[1]Hoffmann, N., Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 2008, 108, 1052–1103.2.
[2] Narayanam, J. M.; Stephenson, C. R. J., Visible Light Photoredox Catalysis: Applications in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 102–113.3.
[3] Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C., Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363.
[4] Romero, N. A.; Nicewicz, D. A., Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166.
[5] Lowry, M. S.; Bernhard, S., Synthetically Tailored Excited States: Phosphorescent, Cyclometalated Iridium(III) Complexes and Their Applications. Chem. Eur. J. 2006, 12, 7970–7977.
[6] Takeda, H.; Ishitani, O., Development of Efficient Photocatalytic Systems for CO2 Reduction Using Mononuclear and Multinuclear Metal Complexes Based on Mechanistic Studies. Coord. Chem. Rev. 2010, 254, 346–354.
[7] Kalyanasundaram, K.; Grätzel, M., Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coord. Chem. Rev. 1998, 177, 347–414.
[8] Nicewicz, D. A.; MacMillan, D. W. C., Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008, 322, 77–80.
[9] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P., Efficient Visible Light Photocatalysis of
[2+2] Enone Cycloadditions. J. Am. Chem. Soc. 2008, 130, 12886–12887.
[10] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J., Electron-Transfer Photoredox Catalysis: Development of a Tin-Free Reductive Dehalogenation Reaction. J. Am. Chem. Soc. 2009, 131, 8756–8757.
[11] Twilton, J.; Le, C.; Zhang, P.; Megan, H. S.; Ryan, W. E.; MacMillan, D. W. C., The Merger of Transition Metal and Photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
[12] Arias-Rotondo, D. M.; McCusker, J. M., The Photophysics of Photoredox Catalysis: A Roadmap for Catalyst Design. Chem. Soc. Rev. 2016, 45, 5803–5820.
[13] Dexter, D. L., A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850.
[14] Evano, G.; Coste, A.; Jouvin, K., Ynamides: Versatile Tools in Organic Synthesis. Angew. Chem. Int. Ed. 2010, 49, 2840–2859.
[15] Feldman, F. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C., Inter- and Intramolecular Addition/Cyclizations of Sulfonamide Anions with Alkynyliodonium Triflates. Synthesis of Dihydropyrrole, Pyrrole, Indole, and Tosylenamide Heterocycles. J. Org. Chem. 1996, 61, 5440–5452.
[16] Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L., Copper Sulfate-Pentahydrate-1,10-Phenanthroline Catalyzed Amidations of Alkynyl Bromides. Synthesis of Heteroaromatic Amine Substituted Ynamides. Org. Lett. 2004, 6, 1151–1154.
[17] Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G., Copper-Mediated Coupling of 1,1-Dibromo-1-alkenes with Nitrogen Nucleophiles: A General Method for the Synthesis of Ynamides. Angew. Chem. Int. Ed. 2009, 48, 4381–4385.
[18] Hamada, T.; Ye, X.; Stahl, S. S., Copper-Catalyzed Aerobic Oxidative Amidation of Terminal Alkynes: Efficient Synthesis of Ynamides. J. Am. Chem. Soc. 2008, 130, 833–835.
[19] Dekorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P., Ynamides: A Modern Functional Group for the New Millennium. Chem. Rev. 2010, 110, 5064–5106.
[20] Shu, C.; Li, L.; Tan, T.-D.; Yuan, D.-Q.; Ye, L.-W., Ring Strain Strategy for the Control of Regioselectivity. Gold-Catalyzed Anti-Markovnikov Cycloisomerization Initiated Tandem Reactions of Alkynes. Sci. Bull. 2017, 62, 352–357.
[21] Marion, F.; Courillon, C.; Malacria, M., Radical Cyclization Cascade Involving Ynamides: An Original Access to Nitrogen-Containing Heterocycles. Org. Lett. 2003, 5, 5095–5097.
[22] Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B.; Evano, G., Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis 2018, 50, 3022–3030.
