中文版 | English
Title

Re-analysis of Large-Scale AP-MSMS Data for Discovery and Characterization of Microproteins

Alternative Title
重新分析大规模AP-MS/MS数据以发现和表征微蛋白
Author
Name pinyin
LIAO Bin
School number
12032075
Degree
硕士
Discipline
070302 分析化学
Subject category of dissertation
07 理学
Supervisor
Tan Soon Heng
Mentor unit
化学系
Publication Years
2023-05-29
Submission date
2023-06-25
University
南方科技大学
Place of Publication
深圳
Abstract

Translatomics, represented by ribosome profiling sequencing, has revealed the potential for protein translation in non-coding regions. These newly discovered non-canonical proteins are usually shorter than 100 amino acids in length and hence are named as microproteins. Despite their short sequences and simple structures, which distinguish themselves from canonical proteins, microproteins play critical roles in cell growth, development and differentiation, and thus have gradually gained much attention. Mass spectrometry (MS)-based proteomics provides a powerful approach for the discovery, identification and functional study of microproteins. With proteomics, microprotein interactions can be effectively studied to elucidate their potential functions and characterizations. However, there is still a lack of large-scale analysis of microprotein interactions via proteomic methods for functional characterizations. The relatively sparse data on microprotein interactions have hindered the exploration of microprotein functions. Therefore this thesis focuses on the re-analysis of existing MS data on large-scale protein interactome, offering a solution to the problem of mining and characterizing underlying microproteins and their functional information.

Through re-analysis of BioPlex datasets, the largest human protein affinity purification mass spectrometry (AP-MS) database to date, a workflow for the study of microprotein interactions was established. A total of 2,136 microproteins active in 25,723 interactions were identified. On the basis of the homology between microproteins and their interacting bait proteins, microprotein interactions were grouped into three types, namely A, B and C. Various differences in terms of transcription location and other characteristics were observed between three types of interactions. Bioinformatics analysis further revealed the potential functions of microproteins such as ribosome assembly and signal peptides in terms of both their interacting proteins and their own structures.

On the basis of the microprotein interactome above, in this thesis, TPCA (thermal proximity co-aggregation) were first applied to the research on microprotein interactions, and revealed that microproteins had a consistent trend of temperature-dependent thermal melting curves similar to those of canonical proteins. In terms of the prediction of microprotein interactions, TPCA showed excellent predictive performance for type A and type B interactions. And microprotein interactions in type A and B showed high consistency across the four cell lines. Unlike the microprotein interaction network constructed by BioPlex, TPCA is able to build up a weighted interaction network based on the thermal melting curve between proteins. Furthermore, in protein complexes in which interacting proteins of microproteins participate, TPCA can speculate that microproteins may also be involved and play a functional role in this protein complex.

In conclusion, by re-processing of existing proteomics interactome MS data, this project provides a rich resource of microprotein interactome, expands the knowledge of microprotein characterizations and functions, and suggests a feasible analysis strategy for the study of microprotein interactions and their functional characterizations.

