中文版 | English
Title

Visible-Light Photoredox-Catalysed Radical Cascade Reactions

Author
Name pinyin
LI Sifan
School number
11856008
Degree
博士
Discipline
化学
Subject category of dissertation
有机化学
Supervisor
舒伟
Mentor unit
化学系
Tutor of External Organizations
Paul W. Davies
Tutor units of foreign institutions
伯明翰大学
Publication Years
2023-05-10
Submission date
2023-06-07
University
伯明翰大学
Place of Publication
英国
Abstract

The research presented in this thesis details several novel radical cascade transformations under copper-catalysis or visible-light photoredox-catalysis.
The synthesis of [1,2]-annulated indoles from ene-ynamides via a radical triggered
fragmentary cyclisation cascade under copper-catalysis or photoredox-catalysis is described. This reaction proceeds through a radical addition, radical cyclisation, desulfonylative aryl migration, and site-selective C(sp2)-N cyclisation sequence. This work presents an example of a radical Smiles rearrangement process followed by aza-Nazarov type cyclisation, which enables the selective incorporation of the electron-rich aryl ring into the indole motif regardless of its original position.
The second part of thesis explores the synthesis of α-arylated carboxylic acids, esters, and amides from consecutive defluorination of α-trifluoromethyl alkenes in the presence of potassium alkyltrifluoroborates, water, and nitrogen/oxygen nucleophiles under
organophotoredox-catalysed conditions. The utility of this method has been expanded
through several product transformations. Mechanistic studies show that this metal-free
reaction consists of a defluorinative alkylation, defluorinative hydroxylation, and defluorinative amination/hydroxylation cascade.
Finally, the modular synthesis of α-tertiary primary amines using α-aryl vinyl azides, redoxactive N-(hydroxy)phthalimide ester, and cyanoarenes under visible-light conditions is described. This strategy shows excellent functional group compatibility and allows the straightforward synthesis of 2,2-diaryl tetrahydroquinolines and 1,2-amino alcohols. The mechanistic studies support two parallel reductive photocatalytic cycles allowing for the denitrogenative alkylarylation of vinyl azides through decarboxylative radical addition followed by hetero-radical cross-coupling between α-amino alkyl radicals and aryl radical anions.

Other Abstract
本论文中的研究详细介绍了铜催化或可见光光氧化还原催化下的几种新型自由基串联反应。
第一部分介绍了在铜催化或光氧化还原催化下通过自由基串联反应从炔酰胺合成[1,2]-环吲哚的反应。该反应通过自由基加成、自由基环化、脱磺酰基芳基迁移和位点选择性 C(sp2)-N 环化顺序进行。这项工作展示了一个自由基Smiles重排以及aza-Nazarov型环化的例子,这使得富电子芳基环选择性地并入吲哚中,而不管其原始位置如何。
论文的第二部分探讨了在烷基三氟硼酸钾、水和氮/氧亲核试剂存在下,通过在有机光氧化还原催化条件下由α-三氟甲基烯烃连续脱氟合成α-芳基羧酸、酯和酰胺。该方法的实用性通过产物的衍生化得到了扩展。机理研究表明,这种无金属反应由脱氟烷基化、脱氟羟基化和脱氟胺化/羟基化级联组成。
最后,本文描述了在可见光条件下使用α-芳基乙烯基叠氮化物、氧化还原活性N-(羟基)邻苯二甲酰亚胺酯和氰基芳烃模块化合成α-叔伯胺。该策略显示出出色的官能团相容性,可直接合成 2,2-二芳基四氢喹啉和 1,2-氨基醇。机理研究支持两个平行的还原光催化循环,通过自由基加成及α-氨基烷基自由基和芳基自由基阴离子之间的自由基交叉偶联来实现乙烯基叠氮化物的脱氮烷基氨基化。
Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2023-07
References List

[1]Hoffmann, N., Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 2008, 108, 1052–1103.2.
[2] Narayanam, J. M.; Stephenson, C. R. J., Visible Light Photoredox Catalysis: Applications in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 102–113.3.
[3] Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C., Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363.
[4] Romero, N. A.; Nicewicz, D. A., Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166.
[5] Lowry, M. S.; Bernhard, S., Synthetically Tailored Excited States: Phosphorescent, Cyclometalated Iridium(III) Complexes and Their Applications. Chem. Eur. J. 2006, 12, 7970–7977.