[23] Dutta, S.; Mallick, R. K.; Prasad, R.; Gandon, V.; Sahoo, A. K., Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne-Ynamides. Angew. Chem. Int. Ed. 2019, 58, 2289–2294.
[24] Dutta, S.; Prabagar, B.; Vanjari, R.; Gandon, V.; Sahoo, A. K., An Unconventional Sulfur-to-Selenium-to-Carbon Radical Transfer: Chemo-and Regioselective Cyclization of Yne-Ynamides. Green Chem. 2020, 22, 1113–1118.
[25] Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Ye, L.-W., Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl–Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. J. Am. Chem. Soc. 2020, 142, 3636–3644.
[26] Wang, Z.-S.; Chen, Y.-B.; Wang, K.; Xu, Z.; Ye, L.-W., One-pot Synthesis of 2-Hydroxymethylindoles via Photoredox-catalyzed Ketyl–Ynamide Coupling/1,3-Allylic Alcohol Transposition. Green Chem. 2020, 22, 4483–4488.
[27] Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W., Reversal of Regioselectivity in Ynamide Chemistry. ACS Catal. 2019, 9, 6393–6406.
[28] Sato, A.; Yorimitsu, H.; Oshima, K., Regio- and Stereoselective Radical Additions of Thiols to Ynamides. Synlett 2009, 1, 28–31.
[29] Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L., Stereoselective Additions of Thiyl Radicals to Terminal Ynamides. Org. Lett. 2010, 12, 2650–2652.
[30] Romain, E.; Fopp, C.; Chemla, F.; Ferreira, F.; Jackowski, O.; Oestreich, M.; Perez-Luna, A., Trans -Selective Radical Silylzincation of Ynamides. Angew. Chem. Int. Ed. 2014, 53, 11333–11337.
[31] Cassé, M.; Nisole, C.; Dossmann, H.; Gimbert, Y.; Fourquez, J.-M.; Haberkorn, L.; Ollvier, C.; Fensterbank, L., Trifluoromethyl Radical Triggered Radical Cyclization of N-Benzoyl Ynamides Leading to Isoindolinones. Sci. China Chem. 2019, 62, 1542–1546.
[32] Dwadnia, N.; Lingua, H.; Mouysset, D.; Mimoun, L.; Siri, D.; Bertrand, M. P.; Feray, L., Intermolecular Addition of Carbon-Centered Radicals to Ynamides. A Regio- and Stereoselective Route to Persubstituted α-Iodo-enamides. J. Org. Chem. 2020, 85, 4114–4121.
[33] Snape, T. J., A Truce on the Smiles Rearrangement: Revisiting an Old Reaction–The Truce-Smiles Rearrangement. Chem. Soc. Rev. 2008, 37, 2452–2458.
[34] Holden, C. M.; Greaney, M. F., Modern Aspects of the Smiles Rearrangement. Chem. Eur. J. 2017, 23, 8992–9008.
[35] Bernasconi, C. F., De Rossi, R. H., Gehriger, C. L., Intermediates in Nucleophilic Aromatic Substitution. X. Synthesis of N-methyl-.beta.-Aminoethyl Nitroaryl Ethers via an Unusual Smiles Rearrangement. J. Org. Chem. 1973, 38, 2838–2842.
[36] Kitching, M. O., Hurst, T. E., Snieckus, V., Copper-Catalyzed Cross-Coupling Interrupted by an Opportunistic Smiles Rearrangement: An Efficient Domino Approach to Dibenzoxazepinones. Angew. Chem. Int. Ed. 2012, 51, 2925–2929.
[37] Truce, W. E., Ray Jr., W. J., Norman, O. L., Eickemeyer, D. B., Rearrangement of Aryl Sulfones. I. The Metalation and Rearrangement of Mesityl Phenyl Sulfone. J. Am. Chem. Soc. 1958, 80, 3625–3629.
[38]Holden, C. M., Sohel, S. M. A., Greaney, M. F., Metal Free Bi(hetero)aryl Synthesis: A Benzyne Truce-Smiles Rearrangement. Angew. Chem. Int. Ed. 2016, 55, 2450–2453.
