) Yang, J.; Luo, X.; Zhou, Y.; Li, Y.; Qiu, Q.; Xie, T. Recent advances in inverted perovskite solar cells: designing and fabrication. Int. J. Mol. Sci. 2022, 23 (19), 11792.(175) Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, Xiao C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2 (7), 17102.(176) Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.;144Song, T.et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7 (12), 1749-1758.(177) Cruz, D.; Garcia Cerrillo, J.; Kumru, B.; Li, N.; Dario Perea, J.; Schmidt, B.; Lauermann, I.; Brabec, C. J.; Antonietti, M. Influence of thiazole-modified carbon nitride nanosheets with feasible electronic properties on inverted perovskite solar cells. J. Am. Chem. Soc. 2019, 141 (31), 12322-12328.(178) Bai, Y.; Meng, X.; Yang, S. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 2018, 8 (5), 1701883.(179) Huang, L.; Zhang, D.; Bu, S.; Peng, R.; Wei, Q.; Ge, Z. Synergistic interface energy band alignment optimization and defect passivation toward efficient and simple‐structured perovskite solar cell. Adv. Sci. 2020, 1902656.(180) Zhao, T.; Chueh, C.-C.; Chen, Q.; Rajagopal, A.; Jen, A. K. Y. Defect Passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 2016, 1 (4), 757-763.(181) Nakita K. Noel; Antonio Abate; Samuel D. Stranks; Elizabeth S. Parrott; Victor M. Burlakov; Alain Goriely; Henry J. Snaith. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815-9821.(182) Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; Stokkum, I. H. M. v. Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012, 49 (3), 1-20.(183) Wang, Y.; Duan, L.; Zhang, M.; Hameiri, Z.; Liu, X.; Bai, Y.; Hao, X. PTAA as efficient hole transport materials in perovskite solar cells: A review. Solar145RRL 2022, 6 (8), 2200234.(184) Ke, Q. B.; Wu, J. R.; Lin, C. C.; Chang, S. H. Understanding the PEDOT:PSS, PTAA and P3CT-X hole-transport-layer-based inverted perovskite solar cells. Polymers 2022, 14 (4), 823.(185) Wang, M.; Wang, H.; Li, W.; Hu, X.; Sun, K.; Zang, Z. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 2019, 7 (46), 26421-26428.(186) Zhang, C.; Liao, Q.; Chen, J.; Li, B.; Xu, C.; Wei, K.; Du, G.; Wang, Y.; Liu, D.; Deng, J.et al. Thermally crosslinked hole conductor enables stable inverted perovskite solar cells with 23.9% efficiency. Adv. Mater. 2022, e2209422.(187) Huang, Y.; Liu, T.; Wang, B.; Li, J.; Li, D.; Wang, G.; Lian, Q.; Amini, A.; Chen, S.; Cheng, C.et al. Antisolvent engineering to optimize grain crystallinity and hole-blocking capability of perovskite films for high-performance photovoltaics. Adv. Mater. 2021, 33 (38), e2102816.(188) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.(189) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.(190) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.(191) Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, Xiao C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2 (7), 17102.146(192) Lee, J. W.; Tan, S.; Han, T. H.; Wang, R.; Zhang, L.; Park, C.; Yoon, M.; Choi, C.; Xu, M.; Liao, M. E.et al. Solid-phase hetero epitaxial growth of alpha-phase formamidinium perovskite. Nat. Commun. 2020, 11 (1), 5514.(193) Liu, Y.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H.; Seo, J. Y.; Zhang, J.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M.et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 2020, 59 (36), 15688-15694.(194) Tan, S.; Yavuz, I.; Weber, M. H.; Huang, T.; Chen, C.-H.; Wang, R.; Wang, H.-C.; Ko, J. H.; Nuryyeva, S.; Xue, J.et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 2020, 4 (11), 2426-2442.(195) Wang, M.; Tan, S.; Zhao, Y.; Zhu, P.; Yin, Y.; Feng, Y.; Huang, T.; Xue, J.; Wang, R.; Han, G. S.et al. Stable and efficient methylammonium‐, cesium‐, and bromide‐free perovskite solar cells by in‐situ interlayer formation. Adv. Funct. Mater. 