[6] Takeda, H.; Ishitani, O., Development of Efficient Photocatalytic Systems for CO2 Reduction Using Mononuclear and Multinuclear Metal Complexes Based on Mechanistic Studies. Coord. Chem. Rev. 2010, 254, 346–354.
[7] Kalyanasundaram, K.; Grätzel, M., Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coord. Chem. Rev. 1998, 177, 347–414.
[8] Nicewicz, D. A.; MacMillan, D. W. C., Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008, 322, 77–80.
[9] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P., Efficient Visible Light Photocatalysis of
[2+2] Enone Cycloadditions. J. Am. Chem. Soc. 2008, 130, 12886–12887.
[10] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J., Electron-Transfer Photoredox Catalysis: Development of a Tin-Free Reductive Dehalogenation Reaction. J. Am. Chem. Soc. 2009, 131, 8756–8757.
[11] Twilton, J.; Le, C.; Zhang, P.; Megan, H. S.; Ryan, W. E.; MacMillan, D. W. C., The Merger of Transition Metal and Photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
[12] Arias-Rotondo, D. M.; McCusker, J. M., The Photophysics of Photoredox Catalysis: A Roadmap for Catalyst Design. Chem. Soc. Rev. 2016, 45, 5803–5820.
[13] Dexter, D. L., A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850.
[14] Evano, G.; Coste, A.; Jouvin, K., Ynamides: Versatile Tools in Organic Synthesis. Angew. Chem. Int. Ed. 2010, 49, 2840–2859.
[15] Feldman, F. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C., Inter- and Intramolecular Addition/Cyclizations of Sulfonamide Anions with Alkynyliodonium Triflates. Synthesis of Dihydropyrrole, Pyrrole, Indole, and Tosylenamide Heterocycles. J. Org. Chem. 1996, 61, 5440–5452.
[16] Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L., Copper Sulfate-Pentahydrate-1,10-Phenanthroline Catalyzed Amidations of Alkynyl Bromides. Synthesis of Heteroaromatic Amine Substituted Ynamides. Org. Lett. 2004, 6, 1151–1154.
[17] Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G., Copper-Mediated Coupling of 1,1-Dibromo-1-alkenes with Nitrogen Nucleophiles: A General Method for the Synthesis of Ynamides. Angew. Chem. Int. Ed. 2009, 48, 4381–4385.
[18] Hamada, T.; Ye, X.; Stahl, S. S., Copper-Catalyzed Aerobic Oxidative Amidation of Terminal Alkynes: Efficient Synthesis of Ynamides. J. Am. Chem. Soc. 2008, 130, 833–835.
[19] Dekorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P., Ynamides: A Modern Functional Group for the New Millennium. Chem. Rev. 2010, 110, 5064–5106.
[20] Shu, C.; Li, L.; Tan, T.-D.; Yuan, D.-Q.; Ye, L.-W., Ring Strain Strategy for the Control of Regioselectivity. Gold-Catalyzed Anti-Markovnikov Cycloisomerization Initiated Tandem Reactions of Alkynes. Sci. Bull. 2017, 62, 352–357.
[21] Marion, F.; Courillon, C.; Malacria, M., Radical Cyclization Cascade Involving Ynamides:  An Original Access to Nitrogen-Containing Heterocycles. Org. Lett. 2003, 5, 5095–5097.
[22] Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B.; Evano, G., Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis 2018, 50, 3022–3030.
[23] Dutta, S.; Mallick, R. K.; Prasad, R.; Gandon, V.; Sahoo, A. K., Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne-Ynamides. Angew. Chem. Int. Ed. 2019, 58, 2289–2294.
[24] Dutta, S.; Prabagar, B.; Vanjari, R.; Gandon, V.; Sahoo, A. K., An Unconventional Sulfur-to-Selenium-to-Carbon Radical Transfer: Chemo-and Regioselective Cyclization of Yne-Ynamides. Green Chem. 2020, 22, 1113–1118.
[25] Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Ye, L.-W., Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl–Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. J. Am. Chem. Soc. 2020, 142, 3636–3644.
[26] Wang, Z.-S.; Chen, Y.-B.; Wang, K.; Xu, Z.; Ye, L.-W., One-pot Synthesis of 2-Hydroxymethylindoles via Photoredox-catalyzed Ketyl–Ynamide Coupling/1,3-Allylic Alcohol Transposition. Green Chem. 2020, 22, 4483–4488.
[27] Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W., Reversal of Regioselectivity in Ynamide Chemistry. ACS Catal. 2019, 9, 6393–6406.