[39] Rabet, P. T. G., Boyd, S., Greaney, M. F., Metal-Free Intermolecular Aminoarylation of Alkynes. Angew. Chem. Int. Ed. 2017, 56, 4183–4186.
[40] Allart-Simon, I., Gérard, S., Sapi, J., Radical Smiles Rearrangement: An Update. Molecules 2016, 21, 878–888.
[41] Motherwell, W. B., Pennell, A. M. K., A Novel Route to Biaryls via Intramolecular Free Radical ipso Substitution Reactions. J. Chem. Soc. Chem. Commun. 1991, 877–879.
[42] Kong, W.; Casimiro, M.; Merino, E.; Nevado, C., Copper-Catalyzed One-Pot Trifluoromethylation/Aryl Migration/Desulfonylation and C(sp2)–N Bond Formation of Conjugated Tosyl Amides. J. Am. Chem. Soc. 2013, 135, 14480–14483.
[43] Kong, W., Merino, E., Nevado, C., Arylphosphonylation and Arylazidation of Activated Alkenes. Angew. Chem. Int. Ed. 2014, 53, 5078–5082.
[44] Futentes, N., Kong, W., Fernández-Sánchez, L., Merino, E., Nevado, C., Cyclization Cascades via N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds. J. Am. Chem. Soc. 2015, 137, 964–973.
[45] Hervieu, C., Kirillova, M. S., Suárez, T., Müller, M., Merino, E., Nevado, C., Asymmetric, Visible Light-Mediated Radical Sulfinyl-Smiles Rearrangement to Access All-Carbon Quaternary Stereocentres. Nat. Chem. 2021, 13, 327–334.
[46] Monos, T. M., McAtee, R. C., Stephenson, C. R. J., Arylsulfonylacetamides as Bifunctional Reagents for Alkene Aminoarylation. Science 2018, 361, 1369–1373.
[47] Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q., Radical Cascade Reaction of Alkynes with N-Fluoroarylsulfonimides and Alcohols. Nat. Commun. 2015, 6, 7011–7019.
[48] ratley, C.; Fenner, S.; Murphy, J. A., Nitrogen-Centered Radicals in Functionalization of sp2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem. Rev. 2022, 122, 8181–8260.
[49] Klumpp, D. A.; Zhang, Y.; O’Connor, M. J.; Esteves, P. M.; de Mlmeide, L. S., Aza-Nazarov Reaction and the Role of Superelectrophiles. Org. Lett. 2007, 9, 3085–3088.
[50] Di Grandi, M. J., Nazarov-Like Cyclization Reactions. Org. Biomol. Chem. 2014, 12, 5331–5345.
[51] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V., Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330.
[52] Müller, K.; Faeh, C.; Diederich, F., Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886.
[53] Clayden, J., Fluorinated Compounds Present Opportunities for Drug Discovery. Nature 2019, 573, 37–38.
[54] Young, C. J., Mabury, S. A., Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts. Rev. Environ. Contam. Toxicol. 2010, 208, 1–109.
[55] Tian, F.; Yan, G.; Yu, J., Recent Advances in the Synthesis and Applications of α-(Trifluoromethyl)styrenes in Organic Synthesis. Chem. Commun. 2019, 55, 13486–13505.
[56] Bégué, J.-P., Bonnet-Delpon, D., Rock, M. H., A Concise Synthesis of Functionalised gem-Difluoroalkenes, via the Addition of Organolithium Reagents to α-Trifluoromethylstyrene. Tetrahedron Lett. 1995, 36, 5003–5006.
[57] Li, S.; Shu, W., Recent Advances in Radical Enabled Selective Csp3–F Bond Activation of Multifluorinated Compounds. Chem. Commun. 2022, 58, 1066–1077.
[58] Yan, G.; Qiu, K.; Guo, M., Recent Advance in the C–F Bond Functionalization of Trifluoromethyl-Containing Compounds. Org. Chem. Front. 2021, 8, 3915–3942.