Other Abstract

以核糖体印迹测序为代表的翻译组学揭示了非编码区编译蛋白的潜力。这类新发现的非典型蛋白的长度通常短于100个氨基酸,因而它们被称为微蛋白。尽管微蛋白有着区别于典型蛋白的简短序列和简单结构,却在细胞的生长发育和分化等方面发挥重要作用。基于质谱的蛋白质组学为微蛋白的发现,鉴定和功能研究提供了强有力的依据。借助蛋白质组学,可以有效研究微蛋白的相互作用,进而阐明其潜在的功能和特征。然而,目前仍缺乏在蛋白质组学层面上大规模分析微蛋白相互作用,解析其功能特征的研究。相对稀少的微蛋白相互作用数据一定程度上阻滞了对微蛋白功能的探究。因此本论文专注于对已有的大规模蛋白相互作用的质谱数据重新分析,为挖掘和表征潜藏的微蛋白及其功能信息提供了一种解决思路。

通过重新分析迄今为止最大规模的人类蛋白亲和纯化质谱(AP-MS)数据库BioPlex,本论文建立了一套适用于微蛋白相互作用研究和分析的工作流程。本论文共鉴定到了2,136个微蛋白,其参与了25,723个相互作用。基于微蛋白与其相互作用的诱饵蛋白之间的同源性,本论文将微蛋白相互作用分成三类,即类型A,B和C,并观察到它们在转录本定位等方面的差异。生物信息学分析从微蛋白的相互作用蛋白与其自身结构两个维度进一步揭示了微蛋白潜在的功能,如核糖体组装和信号肽等。

基于上述微蛋白相互作用组数据,本论文首次将热邻近共聚集(TPCA)技术应用于微蛋白的研究,发现微蛋白与典型蛋白相似,具有随温度变化的趋势一致的热熔解曲线。研究表明,TPCA对类型A和B的相互作用展现出了良好的预测性能,其相互作用在四种细胞系中具有高度一致性。更进一步,TPCA能够依据蛋白间热熔解曲线的距离形成加权的相互作用网络。此外,本论文依据与微蛋白相互作用的典型蛋白参与的蛋白复合物,基于TPCA可以推测微蛋白或许也参与到这一蛋白复合物中并发挥功能。

总之,基于对现有蛋白质组学质谱数据的重新分析,本论文提供了丰富的微蛋白相互作用组资源,拓展了对微蛋白特点和功能的认知,为微蛋白相互作用及其功能特点的研究提出了可行的分析策略。

Keywords
Language
English
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] INTERNATIONAL HUMAN GENOME SEQUENCING C. Finishing the euchromatic sequence of the human genome [J]. Nature, 2004, 431(7011): 931-45.
[2] LEONG A Z, LEE P Y, MOHTAR M A, et al. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures [J]. J Biomed Sci, 2022, 29(1): 19.
[3] KUTE P M, SOUKARIEH O, TJELDNES H, et al. Small Open Reading Frames, How to Find Them and Determine Their Function [J]. Front Genet, 2021, 12: 796060.
[4] ORR M W, MAO Y, STORZ G, et al. Alternative ORFs and small ORFs: shedding light on the dark proteome [J]. Nucleic Acids Res, 2020, 48(3): 1029-42.
[5] THARAKAN R, SAWA A. Minireview: Novel Micropeptide Discovery by Proteomics and Deep Sequencing Methods [J]. Front Genet, 2021, 12: 651485.
[6] WERNER M, FELLER A, MESSENGUY F, et al. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression [J]. Cell, 1987, 49(6): 805-13.
[7] GALINDO M I, PUEYO J I, FOUIX S, et al. Peptides encoded by short ORFs control development and define a new eukaryotic gene family [J]. PLoS Biol, 2007, 5(5): e106.
[8] GUTTMAN M, AMIT I, GARBER M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals [J]. Nature, 2009, 458(7235): 223-7.
[9] SLAVOFF S A, MITCHELL A J, SCHWAID A G, et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells [J]. Nat Chem Biol, 2013, 9(1): 59-64.
[10] MUDGE J M, RUIZ-ORERA J, PRENSNER J R, et al. Standardized annotation of translated open reading frames [J]. Nat Biotechnol, 2022, 40(7): 994-9.
[11] ANDERS J, PETRUSCHKE H, JEHMLICH N, et al. A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations [J]. BMC Bioinformatics, 2021, 22(1): 277.
[12] BRUNET M A, BRUNELLE M, LUCIER J F, et al. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes [J]. Nucleic Acids Res, 2019, 47(D1): D403-D10.
[13] HAO Y, ZHANG L, NIU Y, et al. SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci [J]. Brief Bioinform, 2018, 19(4): 636-43.
[14] YU R, HU Y, ZHANG S, et al. LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms [J]. Nucleic Acids Research, 2022, 50(14): 8060-79.