[28] Sato, A.; Yorimitsu, H.; Oshima, K., Regio- and Stereoselective Radical Additions of Thiols to Ynamides. Synlett 2009, 1, 28–31.
[29] Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L., Stereoselective Additions of Thiyl Radicals to Terminal Ynamides. Org. Lett. 2010, 12, 2650–2652.
[30] Romain, E.; Fopp, C.; Chemla, F.; Ferreira, F.; Jackowski, O.; Oestreich, M.; Perez-Luna, A., Trans -Selective Radical Silylzincation of Ynamides. Angew. Chem. Int. Ed. 2014, 53, 11333–11337.
[31] Cassé, M.; Nisole, C.; Dossmann, H.; Gimbert, Y.; Fourquez, J.-M.; Haberkorn, L.; Ollvier, C.; Fensterbank, L., Trifluoromethyl Radical Triggered Radical Cyclization of N-Benzoyl Ynamides Leading to Isoindolinones. Sci. China Chem. 2019, 62, 1542–1546.
[32] Dwadnia, N.; Lingua, H.; Mouysset, D.; Mimoun, L.; Siri, D.; Bertrand, M. P.; Feray, L., Intermolecular Addition of Carbon-Centered Radicals to Ynamides. A Regio- and Stereoselective Route to Persubstituted α-Iodo-enamides. J. Org. Chem. 2020, 85, 4114–4121.
[33] Snape, T. J., A Truce on the Smiles Rearrangement: Revisiting an Old Reaction–The Truce-Smiles Rearrangement. Chem. Soc. Rev. 2008, 37, 2452–2458.
[34] Holden, C. M.; Greaney, M. F., Modern Aspects of the Smiles Rearrangement. Chem. Eur. J. 2017, 23, 8992–9008.
[35] Bernasconi, C. F., De Rossi, R. H., Gehriger, C. L., Intermediates in Nucleophilic Aromatic Substitution. X. Synthesis of N-methyl-.beta.-Aminoethyl Nitroaryl Ethers via an Unusual Smiles Rearrangement. J. Org. Chem. 1973, 38, 2838–2842.
[36] Kitching, M. O., Hurst, T. E., Snieckus, V., Copper-Catalyzed Cross-Coupling Interrupted by an Opportunistic Smiles Rearrangement: An Efficient Domino Approach to Dibenzoxazepinones. Angew. Chem. Int. Ed. 2012, 51, 2925–2929.
[37] Truce, W. E., Ray Jr., W. J., Norman, O. L., Eickemeyer, D. B., Rearrangement of Aryl Sulfones. I. The Metalation and Rearrangement of Mesityl Phenyl Sulfone. J. Am. Chem. Soc. 1958, 80, 3625–3629.
[38]Holden, C. M., Sohel, S. M. A., Greaney, M. F., Metal Free Bi(hetero)aryl Synthesis: A Benzyne Truce-Smiles Rearrangement. Angew. Chem. Int. Ed. 2016, 55, 2450–2453.
[39] Rabet, P. T. G., Boyd, S., Greaney, M. F., Metal-Free Intermolecular Aminoarylation of Alkynes. Angew. Chem. Int. Ed. 2017, 56, 4183–4186.
[40] Allart-Simon, I., Gérard, S., Sapi, J., Radical Smiles Rearrangement: An Update. Molecules 2016, 21, 878–888.
[41] Motherwell, W. B., Pennell, A. M. K., A Novel Route to Biaryls via Intramolecular Free Radical ipso Substitution Reactions. J. Chem. Soc. Chem. Commun. 1991, 877–879.
[42] Kong, W.; Casimiro, M.; Merino, E.; Nevado, C., Copper-Catalyzed One-Pot Trifluoromethylation/Aryl Migration/Desulfonylation and C(sp2)–N Bond Formation of Conjugated Tosyl Amides. J. Am. Chem. Soc. 2013, 135, 14480–14483.
[43] Kong, W., Merino, E., Nevado, C., Arylphosphonylation and Arylazidation of Activated Alkenes. Angew. Chem. Int. Ed. 2014, 53, 5078–5082.
[44] Futentes, N., Kong, W., Fernández-Sánchez, L., Merino, E., Nevado, C., Cyclization Cascades via N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds. J. Am. Chem. Soc. 2015, 137, 964–973.
[45] Hervieu, C., Kirillova, M. S., Suárez, T., Müller, M., Merino, E., Nevado, C., Asymmetric, Visible Light-Mediated Radical Sulfinyl-Smiles Rearrangement to Access All-Carbon Quaternary Stereocentres. Nat. Chem. 2021, 13, 327–334.