[59] Xiao, T.; Li, L.; Zhou, L., Synthesis of Functionalized gem-Difluoroalkenes via a Photocatalytic Decarboxylative/Defluorinative Reaction. J. Org. Chem. 2016, 81, 7908–7916.
[60] Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A., Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew. Chem. Int. Ed. 2017, 56, 15073–15077.
[61] Wu, L.-H.; Cheng, J.-K.; Shen, L.; Shen, Z.-L.; Loh, T.-P., Visible Light-Mediated Trifluoromethylation of Fluorinated Alkenes via C−F Bond Cleavage. Adv. Synth. Catal. 2018, 360, 3894–3899.
[62] Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Song, D.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., Photocatalytic, Phosphoranyl Radical-Mediated N–O Cleavage of Strained Cycloketone Oximes. Org. Lett. 2019, 21, 2658–2662.
[63] Anand, D.; Sun, Z.; Zhou, L., Visible-Light-Mediated β-C–H gem-Difluoroallylation of Aldehydes and Cyclic Ketones through C–F Bond Cleavage of 1-Trifluoromethyl Alkenes. Org. Lett. 2020, 22, 2371–2375.
[64] Guo, Y.-Q.; Wang, R.; Song, H.; Liu, Y.; Wang, Q., Visible-Light-Induced Deoxygenation/Defluorination Protocol for Synthesis of γ,γ-Difluoroallylic Ketones. Org. Lett. 2020, 22, 709–713.
[65] Guo, Y.-Q.; Wu, Y.; Wang, R.; Song, H.; Liu, Y.; Wang, Q., Photoredox/Hydrogen Atom Transfer Cocatalyzed C–H Difluoroallylation of Amides, Ethers, and Alkyl Aldehydes. Org. Lett. 2021, 23, 2353–2358.
[66] Yue, W.-J.; Day, C. S.; Martin, R., Site-Selective Defluorinative sp3 C–H Alkylation of Secondary Amides. J. Am. Chem. Soc. 2021, 143, 6395–6400.
[67] Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., Photoinduced Single-Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. Angew. Chem. Int. Ed. 2020, 59, 6706–6710.
[68] Xu, W.; Jiang, H.; Heng, J.; Ong, H.-W.; Wu, J., Visible-Light-Induced Selective Defluoroborylation of Polyfluoroarenes, gem-Difluoroalkenes, and Trifluoromethylalkenes. Angew. Chem. Int. Ed. 2020, 59, 4009–4016.
[69] Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F., New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angew. Chem. Int. Ed. 2020, 59, 12876–12884.
[70] Li, L.; Xiao, T.; Chen, H.; Zhou, L., Visible-Light-Mediated Two-Fold Unsymmetrical C(sp3)−H Functionalization and Double C−F Substitution. Chem. – Eur. J. 2017, 23, 2249–2254.
[71]Chen, H., He, Y., Zhou, L., A Photocatalytic Decarboxylative/Defluorinative
[4+3] Annulation of O-Hydroxyphenylacetic Acids and Trifluoromethyl Alkenes: Synthesis of Fluorinated Dihydrobenzoxepines. Org. Chem. Front. 2018, 5, 3240–3244.
[72] Shen, T. Y., Perspectives in Nonsteroidal Anti-inflammatory Agents. Angew. Chem. Int. Ed. 1972, 11, 460–472.
[73] Culkin, D. A., Hartwig, J. F., Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Acc. Chem. Res. 2003, 36, 234–245.
[74] Johansson, C. C. C., Colacot, T. J., Metal-Catalyzed α-Arylation of Carbonyl and Related Molecules: Novel Trends in C–C Bond Formation by C–H Bond Functionalization. Angew. Chem. Int. Ed. 2010, 49, 676–707.
[75] Moradi, W. A., Buchwald, S. L., Palladium-Catalyzed α-Arylation of Esters. J. Am. Chem. Soc. 2001, 123, 7996–8002.
[76] Bala, T., Prasad, B. L. V., Sastry, M., Kahaly, M. U., Waghmare, U. V., Interaction of Different Metal Ions with Carboxylic Acid Group: A Quantitative Study. J. Phys. Chem. A 2007, 111, 6183–6190.