[15] ZHANG C, ZHOU B, GU F, et al. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation [J]. Mol Cell, 2022, 82(7): 1297-312 e8.
[16] ZHANG S, RELJIC B, LIANG C, et al. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly [J]. Nat Commun, 2020, 11(1): 1312.
[17] WANG J, ZHU S, MENG N, et al. ncRNA-Encoded Peptides or Proteins and Cancer [J]. Mol Ther, 2019, 27(10): 1718-25.
[18] WRIGHT B W, YI Z, WEISSMAN J S, et al. The dark proteome: translation from noncanonical open reading frames [J]. Trends Cell Biol, 2022, 32(3): 243-58.
[19] CHEN J, BRUNNER A-D, COGAN J Z, et al. Pervasive functional translation of noncanonical human open reading frames [J]. Science, 2020, 367(6482): 1140-6.
[20] BAZZINI A A, JOHNSTONE T G, CHRISTIANO R, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation [J]. EMBO J, 2014, 33(9): 981-93.
[21] BHATI K K, BLAAKMEER A, PAREDES E B, et al. Approaches to identify and characterize microProteins and their potential uses in biotechnology [J]. Cell Mol Life Sci, 2018, 75(14): 2529-36.
[22] CHOTHANI S P, ADAMI E, WIDJAJA A A, et al. A high-resolution map of human RNA translation [J]. Mol Cell, 2022, 82(15): 2885-99.e8.
[23] PAN N, WANG Z, WANG B, et al. Mapping Microproteins and ncRNA-Encoded Polypeptides in Different Mouse Tissues [J]. Front Cell Dev Biol, 2021, 9: 687748.
[24] SCHLESINGER D, ELSASSER S J. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins [J]. FEBS J, 2022, 289(1): 53-74.
[25] INGOLIA N T, GHAEMMAGHAMI S, NEWMAN J R S, et al. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling [J]. Science, 2009, 324(5924): 218-23.
[26] INGOLIA N T, LAREAU L F, WEISSMAN J S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes [J]. Cell, 2011, 147(4): 789-802.
[27] BRAR G A, WEISSMAN J S. Ribosome profiling reveals the what, when, where and how of protein synthesis [J]. Nat Rev Mol Cell Biol, 2015, 16(11): 651-64.
[28] LACZKOVICH I, MANGANO K, SHAO X, et al. Discovery of Unannotated Small Open Reading Frames in Streptococcus pneumoniae D39 Involved in Quorum Sensing and Virulence Using Ribosome Profiling [J]. mBio, 2022, 13(4): e01247-22.
[29] PATRAQUIM P, MUMTAZ M A S, PUEYO J I, et al. Developmental regulation of canonical and small ORF translation from mRNAs [J]. Genome Biol, 2020, 21(1): 128.
[30] SMITH C, CANESTRARI J G, WANG A J, et al. Pervasive translation in Mycobacterium tuberculosis [J]. Elife, 2022, 11: e73980.
[31] STERN-GINOSSAR N, WEISBURD B, MICHALSKI A, et al. Decoding Human Cytomegalovirus [J]. Science, 2012, 338(6110): 1088-93.
[32] WILSON B A, MASEL J. Putatively noncoding transcripts show extensive association with ribosomes [J]. Genome Biol Evol, 2011, 3: 1245-52.
[33] ASPDEN J L, EYRE-WALKER Y C, PHILLIPS R J, et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq [J]. Elife, 2014, 3: e03528.
[34] MARTINEZ T F, CHU Q, DONALDSON C, et al. Accurate annotation of human protein-coding small open reading frames [J]. Nat Chem Biol, 2020, 16(4): 458-68.
[35] CALVIELLO L, MUKHERJEE N, WYLER E, et al. Detecting actively translated open reading frames in ribosome profiling data [J]. Nature Methods, 2016, 13(2): 165-70.
[36] CHOUDHARY S, LI W, A D S. Accurate detection of short and long active ORFs using Ribo-seq data [J]. Bioinformatics, 2020, 36(7): 2053-9.