2020, 31 (7), 2007520.(196) Gutierrez-Partida, E.; Hempel, H.; Caicedo-Dávila, S.; Raoufi, M.; Peña-Camargo, F.; Grischek, M.; Gunder, R.; Diekmann, J.; Caprioglio, P.; Brinkmann, K. O.et al. Large-grain double cation perovskites with 18 μs lifetime and high luminescence yield for efficient inverted perovskite solar cells. ACS Energy Lett. 2021, 6 (3), 1045-1054.(197) Zhang, D.; Zhang, H.; Guo, H.; Ye, F.; Liu, S.; Wu, Y. Stable α‐FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self‐passivation strategy. Adv. Funct. Mater. 2022, 200174.(198) Huang, Y.; Liu, T.; Li, D.; Lian, Q.; Wang, Y.; Wang, G.; Mi, G.; Zhou, Y.; Amini, A.; Xu, B.et al. Bridging the interfacial contact for improved stability147and efficiency of inverted perovskite solar cells. Small 2022, 18 (24), e2201694.(199) Hu, Y.; Yang, Z.; Cui, X.; Zeng, P.; Li, F.; Liu, X.; Feng, G.; Liu, M. Construction of charge transport channels at the NiOx/perovskite interface through moderate dipoles toward highly Efficient inverted solar cells. ACS Appl. Mater. Interfaces 2022, 14 (11), 13431-13439.(200) Alghamdi, A. R. M.; Yanagida, M.; Shirai, Y.; Andersson, G. G.; Miyano, K. Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells. ACS Omega 2022, 7 (14), 12147-12157.(201) Park, S.; Kim, D. W.; Park, S. Y. Improved stability and efficiency of inverted perovskite solar cell by employing nickel oxide hole transporting material containing ammonium salt stabilizer. Adv. Funct. Mater. 2022, 32 (28), 2200437.(202) Xu, L.; Chen, X.; Jin, J.; Liu, W.; Dong, B.; Bai, X.; Song, H.; Reiss, P. Inverted perovskite solar cells employing doped NiO hole transport layers: A review. Nano Energy 2019, 63, 103860.(203) Liu, Q.; Lv, P.; Wang, Y.; Zhu, Y.; Hu, M.; Huang, F.; Cheng, Y.-B.; Lu, J. Impact of nickel oxide/perovskite interfacial contact on the crystallization and photovoltaic performance of perovskite solar cells. Solar RRL 2022, 6 (7), 2200232.(204) Sun, J.; Shou, C.; Sun, J.; Wang, X.; Yang, Z.; Chen, Y.; Wu, J.; Yang, W.; Long, H.; Ying, Z.et al. NiOx‐seeded self‐assembled monolayers as highly hole‐selective passivating contacts for efficient inverted perovskite solar cells. Solar RRL 2021, 5 (11), 2100663.148(205) Du, T.; Macdonald, T. J.; Yang, R. X.; Li, M.; Jiang, Z.; Mohan, L.; Xu, W.; Su, Z.; Gao, X.; Whiteley, R.et al. Additive-free, low-temperature crystallization of stable alpha-FAPbI3 perovskite. Adv. Mater. 2022, 34 (9), e2107850.(206) Jiang, F.; Choy, W. C.; Li, X.; Zhang, D.; Cheng, J. Post-treatment-free solution-processed non-stoichiometric NiO(x) nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 2015, 27 (18), 2930-2937.(207) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.(208) Foley, B. J.; Girard, J.; Sorenson, B. A.; Chen, A. Z.; Scott Niezgoda, J.; Alpert, M. R.; Harper, A. F.; Smilgies, D.-M.; Clancy, P.; Saidi, W. A.et al. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. J. Mater. Chem. A 2017, 5 (1), 113-123.(209) Lee, J. W.; Dai, Z.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9 (1), 3021.(210) Shibata, H.; Sakai, M.; Yamada, A.; Matsubara, K.; Sakurai, K.; Tampo, H.; Ishizuka, S.; Kim, K.-K.; Niki, S. Excitation-power dependence of free exciton photoluminescence of semiconductors. Jap. J. Appl. Phys. 2005, 44 (8), 6113-6114.

Data Source
Document TypeThesis
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Huang YL. Interface regulation for efficient and stable inverted perovskite solar cells[D]. 澳门. 澳门大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
11953006-黄毓岚-材料科学与工程(9231KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[黄毓岚]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[黄毓岚]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[黄毓岚]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.