[46] Monos, T. M., McAtee, R. C., Stephenson, C. R. J., Arylsulfonylacetamides as Bifunctional Reagents for Alkene Aminoarylation. Science 2018, 361, 1369–1373.
[47] Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q., Radical Cascade Reaction of Alkynes with N-Fluoroarylsulfonimides and Alcohols. Nat. Commun. 2015, 6, 7011–7019.
[48] ratley, C.; Fenner, S.; Murphy, J. A., Nitrogen-Centered Radicals in Functionalization of sp2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem. Rev. 2022, 122, 8181–8260.
[49] Klumpp, D. A.; Zhang, Y.; O’Connor, M. J.; Esteves, P. M.; de Mlmeide, L. S., Aza-Nazarov Reaction and the Role of Superelectrophiles. Org. Lett. 2007, 9, 3085–3088.
[50] Di Grandi, M. J., Nazarov-Like Cyclization Reactions. Org. Biomol. Chem. 2014, 12, 5331–5345.
[51] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V., Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330.
[52] Müller, K.; Faeh, C.; Diederich, F., Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886.
[53] Clayden, J., Fluorinated Compounds Present Opportunities for Drug Discovery. Nature 2019, 573, 37–38.
[54] Young, C. J., Mabury, S. A., Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts. Rev. Environ. Contam. Toxicol. 2010, 208, 1–109.
[55] Tian, F.; Yan, G.; Yu, J., Recent Advances in the Synthesis and Applications of α-(Trifluoromethyl)styrenes in Organic Synthesis. Chem. Commun. 2019, 55, 13486–13505.
[56] Bégué, J.-P., Bonnet-Delpon, D., Rock, M. H., A Concise Synthesis of Functionalised gem-Difluoroalkenes, via the Addition of Organolithium Reagents to α-Trifluoromethylstyrene. Tetrahedron Lett. 1995, 36, 5003–5006.
[57] Li, S.; Shu, W., Recent Advances in Radical Enabled Selective Csp3–F Bond Activation of Multifluorinated Compounds. Chem. Commun. 2022, 58, 1066–1077.
[58] Yan, G.; Qiu, K.; Guo, M., Recent Advance in the C–F Bond Functionalization of Trifluoromethyl-Containing Compounds. Org. Chem. Front. 2021, 8, 3915–3942.
[59] Xiao, T.; Li, L.; Zhou, L., Synthesis of Functionalized gem-Difluoroalkenes via a Photocatalytic Decarboxylative/Defluorinative Reaction. J. Org. Chem. 2016, 81, 7908–7916.
[60] Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A., Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew. Chem. Int. Ed. 2017, 56, 15073–15077.
[61] Wu, L.-H.; Cheng, J.-K.; Shen, L.; Shen, Z.-L.; Loh, T.-P., Visible Light-Mediated Trifluoromethylation of Fluorinated Alkenes via C−F Bond Cleavage. Adv. Synth. Catal. 2018, 360, 3894–3899.
[62] Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Song, D.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., Photocatalytic, Phosphoranyl Radical-Mediated N–O Cleavage of Strained Cycloketone Oximes. Org. Lett. 2019, 21, 2658–2662.
[63] Anand, D.; Sun, Z.; Zhou, L., Visible-Light-Mediated β-C–H gem-Difluoroallylation of Aldehydes and Cyclic Ketones through C–F Bond Cleavage of 1-Trifluoromethyl Alkenes. Org. Lett. 2020, 22, 2371–2375.
[64] Guo, Y.-Q.; Wang, R.; Song, H.; Liu, Y.; Wang, Q., Visible-Light-Induced Deoxygenation/Defluorination Protocol for Synthesis of γ,γ-Difluoroallylic Ketones. Org. Lett. 2020, 22, 709–713.
[65] Guo, Y.-Q.; Wu, Y.; Wang, R.; Song, H.; Liu, Y.; Wang, Q., Photoredox/Hydrogen Atom Transfer Cocatalyzed C–H Difluoroallylation of Amides, Ethers, and Alkyl Aldehydes. Org. Lett. 2021, 23, 2353–2358.
[66] Yue, W.-J.; Day, C. S.; Martin, R., Site-Selective Defluorinative sp3 C–H Alkylation of Secondary Amides. J. Am. Chem. Soc. 2021, 143, 6395–6400.
[67] Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., Photoinduced Single-Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. Angew. Chem. Int. Ed. 2020, 59, 6706–6710.