[37] CHUN S Y, RODRIGUEZ C M, TODD P K, et al. SPECtre: a spectral coherence--based classifier of actively translated transcripts from ribosome profiling sequence data [J]. BMC Bioinformatics, 2016, 17(1): 482.
[38] ERHARD F, HALENIUS A, ZIMMERMANN C, et al. Improved Ribo-seq enables identification of cryptic translation events [J]. Nat Methods, 2018, 15(5): 363-6.
[39] FIELDS A P, RODRIGUEZ E H, JOVANOVIC M, et al. A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation [J]. Mol Cell, 2015, 60(5): 816-27.
[40] JI Z, SONG R, REGEV A, et al. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins [J]. Elife, 2015, 4: e08890.
[41] MALONE B, ATANASSOV I, AESCHIMANN F, et al. Bayesian prediction of RNA translation from ribosome profiling [J]. Nucleic Acids Res, 2017, 45(6): 2960-72.
[42] RAJ A, WANG S H, SHIM H, et al. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling [J]. Elife, 2016, 5: e13328.
[43] XIAO Z, HUANG R, XING X, et al. De novo annotation and characterization of the translatome with ribosome profiling data [J]. Nucleic Acids Res, 2018, 46(10): e61.
[44] ZHANG P, HE D, XU Y, et al. Genome-wide identification and differential analysis of translational initiation [J]. Nat Commun, 2017, 8(1): 1749.
[45] GELHAUSEN R, MULLER T, SVENSSON S L, et al. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria [J]. Brief Bioinform, 2022, 23(2): bbab549.
[46] HU F, LU J, MATHESON L S, et al. ORFLine: a bioinformatic pipeline to prioritise small open reading frames identifies candidate secreted small proteins from lymphocytes [J]. Bioinformatics, 2021, 37(19): 3152-9.
[47] ZHU M, GRIBSKOV M. MiPepid: MicroPeptide identification tool using machine learning [J]. BMC Bioinformatics, 2019, 20(1): 559.
[48] CAO X, KHITUN A, NA Z, et al. Comparative Proteomic Profiling of Unannotated Microproteins and Alternative Proteins in Human Cell Lines [J]. J Proteome Res, 2020, 19(8): 3418-26.
[49] WANG Z, PAN N, YAN J, et al. Systematic Identification of Microproteins during the Development of Drosophila melanogaster [J]. J Proteome Res, 2022, 21(4): 1114-23.
[50] CASSIDY L, KAULICH P T, MAASS S, et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides [J]. Proteomics, 2021, 21(23-24): e2100008.
[51] DI MEO A, PASIC M D, YOUSEF G M. Proteomics and peptidomics: moving toward precision medicine in urological malignancies [J]. Oncotarget, 2016, 7(32): 52460-74.
[52] ZHANG Y, FONSLOW B R, SHAN B, et al. Protein analysis by shotgun/bottom-up proteomics [J]. Chem Rev, 2013, 113(4): 2343-94.
[53] ZHANG Q, WU E, TANG Y, et al. Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs [J]. Mol Cell Proteomics, 2021, 20: 100109.
[54] CATHERMAN A D, SKINNER O S, KELLEHER N L. Top Down proteomics: facts and perspectives [J]. Biochem Biophys Res Commun, 2014, 445(4): 683-93.
[55] RILEY N M, WESTPHALL M S, COON J J. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation [J]. Journal of the American Society for Mass Spectrometry, 2018, 29(1): 140-9.
[56] LI B, ZHANG Z, WAN C. Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages [J]. J Proteome Res, 2022, 21(4): 1052-60.
[57] CARDON T, HERVE F, DELCOURT V, et al. Optimized Sample Preparation Workflow for Improved Identification of Ghost Proteins [J]. Anal Chem, 2020, 92(1): 1122-9.
[58] FIJALKOWSKI I, PEETERS M K R, VAN DAMME P. Small Protein Enrichment Improves Proteomics Detection of sORF Encoded Polypeptides [J]. Front Genet, 2021, 12: 713400.