[77] Morita, Y., Yamamoto, T., Nagai, H., Shimizu, Y., Kanai, M., Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions. J. Am. Chem. Soc. 2015, 137, 7075–7078.
[78] Ruiz-Castillo, P., Buchwald, S. L., Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649.
[79] He, Z.-T., Hartwig, J. F., Palladium-Catalyzed α-Arylation of Carboxylic Acids and Secondary Amides via a Traceless Protecting Strategy. J. Am. Chem. Soc. 2019, 141, 11749–11753.
[80] Vasquez, A. M., Gurak, J. A., Joe, C. L., Cherney, E. C., Engle, K. M., Catalytic α-Hydroarylation of Acrylates and Acrylamides via an Interrupted Hydrodehalogenation Reaction. J. Am. Chem. Soc. 2020, 142, 10477–10484.
[81] Bellina, F., Rossi, R., Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C–H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chem. Rev. 2010, 110, 1082–1146.
[82] Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C., Photoredox-Coupled F-Nucleophilic Addition: Allylation of gem-Difluoroalkenes. Angew. Chem. Int. Ed. 2019, 58, 3918–3922.
[83] Margrey, K. A.; Nicewicz, D. A., A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 1997–2006.
[84] Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N., Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir 2004, 20, 8243–8253.
[85] Shipilovskikh, S. A.; Vaganov, V. Y.; Denisova, E. I.; Rubtsov, A. E.; Malkov, A. V., Dehydration of Amides to Nitriles under Conditions of a Catalytic Appel Reaction. Org. Lett. 2018, 20, 728–731.
[86] Wang, B.; Zhao, X.; Liu, Q.; Cao, S., Direct Defluorinative Amidation–Hydrolysis Reaction of gem-Difluoroalkenes with N,N-Dimethylformamide, and Primary and Secondary Amines. Org. Biomol. Chem. 2018, 16, 8546–8552.
[87] Vitaku, E.; Smith, D. T.; Njardarson, J. T., Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274.
[88] Clayden, J.; Donnard, M.; Lefrane, J.; Tetlow, D. J., Quaternary Centres Bearing Nitrogen (α-Tertiary Amines) as Products of Molecular Rearrangements. Chem. Commun. 2011, 47, 4624–4639.
[89] Hager, A.; Vrielink, H.; Hager, D.; Lefrane, J.; Trauner, D., Synthetic Approaches Towards Alkaloids Bearing α-Tertiary Amines. Nat. Prod. Rep. 2016, 33, 491–522.
[90] Michaudel, Q., Thevenet, D., Baran, P. S., Intermolecular Ritter-Type C–H Amination of Unactivated sp3 Carbons. J. Am. Chem. Soc. 2012, 134, 2547–2550.
[91] Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S., Practical Olefin Hydroamination with Nitroarenes. Science 2015, 348, 886–891.
[92] Robak, N. T.; Herbage, M. A.; Ellman, J. A., Synthesis and Applications of tert-Butanesulfinamide. Chem. Rev. 2010, 110, 3600–3740.
[93] Liu, G.; Cogan, D. A.; Ellman, J. A., Catalytic Asymmetric Synthesis of tert-Butanesulfinamide. Application to the Asymmetric Synthesis of Amines. J. Am. Chem. Soc. 1997, 119, 9913–9914.
[94] Vasu, D.; Futentes de Arriba, A. L.; Leitch, J. A.; De Gombert, A.; Dixon, D. J., Primary α-Tertiary Amine Synthesis via α-C–H Functionalization. Chem. Sci. 2019, 10, 3401–3407.
[95] Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T., Direct α-Alkylation of Primary Aliphatic Amines Enabled by CO2 and Electrostatics. Nat. Chem. 2018, 10, 1037–1041.
[96] Ryder, A. S. H.; Cunningham, W. B.; Ballantyne, G.; Mules, T.; Kinsella, A. G.; Turner-Dore, J.; Alder, C. M.; Edwards, L. J.; McKay, B. S. J.; Grayson, M. N.; Cresswell, A. J., Photocatalytic α-Tertiary Amine Synthesis via C−H Alkylation of Unmasked Primary Amines. Angew. Chem. Int. Ed. 2020, 59, 14986–14991.