[68] Xu, W.; Jiang, H.; Heng, J.; Ong, H.-W.; Wu, J., Visible-Light-Induced Selective Defluoroborylation of Polyfluoroarenes, gem-Difluoroalkenes, and Trifluoromethylalkenes. Angew. Chem. Int. Ed. 2020, 59, 4009–4016.
[69] Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F., New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angew. Chem. Int. Ed. 2020, 59, 12876–12884.
[70] Li, L.; Xiao, T.; Chen, H.; Zhou, L., Visible-Light-Mediated Two-Fold Unsymmetrical C(sp3)−H Functionalization and Double C−F Substitution. Chem. – Eur. J. 2017, 23, 2249–2254.
[71]Chen, H., He, Y., Zhou, L., A Photocatalytic Decarboxylative/Defluorinative
[4+3] Annulation of O-Hydroxyphenylacetic Acids and Trifluoromethyl Alkenes: Synthesis of Fluorinated Dihydrobenzoxepines. Org. Chem. Front. 2018, 5, 3240–3244.
[72] Shen, T. Y., Perspectives in Nonsteroidal Anti-inflammatory Agents. Angew. Chem. Int. Ed. 1972, 11, 460–472.
[73] Culkin, D. A., Hartwig, J. F., Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Acc. Chem. Res. 2003, 36, 234–245.
[74] Johansson, C. C. C., Colacot, T. J., Metal-Catalyzed α-Arylation of Carbonyl and Related Molecules: Novel Trends in C–C Bond Formation by C–H Bond Functionalization. Angew. Chem. Int. Ed. 2010, 49, 676–707.
[75] Moradi, W. A., Buchwald, S. L., Palladium-Catalyzed α-Arylation of Esters. J. Am. Chem. Soc. 2001, 123, 7996–8002.
[76] Bala, T., Prasad, B. L. V., Sastry, M., Kahaly, M. U., Waghmare, U. V., Interaction of Different Metal Ions with Carboxylic Acid Group: A Quantitative Study. J. Phys. Chem. A 2007, 111, 6183–6190.
[77] Morita, Y., Yamamoto, T., Nagai, H., Shimizu, Y., Kanai, M., Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions. J. Am. Chem. Soc. 2015, 137, 7075–7078.
[78] Ruiz-Castillo, P., Buchwald, S. L., Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649.
[79] He, Z.-T., Hartwig, J. F., Palladium-Catalyzed α-Arylation of Carboxylic Acids and Secondary Amides via a Traceless Protecting Strategy. J. Am. Chem. Soc. 2019, 141, 11749–11753.
[80] Vasquez, A. M., Gurak, J. A., Joe, C. L., Cherney, E. C., Engle, K. M., Catalytic α-Hydroarylation of Acrylates and Acrylamides via an Interrupted Hydrodehalogenation Reaction. J. Am. Chem. Soc. 2020, 142, 10477–10484.
[81] Bellina, F., Rossi, R., Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C–H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chem. Rev. 2010, 110, 1082–1146.
[82] Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C., Photoredox-Coupled F-Nucleophilic Addition: Allylation of gem-Difluoroalkenes. Angew. Chem. Int. Ed. 2019, 58, 3918–3922.
[83] Margrey, K. A.; Nicewicz, D. A., A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 1997–2006.
[84] Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N., Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243–8253.
[85] Shipilovskikh, S. A.; Vaganov, V. Y.; Denisova, E. I.; Rubtsov, A. E.; Malkov, A. V., Dehydration of Amides to Nitriles under Conditions of a Catalytic Appel Reaction. Org. Lett. 2018, 20, 728–731.
[86] Wang, B.; Zhao, X.; Liu, Q.; Cao, S., Direct Defluorinative Amidation–Hydrolysis Reaction of gem-Difluoroalkenes with N,N-Dimethylformamide, and Primary and Secondary Amines. Org. Biomol. Chem. 2018, 16, 8546–8552.
[87] Vitaku, E.; Smith, D. T.; Njardarson, J. T., Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274.
[88] Clayden, J.; Donnard, M.; Lefrane, J.; Tetlow, D. J., Quaternary Centres Bearing Nitrogen (α-Tertiary Amines) as Products of Molecular Rearrangements. Chem. Commun. 2011, 47, 4624–4639.
[89] Hager, A.; Vrielink, H.; Hager, D.; Lefrane, J.; Trauner, D., Synthetic Approaches Towards Alkaloids Bearing α-Tertiary Amines. Nat. Prod. Rep. 2016, 33, 491–522.