[59] WANG B, HAO J, PAN N, et al. Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell [J]. J Proteomics, 2021, 230: 103965.
[60] PARMAR B S, PEETERS M K R, BOONEN K, et al. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry [J]. Front Genet, 2021, 12: 728900.
[61] SUN Y, HUANG J, WANG Z, et al. Identification of Microproteins in Saccharomyces cerevisiae under Different Stress Conditions [J]. J Proteome Res, 2022, 21(8): 1939-47.
[62] CASSIDY L, KAULICH P T, THOLEY A. Depletion of High-Molecular-Mass Proteins for the Identification of Small Proteins and Short Open Reading Frame Encoded Peptides in Cellular Proteomes [J]. J Proteome Res, 2019, 18(4): 1725-34.
[63] CHEN L, YANG Y, ZHANG Y, et al. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies [J]. Chembiochem, 2022, 23(8): e202100534.
[64] KAULICH P T, CASSIDY L, BARTEL J, et al. Multi-protease Approach for the Improved Identification and Molecular Characterization of Small Proteins and Short Open Reading Frame-Encoded Peptides [J]. J Proteome Res, 2021, 20(5): 2895-903.
[65] CAO S, LIU X, HUANG Y, et al. Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis [J]. Commun Biol, 2021, 4(1): 1248.
[66] FABRE B, COMBIER J P, PLAZA S. Recent advances in mass spectrometry-based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions [J]. Curr Opin Chem Biol, 2021, 60: 122-30.
[67] DOMON B, AEBERSOLD R. Mass Spectrometry and Protein Analysis [J]. Science, 2006, 312(5771): 212-7.
[68] LUDWIG C, GILLET L, ROSENBERGER G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial [J]. Mol Syst Biol, 2018, 14(8): e8126.
[69] GALLIEN S, KIM S Y, DOMON B. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM) [J]. Mol Cell Proteomics, 2015, 14(6): 1630-44.
[70] DELCOURT V, BRUNELLE M, ROY A V, et al. The Protein Coded by a Short Open Reading Frame, Not by the Annotated Coding Sequence, Is the Main Gene Product of the Dual-Coding Gene MIEF1 [J]. Mol Cell Proteomics, 2018, 17(12): 2402-11.
[71] MEIER F, BRUNNER A D, FRANK M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition [J]. Nat Methods, 2020, 17(12): 1229-36.
[72] GILLET L C, NAVARRO P, TATE S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis [J]. Mol Cell Proteomics, 2012, 11(6): O111 016717.
[73] DEMICHEV V, MESSNER C B, VERNARDIS S I, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J]. Nat Methods, 2020, 17(1): 41-4.
[74] MARTINEZ T F, LYONS-ABBOTT S, BOOKOUT A L, et al. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins [J]. Cell Metab, 2023, 35(1): 166-83.e11.
[75] CUNNINGHAM F, ALLEN J E, ALLEN J, et al. Ensembl 2022 [J]. Nucleic Acids Res, 2022, 50(D1): D988-D95.
[76] UNIPROT C. UniProt: the universal protein knowledgebase in 2021 [J]. Nucleic Acids Res, 2021, 49(D1): D480-D9.
[77] BRUNET M A, LUCIER J F, LEVESQUE M, et al. OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes [J]. Nucleic Acids Res, 2021, 49(D1): D380-D8.
[78] CHOTEAU S A, WAGNER A, PIERRE P, et al. MetamORF: a repository of unique short open reading frames identified by both experimental and computational approaches for gene and metagene analyses [J]. Database (Oxford), 2021, 2021: baab032.
[79] FREMIN B J, BHATT A S, KYRPIDES N C, et al. Thousands of small, novel genes predicted in global phage genomes [J]. Cell Rep, 2022, 39(12): 110984.