[97] Askey, H. E.; Grayson, J. D.; Tibbetts, J. D.; Turner-Dore, J. C.; Holmes, J. M.; Kociok-Kohn, G. Wrigley, G. L.; Cresswell, A. J., Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J. Am. Chem. Soc. 2021, 143, 15936–15945.
[98] Li, H.; Chiba, S., Synthesis of α-Tertiary Amines by Polysulfide Anions Photocatalysis via Single-Electron Transfer and Hydrogen Atom Transfer in Relays. Chem. Catal. 2022, 2, 1128–1142.
[99] Leitch, J. A.; Rossolini, T.; Rogova, T.; Maitland, A. P.; Dixon, D. J., α-Amino Radicals via Photocatalytic Single-Electron Reduction of Imine Derivatives. ACS. Catal. 2020, 10, 2009–2025.
[100] Lehnherr, D.; Lam, Y.-H.; Nicastri, M. C.; Liu, J.; Newman, J. A.; Regalado, E. L.; DiRocco, D. A.; Rovis, T., Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020, 142, 468–478.
[101]Nicastri, M. C.; Lehnherr, D.; Lam, Y.-H.; DiRocco, D. A.; Rovis, T., Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142, 987–998.
[102] Rong, J.; Seeberger, P. H.; Gilmore, K., Chemoselective Photoredox Synthesis of Unprotected Primary Amines Using Ammonia. Org. Lett. 2018, 20, 4081–4085.
[103] Blackwell, J. H.; Harris, G. R.; Smith, M. A.; Gaunt, M. J., Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. J. Am. Chem. Soc. 2021, 143, 15946–15959.
[104] Forster, M. O.; Newman, S. H., CCLXIII.—The triazo-group. Part XV. Triazoethylene (vinylazoimide) and the triazoethyl halides. J. Chem. Soc. Trans. 1910, 97, 2570–2579.
[105] Smolinsky, G.; Pryde, G. A. The Azido Group, John Wiley, 1971, ch. 10, pp. 555–585.
[106] Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X., α-Substituted Vinyl Azides: An Emerging Functionalized Alkene. Chem. Soc. Rev. 2017, 46, 7208–7228.
[107] Liu, Z.; Liu, J.; Zhang, L.; Liao, P.; Song, J. Bi, X., Silver(I)-Catalyzed Hydroazidation of Ethynyl Carbinols: Synthesis of 2-Azidoallyl Alcohols. Angew. Chem. Int. Ed. 2014, 53, 5305–5309.
[108] Liu, Z.; Liao, P.; Bi, X., General Silver-Catalyzed Hydroazidation of Terminal Alkynes by Combining TMS-N3 and H2O: Synthesis of Vinyl Azides. Org. Lett. 2014, 16, 3668–3671.
[109] Suzuki, A.; Tabata, M.; Ueda, M., A Facile Reaction of Trialkylboranes with α-Azidostyrene. A Convenient and General Synthesis of Alkyl Aryl Ketones via Hydroboration. Tetrahedron Lett. 1975, 16, 2195–2198.
[110] Montevecchi, P. C.; Navacchia, M. L.; Spagnolo, P., Generation of Iminyl Radicals through Sulfanyl Radical Addition to Vinyl Azides. J. Org. Chem. 1997, 62, 5846–5848.
[111] Tang, P.; Zhang, C.; Chen, E.; Chen, B.; Chen, W.; Yu, Y., MnIII-Catalyzed Phosphorylation of Vinyl Azides: The Synthesis of β-Keto Phosphine Oxides. Tetrahedron Lett. 2017, 58, 2157–2161.
[112] Chen, W.; Liu, X.; Chen, E.; Chen, B.; Shao, J.; Yu, Y., KI-Mediated Radical Multi-Functionalization of Vinyl Azides: A One-Pot and Efficient Approach to β-Keto Sulfones and α-Halo-β-keto Sulfones. Org. Chem. Front. 2017, 4, 1162–1166.