[90] Michaudel, Q., Thevenet, D., Baran, P. S., Intermolecular Ritter-Type C–H Amination of Unactivated sp3 Carbons. J. Am. Chem. Soc. 2012, 134, 2547–2550.
[91] Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S., Practical Olefin Hydroamination with Nitroarenes. Science 2015, 348, 886–891.
[92] Robak, N. T.; Herbage, M. A.; Ellman, J. A., Synthesis and Applications of tert-Butanesulfinamide. Chem. Rev. 2010, 110, 3600–3740.
[93] Liu, G.; Cogan, D. A.; Ellman, J. A., Catalytic Asymmetric Synthesis of tert-Butanesulfinamide. Application to the Asymmetric Synthesis of Amines. J. Am. Chem. Soc. 1997, 119, 9913–9914.
[94] Vasu, D.; Futentes de Arriba, A. L.; Leitch, J. A.; De Gombert, A.; Dixon, D. J., Primary α-Tertiary Amine Synthesis via α-C–H Functionalization. Chem. Sci. 2019, 10, 3401–3407.
[95] Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T., Direct α-Alkylation of Primary Aliphatic Amines Enabled by CO2 and Electrostatics. Nat. Chem. 2018, 10, 1037–1041.
[96] Ryder, A. S. H.; Cunningham, W. B.; Ballantyne, G.; Mules, T.; Kinsella, A. G.; Turner-Dore, J.; Alder, C. M.; Edwards, L. J.; McKay, B. S. J.; Grayson, M. N.; Cresswell, A. J., Photocatalytic α-Tertiary Amine Synthesis via C−H Alkylation of Unmasked Primary Amines. Angew. Chem. Int. Ed. 2020, 59, 14986–14991.
[97] Askey, H. E.; Grayson, J. D.; Tibbetts, J. D.; Turner-Dore, J. C.; Holmes, J. M.; Kociok-Kohn, G. Wrigley, G. L.; Cresswell, A. J., Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J. Am. Chem. Soc. 2021, 143, 15936–15945.
[98] Li, H.; Chiba, S., Synthesis of α-Tertiary Amines by Polysulfide Anions Photocatalysis via Single-Electron Transfer and Hydrogen Atom Transfer in Relays. Chem. Catal. 2022, 2, 1128–1142.
[99] Leitch, J. A.; Rossolini, T.; Rogova, T.; Maitland, A. P.; Dixon, D. J., α-Amino Radicals via Photocatalytic Single-Electron Reduction of Imine Derivatives. ACS. Catal. 2020, 10, 2009–2025.
[100] Lehnherr, D.; Lam, Y.-H.; Nicastri, M. C.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T., Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020, 142, 468–478.
[101]Nicastri, M. C.; Lehnherr, D.; Lam, Y.-H.; DiRocco, D. A.; Rovis, T., Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142, 987–998.
[102] Rong, J.; Seeberger, P. H.; Gilmore, K., Chemoselective Photoredox Synthesis of Unprotected Primary Amines Using Ammonia. Org. Lett. 2018, 20, 4081–4085.
[103] Blackwell, J. H.; Harris, G. R.; Smith, M. A.; Gaunt, M. J., Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. J. Am. Chem. Soc. 2021, 143, 15946–15959.
[104] Forster, M. O.; Newman, S. H., CCLXIII.—The triazo-group. Part XV. Triazoethylene (vinylazoimide) and the triazoethyl halides. J. Chem. Soc. Trans. 1910, 97, 2570–2579.
[105] Smolinsky, G.; Pryde, G. A. The Azido Group, John Wiley, 1971, ch. 10, pp. 555–585.
[106] Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X., α-Substituted Vinyl Azides: An Emerging Functionalized Alkene. Chem. Soc. Rev. 2017, 46, 7208–7228.
[107] Liu, Z.; Liu, J.; Zhang, L.; Liao, P.; Song, J. Bi, X., Silver(I)-Catalyzed Hydroazidation of Ethynyl Carbinols: Synthesis of 2-Azidoallyl Alcohols. Angew. Chem. Int. Ed. 2014, 53, 5305–5309.
[108] Liu, Z.; Liao, P.; Bi, X., General Silver-Catalyzed Hydroazidation of Terminal Alkynes by Combining TMS-N3 and H2O: Synthesis of Vinyl Azides. Org. Lett. 2014, 16, 3668–3671.
[109] Suzuki, A.; Tabata, M.; Ueda, M., A Facile Reaction of Trialkylboranes with α-Azidostyrene. A Convenient and General Synthesis of Alkyl Aryl Ketones via Hydroboration. Tetrahedron Lett. 1975, 16, 2195–2198.