[80] NEVILLE M D C, KOHZE R, ERADY C, et al. A platform for curated products from novel open reading frames prompts reinterpretation of disease variants [J]. Genome Res, 2021, 31(2): 327-36.
[81] OLEXIOUK V, VAN CRIEKINGE W, MENSCHAERT G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling [J]. Nucleic Acids Res, 2018, 46(D1): D497-D502.
[82] JI X, CUI C, CUI Q. smORFunction: a tool for predicting functions of small open reading frames and microproteins [J]. BMC Bioinformatics, 2020, 21(1): 455.
[83] ELIAS J E, GYGI S P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J]. Nat Methods, 2007, 4(3): 207-14.
[84] ZHOU C, WANG Q, HUANG Y, et al. Probing the sORF-Encoded Peptides of Deinococcus radiodurans in Response to Extreme Stress [J]. Mol Cell Proteomics, 2022, 21(11): 100423.
[85] BOGAERT A, FIJALKOWSKA D, STAES A, et al. Limited evidence for protein products of non-coding transcripts in the HEK293T cellular cytosol [J]. Mol Cell Proteomics, 2022, 21(8): 100264.
[86] VAN HEESCH S, WITTE F, SCHNEIDER-LUNITZ V, et al. The Translational Landscape of the Human Heart [J]. Cell, 2019, 178(1): 242-60 e29.
[87] CROOK Z R, NAIRN N W, OLSON J M. Miniproteins as a Powerful Modality in Drug Development [J]. Trends Biochem Sci, 2020, 45(4): 332-46.
[88] LIANG C, ZHANG S, ROBINSON D, et al. Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis [J]. Cell Rep, 2022, 40(7): 111204.
[89] BOSCH J A, UGUR B, PICHARDO-CASAS I, et al. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila [J]. Elife, 2022, 11: e82709.
[90] STEIN C S, JADIYA P, ZHANG X, et al. Mitoregulin: A lncRNA-Encoded Microprotein that Supports Mitochondrial Supercomplexes and Respiratory Efficiency [J]. Cell Reports, 2018, 23(13): 3710-20.e8.
[91] AVERINA O A, PERMYAKOV O A, EMELIANOVA M A, et al. Mitochondrial peptide Mtln contributes to oxidative metabolism in mice [J]. Biochimie, 2022, 204: 136-9.
[92] SENIS E, ESGLEAS M, NAJAS S, et al. TUNAR lncRNA Encodes a Microprotein that Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics [J]. Front Cell Dev Biol, 2021, 9: 747667.
[93] BOIX O, MARTINEZ M, VIDAL S, et al. pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation [J]. Nat Commun, 2022, 13(1): 6840.
[94] ZHOU H, LOU F, BAI J, et al. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting Treg differentiation [J]. EMBO Rep, 2022, 23(5): e53475.
[95] VITORINO R, GUEDES S, AMADO F, et al. The role of micropeptides in biology [J]. Cell Mol Life Sci, 2021, 78(7): 3285-98.
[96] GARCIA-BENLLOCH S, REVERT-ROS F, BLESA J R, et al. MOTS-c promotes muscle differentiation in vitro [J]. Peptides, 2022, 155: 170840.
[97] SCHIEMANN R, BUHR A, CORDES E, et al. Neprilysins regulate muscle contraction and heart function via cleavage of SERCA-inhibitory micropeptides [J]. Nat Commun, 2022, 13(1): 4420.
[98] MAKAREWICH C A, MUNIR A Z, SCHIATTARELLA G G, et al. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy [J]. Elife, 2018, 7: e38319.
[99] MILLER B, KIM S-J, MEHTA H H, et al. Mitochondrial DNA variation in Alzheimer’s disease reveals a unique microprotein called SHMOOSE [J]. Molecular Psychiatry, 2022.
[100] SANG Y, LIU J Y, WANG F Y, et al. Mitochondrial micropeptide STMP1 promotes G1/S transition by enhancing mitochondrial complex IV activity [J]. Mol Ther, 2022, 30(8): 2844-55.