[113] Wu, S.-W.; Liu, F., Synthesis of α-Fluoroketones from Vinyl Azides and Mechanism Interrogation. Org. Lett. 2016, 18, 3642–3645.
[114] Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F., Photoredox-Catalysed Redox-Neutral Trifluoromethylation of Vinyl Azides for the Synthesis of α-Trifluoromethylated Ketones. Chem. Commun. 2017, 53, 1696–1699.
[115] Shu, W.; Lorente, A.; Gόmez-Bengoa, E.; Nevado, C., Expeditious Diastereoselective Synthesis of Elaborated Ketones via Remote Csp3–H Functionalization. Nat. Commun. 2017, 8, 13832–13839.
[116] Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S., Mn(III)-Mediated Formal
[3+3]-Annulation of Vinyl Azides and Cyclopropanols: A Divergent Synthesis of Azaheterocycles. J. Am. Chem. Soc. 2011, 133, 6411–6421.
[117] Wang, Q.; Huang, J.; Zhou, L., Synthesis of Quinolines by Visible-Light Induced Radical Reaction of Vinyl Azides and α-Carbonyl Benzyl Bromides. Adv. Synth. Catal. 2015, 357, 2479–2484.
[118] Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X., Silver-Catalyzed Stereoselective Aminosulfonylation of Alkynes. Angew. Chem. Int. Ed. 2017, 56, 13805–13808.
[119] Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X., Radical Enamination of Vinyl Azides: Direct Synthesis of N-Unprotected Enamines. Org. Lett. 2017, 19, 6240–6243.
[120] Muthukrishnan, I.; Sridharan, V. Menéndez, J. C., Progress in the Chemistry of Tetrahydroquinolines. Chem. Rev. 2019, 119, 5057–5191.
[121] Péter, A., Agasti, S., Knowles, O., Pye, E., Menéndez, J. C., Recent Advances in the Chemistry of Ketyl Radicals. Chem. Soc. Rev. 2021, 50, 5349–5365.
[122] L’abbé, G., Reactions of Vinyl Azides. Angew. Chem. Int. Ed.1975, 14, 775–782.
[123] Foster, R., Electron Donor-Acceptor Complexes. J. Phys. Chem. 1980, 84, 2135–2141.
[124] Rosokha, S. V.; Kochi, J. K., Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex. Acc. Chem. Res. 2008, 41, 641–653.
[125] Zhang, J.; Li, Y.; Xu, R.; Chen, Y., Donor–Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp3)–C(sp3) Cleavage and Allylation/Alkenylation. Angew. Chem. Int. Ed. 2017, 56, 12619–12623.
[126] Kammer, L. M.; Badir, S. O.; Hu, R.-M.; Molander, G. A., Photoactive Electron Donor–Acceptor Complex Platform for Ni-Mediated C(sp3)–C(sp2) Bond Formation. Chem. Sci. 2021, 12, 5450–5457.
[127] Buzzetti, L., Prieto, A., Roy, S. R., Melchiorre, P., Radical-Based C–C Bond-Forming Processes Enabled by the Photoexcitation of 4-Alkyl-1,4-dihydropyridines. Angew. Chem. Int. Ed. 2017, 56, 15039–15043.
[128] Cismesia, M. A.; Yoon, T. P., Characterizing Chain Processes in Visible Light Photoredox Catalysis. Chem. Sci. 2015, 6, 5426–5434.
[129] Ladouceur, S.; Fortin, D.; Zysman-Colman, E., Enhanced Luminescent Iridium(III) Complexes Bearing Aryltriazole Cyclometallated Ligands. Inorg. Chem. 2011, 50, 11514–11526.
[130] Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.; Jiang, Z., Catalytic Enantioselective Addition of Prochiral Radicals to Vinylpyridines. J. Am. Chem. Soc. 2019, 141, 5437–5443.