[110] Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P., Generation of Iminyl Radicals through Sulfanyl Radical Addition to Vinyl Azides. J. Org. Chem. 1997, 62, 5846–5848.
[111] Tang, P.; Zhang, C.; Chen, E.; Chen, B.; Chen, W.; Yu, Y., MnIII-Catalyzed Phosphorylation of Vinyl Azides: The Synthesis of β-Keto Phosphine Oxides. Tetrahedron Lett. 2017, 58, 2157–2161.
[112] Chen, W.; Liu, X.; Chen, E.; Chen, B.; Shao, J.; Yu, Y., KI-Mediated Radical Multi-Functionalization of Vinyl Azides: A One-Pot and Efficient Approach to β-Keto Sulfones and α-Halo-β-keto Sulfones. Org. Chem. Front. 2017, 4, 1162–1166.
[113] Wu, S.-W.; Liu, F., Synthesis of α-Fluoroketones from Vinyl Azides and Mechanism Interrogation. Org. Lett. 2016, 18, 3642–3645.
[114] Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F., Photoredox-Catalysed Redox-Neutral Trifluoromethylation of Vinyl Azides for the Synthesis of α-Trifluoromethylated Ketones. Chem. Commun. 2017, 53, 1696–1699.
[115] Shu, W.; Lorente, A.; Gόmez-Bengoa, E.; Nevado, C., Expeditious Diastereoselective Synthesis of Elaborated Ketones via Remote Csp3–H Functionalization. Nat. Commun. 2017, 8, 13832–13839.
[116] Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S., Mn(III)-Mediated Formal
[3+3]-Annulation of Vinyl Azides and Cyclopropanols: A Divergent Synthesis of Azaheterocycles. J. Am. Chem. Soc. 2011, 133, 6411–6421.
[117] Wang, Q.; Huang, J.; Zhou, L., Synthesis of Quinolines by Visible-Light Induced Radical Reaction of Vinyl Azides and α-Carbonyl Benzyl Bromides. Adv. Synth. Catal. 2015, 357, 2479–2484.
[118] Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X., Silver-Catalyzed Stereoselective Aminosulfonylation of Alkynes. Angew. Chem. Int. Ed. 2017, 56, 13805–13808.
[119] Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X., Radical Enamination of Vinyl Azides: Direct Synthesis of N-Unprotected Enamines. Org. Lett. 2017, 19, 6240–6243.
[120] Muthukrishnan, I.; Sridharan, V. Menéndez, J. C., Progress in the Chemistry of Tetrahydroquinolines. Chem. Rev. 2019, 119, 5057–5191.
[121] Péter, A., Agasti, S., Knowles, O., Pye, E., Menéndez, J. C., Recent Advances in the Chemistry of Ketyl Radicals. Chem. Soc. Rev. 2021, 50, 5349–5365.
[122] L’abbé, G., Reactions of Vinyl Azides. Angew. Chem. Int. Ed.1975, 14, 775–782.
[123] Foster, R., Electron Donor-Acceptor Complexes. J. Phys. Chem. 1980, 84, 2135–2141.
[124] Rosokha, S. V.; Kochi, J. K., Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex. Acc. Chem. Res. 2008, 41, 641–653.
[125] Zhang, J.; Li, Y.; Xu, R.; Chen, Y., Donor–Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp3)–C(sp3) Cleavage and Allylation/Alkenylation. Angew. Chem. Int. Ed. 2017, 56, 12619–12623.
[126] Kammer, L. M.; Badir, S. O.; Hu, R.-M.; Molander, G. A., Photoactive Electron Donor–Acceptor Complex Platform for Ni-Mediated C(sp3)–C(sp2) Bond Formation. Chem. Sci. 2021, 12, 5450–5457.
[127] Buzzetti, L., Prieto, A., Roy, S. R., Melchiorre, P., Radical-Based C–C Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-dihydropyridines. Angew. Chem. Int. Ed. 2017, 56, 15039–15043.
[128] Cismesia, M. A.; Yoon, T. P., Characterizing Chain Processes in Visible Light Photoredox Catalysis. Chem. Sci. 2015, 6, 5426–5434.
[129] Ladouceur, S.; Fortin, D.; Zysman-Colman, E., Enhanced Luminescent Iridium(III) Complexes Bearing Aryltriazole Cyclometallated Ligands. Inorg. Chem. 2011, 50, 11514–11526.