[101] WANG Y, WU S, ZHU X, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis [J]. J Exp Med, 2020, 217(3): jem.20190950.
[102] XIE C, WANG F Y, SANG Y, et al. Mitochondrial Micropeptide STMP1 Enhances Mitochondrial Fission to Promote Tumor Metastasis [J]. Cancer Res, 2022, 82(13): 2431-43.
[103] ZHENG X, CHEN L, ZHOU Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling [J]. Mol Cancer, 2019, 18(1): 47.
[104] XIAO M H, LIN Y F, XIE P P, et al. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity [J]. Mol Ther, 2022, 30(2): 714-25.
[105] OTT P A, HU Z, KESKIN D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma [J]. Nature, 2017, 547(7662): 217-21.
[106] OUSPENSKAIA T, LAW T, CLAUSER K R, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer [J]. Nat Biotechnol, 2022, 40(2): 209-17.
[107] RAO V S, SRINIVAS K, SUJINI G N, et al. Protein-protein interaction detection: methods and analysis [J]. Int J Proteomics, 2014, 2014: 147648.
[108] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res, 2021, 49(D1): D605-D12.
[109] GINGRAS A-C, GSTAIGER M, RAUGHT B, et al. Analysis of protein complexes using mass spectrometry [J]. Nature Reviews Molecular Cell Biology, 2007, 8(8): 645-54.
[110] KOH M, AHMAD I, KO Y, et al. A short ORF-encoded transcriptional regulator [J]. Proc Natl Acad Sci U S A, 2021, 118(4): e2021943118.
[111] CAO X, KHITUN A, HAROLD C M, et al. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor [J]. Nat Chem Biol, 2022, 18(6): 643-51.
[112] CHU Q, RATHORE A, DIEDRICH J K, et al. Identification of Microprotein-Protein Interactions via APEX Tagging [J]. Biochemistry, 2017, 56(26): 3299-306.
[113] CARDON T, FRANCK J, COYAUD E, et al. Alternative proteins are functional regulators in cell reprogramming by PKA activation [J]. Nucleic Acids Res, 2020, 48(14): 7864-82.
[114] LIU F, RIJKERS D T, POST H, et al. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry [J]. Nat Methods, 2015, 12(12): 1179-84.
[115] BEVERIDGE R, STADLMANN J, PENNINGER J M, et al. A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes [J]. Nature Communications, 2020, 11(1): 742.
[116] HUTTLIN E L, BRUCKNER R J, NAVARRETE-PEREA J, et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome [J]. Cell, 2021, 184(11): 3022-40 e28.
[117] HUTTLIN E L, BRUCKNER R J, PAULO J A, et al. Architecture of the human interactome defines protein communities and disease networks [J]. Nature, 2017, 545(7655): 505-9.
[118] HUTTLIN E L, TING L, BRUCKNER R J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome [J]. Cell, 2015, 162(2): 425-40.
[119] CARDON T, SALZET M, FRANCK J, et al. Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation [J]. Biochim Biophys Acta Gen Subj, 2019, 1863(10): 1458-70.
[120] LEBLANC S, BRUNET M A, JACQUES J-F, et al. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities [J]. Genomics, Proteomics & Bioinformatics, 2022.
[121] TAN C S H, GO K D, BISTEAU X, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells [J]. Science, 2018, 359(6380): 1170-7.
[122] MARTINEZ MOLINA D, JAFARI R, IGNATUSHCHENKO M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay [J]. Science, 2013, 341(6141): 84-7.
[123] SAVITSKI M M, REINHARD F B, FRANKEN H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome [J]. Science, 2014, 346(6205): 1255784.
[124] HASHIMOTO Y, SHENG X, MURRAY-NERGER L A, et al. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection [J]. Nat Commun, 2020, 11(1): 806.
[125] JUSTICE J L, KENNEDY M A, HUTTON J E, et al. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity [J]. Science, 2021, 7(25): eabg6680.