[131] Trowbridge, A.; Reich, D.; Gaunt, M. J., Multicomponent Synthesis of Tertiary Alkylamines by Photocatalytic Olefin-Hydroaminoalkylation. Nature 2018, 561, 522–527.
[132] Pratsch, G.; Lackner, G. L.; Overman, L. E., Constructing Quaternary Carbons from N-(acyloxy)phthalimide Precursors of Tertiary Radicals using Visible-Light Photocatalysis. J. Org. Chem. 2015, 80, 6025–6036.
[133] Jung, J.; Kim, J.; Park, G.; You, Y.; Cho, E. J., Selective Debromination and α-Bromo Ketones using Hantzsch Ester as Photoreductants. Adv. Synth. Catal. 2016, 358, 74–80.
[134] Chen, D.; Long, T.; Zhu, S.; Yang, J.; Chu, L., Metal-Free, Intermolecular Carbopyridylation of Alkenes via Visible-Light-Induced Reductive Radical Coupling. Chem. Sci. 2018, 9, 9012–9017.
[135] Al-Rashid, Z. F.; Johnson, W. L.; Hsung, R. P.; Wei, Y.; Yao, R.-Y.; Liu, R.; Zhao, K., Synthesis of α-Keto-Imides via Oxidation of Ynamides. J. Org. Chem. 2008, 73, 8780–8784.
[136] Walkowiak, J.; Campo, T. M.; Ameduri, B.; Gouverneur, V., Syntheses of Mono-, Di, and Trifluorinated Styrenic Monomers. Synthesis 2010, 11, 1883–1890.
[137] Matsui, J. K.; Primer, D. N.; Molander, G. A., Metal-Free C–H Alkylation of Heteroarenes with Alkyltrifluoroborates: A General Protocol for 1◦, 2◦ and 3◦ Alkylation. Chem. Sci. 2017, 8, 3512–3522.
[138] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Mazwell, B. D.; Eastage, M. D.; Baran, P. S., A General Alkyl-Alkyl Cross-Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents. Science 2016, 352, 801–805.
[139] Becerril, J.; Hamilton, A., Helix Mimetics as Inhibitors of the Interaction of the Estrogen Receptor with Coactivator Peptides. Angew. Chem. Int. Ed. 2007, 46, 4471–4473.
[140] Movassaghi, M.; Hill, M. D., Single-Step Synthesis of Pyrimidine Derivatives. J. Am. Chem. Soc. 2006, 128, 14254–14255.
[141] Ding, L.; Chen, J.; Hu, Y.; Xu, J.; Gong, X.; Xu, D.; Zhao, B.; Li, H., Aminative Umpolung of Aldehydes to α-Amino Anion Equivalents for Pd-Catalyzed Allylation: An Efficient Synthesis of Homoallylic Amines. Org. Lett. 2014, 16, 720–723.
[142] Ikuo, N.; Akito, I.; Kazuki, Y.; Setsuo, T.; Kazuaki, I.; Hiroshi, T., Laser Flash Photolysis of 3-(4-Biphenylyl)-2H-azirine. Direct Detection of Nitrile Ylide. Chem. Lett. 1989, 1615–1618.
[143] Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R., Chemical Actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105–2146.
[144] Montalti, M.; Credi, A.; Prodi, L.; Gandofi, M. T., Chemical Actinometry. Handbook of photochemistry, 3re ed, Taylor & Francis group, LLC. Boca Raton, FL, 2016, 601–616.
[145] Li, S.; Wang, Y.; Wu, Z.; Shi, W.; Lei, Y.; Davies, P. D.; Shu, W., A Radical-Initiated Fragmentary Rearrangement Cascade of Ene-Ynamides to
[1,2]-Annulated Indoles via Site-Selective Cyclization. Org. Lett. 2021, 23, 7209–7214.
[146] Li, S.; Davies, P. W.; Shu, W., Modular Synthesis of α-Arylated Carboxylic Acids, Esters and Amides via Photocatalyzed Triple C–F Bond Cleavage of Methyltrifluorides. Chem. Sci. 2022, 13, 6636–6641.
Edit Comment