[130] Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.; Jiang, Z., Catalytic Enantioselective Addition of Prochiral Radicals to Vinylpyridines. J. Am. Chem. Soc. 2019, 141, 5437–5443.
[131] Trowbridge, A.; Reich, D.; Gaunt, M. J., Multicomponent Synthesis of Tertiary Alkylamines by Photocatalytic Olefin-Hydroaminoalkylation. Nature 2018, 561, 522–527.
[132] Pratsch, G.; Lackner, G. L.; Overman, L. E., Constructing Quaternary Carbons from N-(acyloxy)phthalimide Precursors of Tertiary Radicals using Visible-Light Photocatalysis. J. Org. Chem. 2015, 80, 6025–6036.
[133] Jung, J.; Kim, J.; Park, G.; You, Y.; Cho, E. J., Selective Debromination and α-Bromo Ketones using Hantzsch Ester as Photoreductants. Adv. Synth. Catal. 2016, 358, 74–80.
[134] Chen, D.; Long, T.; Zhu, S.; Yang, J.; Chu, L., Metal-Free, Intermolecular Carbopyridylation of Alkenes via Visible-Light-Induced Reductive Radical Coupling. Chem. Sci. 2018, 9, 9012–9017.
[135] Al-Rashid, Z. F.; Johnson, W. L.; Hsung, R. P.; Wei, Y.; Yao, R.-Y.; Liu, R.; Zhao, K., Synthesis of α-Keto-Imides via Oxidation of Ynamides. J. Org. Chem. 2008, 73, 8780–8784.
[136] Walkowiak, J.; Campo, T. M.; Ameduri, B.; Gouverneur, V., Syntheses of Mono-, Di, and Trifluorinated Styrenic Monomers. Synthesis 2010, 11, 1883–1890.
[137] Matsui, J. K.; Primer, D. N.; Molander, G. A., Metal-Free C–H Alkylation of Heteroarenes with Alkyltrifluoroborates: A General Protocol for 1◦, 2◦ and 3◦ Alkylation. Chem. Sci. 2017, 8, 3512–3522.
[138] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Mazwell, B. D.; Eastage, M. D.; Baran, P. S., A General Alkyl-Alkyl Cross-Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents. Science 2016, 352, 801–805.
[139] Becerril, J.; Hamilton, A., Helix Mimetics as Inhibitors of the Interaction of the Estrogen Receptor with Coactivator Peptides. Angew. Chem. Int. Ed. 2007, 46, 4471–4473.
[140] Movassaghi, M.; Hill, M. D., Single-Step Synthesis of Pyrimidine Derivatives. J. Am. Chem. Soc. 2006, 128, 14254–14255.
[141] Ding, L.; Chen, J.; Hu, Y.; Xu, J.; Gong, X.; Xu, D.; Zhao, B.; Li, H., Aminative Umpolung of Aldehydes to α-Amino Anion Equivalents for Pd-Catalyzed Allylation: An Efficient Synthesis of Homoallylic Amines. Org. Lett. 2014, 16, 720–723.
[142] Ikuo, N.; Akito, I.; Kazuki, Y.; Setsuo, T.; Kazuaki, I.; Hiroshi, T., Laser Flash Photolysis of 3-(4-Biphenylyl)-2H-azirine. Direct Detection of Nitrile Ylide. Chem. Lett. 1989, 1615–1618.
[143] Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R., Chemical Actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105–2146.
[144] Montalti, M.; Credi, A.; Prodi, L.; Gandofi, M. T., Chemical Actinometry. Handbook of photochemistry, 3re ed, Taylor & Francis group, LLC. Boca Raton, FL, 2016, 601–616.
[145] Li, S.; Wang, Y.; Wu, Z.; Shi, W.; Lei, Y.; Davies, P. D.; Shu, W., A Radical-Initiated Fragmentary Rearrangement Cascade of Ene-Ynamides to
[1,2]-Annulated Indoles via Site-Selective Cyclization. Org. Lett. 2021, 23, 7209–7214.
[146] Li, S.; Davies, P. W.; Shu, W., Modular Synthesis of α-Arylated Carboxylic Acids, Esters and Amides via Photocatalyzed Triple C–F Bond Cleavage of Methyltrifluorides. Chem. Sci. 2022, 13, 6636–6641.

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/536954
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
Li SF. Visible-Light Photoredox-Catalysed Radical Cascade Reactions[D]. 英国. 伯明翰大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
11856008-李思凡-化学系.pdf(13730KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李思凡]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李思凡]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李思凡]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.