[126] CHAMBERS M C, MACLEAN B, BURKE R, et al. A cross-platform toolkit for mass spectrometry and proteomics [J]. Nat Biotechnol, 2012, 30(10): 918-20.
[127] DA VEIGA LEPREVOST F, HAYNES S E, AVTONOMOV D M, et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis [J]. Nat Methods, 2020, 17(9): 869-70.
[128] KONG A T, LEPREVOST F V, AVTONOMOV D M, et al. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics [J]. Nat Methods, 2017, 14(5): 513-20.
[129] WEN B, WANG X, ZHANG B. PepQuery enables fast, accurate, and convenient proteomic validation of novel genomic alterations [J]. Genome Res, 2019, 29(3): 485-93.
[130] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215(3): 403-10.
[131] ABBAS W, KUMAR A, HERBEIN G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections [J]. Front Oncol, 2015, 5: 75.
[132] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-9.
[133] GENE ONTOLOGY C. The Gene Ontology resource: enriching a GOld mine [J]. Nucleic Acids Res, 2021, 49(D1): D325-D34.
[134] KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28(1): 27-30.
[135] KANEHISA M, FURUMICHI M, SATO Y, et al. KEGG for taxonomy-based analysis of pathways and genomes [J]. Nucleic Acids Res, 2023, 51(D1): D587-D92.
[136] PINERO J, SAUCH J, SANZ F, et al. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data [J]. Comput Struct Biotechnol J, 2021, 19: 2960-7.
[137] PINERO J, RAMIREZ-ANGUITA J M, SAUCH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update [J]. Nucleic Acids Res, 2020, 48(D1): D845-D55.
[138] DIEZ-FERNANDEZ C, RUFENACHT V, HABERLE J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations [J]. Hum Mutat, 2017, 38(5): 471-84.
[139] HALLGREN J, TSIRIGOS K D, PEDERSEN M D, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks [J]. BioRxiv, 2022.
[140] KAROSIENE E, LUNDEGAARD C, LUND O, et al. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions [J]. Immunogenetics, 2012, 64(3): 177-86.
[141] PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, et al. InterPro in 2022 [J]. Nucleic Acids Res, 2023, 51(D1): D418-D27.
[142] TEUFEL F, ALMAGRO ARMENTEROS J J, JOHANSEN A R, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models [J]. Nat Biotechnol, 2022, 40(7): 1023-5.
[143] KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology, 1982, 157(1): 105-32.
[144] NIELSEN H, TSIRIGOS K D, BRUNAK S, et al. A Brief History of Protein Sorting Prediction [J]. Protein J, 2019, 38(3): 200-16.
[145] MARX S, DAL MASO T, CHEN J W, et al. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process [J]. Semin Cancer Biol, 2020, 60: 96-106.
[146] BALL K A, WEBB K J, COLEMAN S J, et al. An isothermal shift assay for proteome scale drug-target identification [J]. Commun Biol, 2020, 3(1): 75.
[147] ENG J K, MCCORMACK A L, YATES J R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database [J]. Journal of the American Society for Mass Spectrometry, 1994, 5(11): 976-89.
[148] GIURGIU M, REINHARD J, BRAUNER B, et al. CORUM: the comprehensive resource of mammalian protein complexes-2019 [J]. Nucleic Acids Res, 2019, 47(D1): D559-D63.
[149] BOUWMEESTER T, BAUCH A, RUFFNER H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway [J]. Nat Cell Biol, 2004, 6(2): 97-105.
[150] NAKAO A, YOSHIHAMA M, KENMOCHI N. RPG: the Ribosomal Protein Gene database [J]. Nucleic Acids Res, 2004, 32(Database issue): D168-70.

Academic Degree Assessment Sub committee
化学
Domestic book classification number
O65
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/543851
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
Liao B. Re-analysis of Large-Scale AP-MSMS Data for Discovery and Characterization of Microproteins[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032075-廖彬-化学系.pdf(6159KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[廖彬]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[廖彬]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[廖彬]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.