[1] INTERNATIONAL HUMAN GENOME SEQUENCING C. Finishing the euchromatic sequence of the human genome [J]. Nature, 2004, 431(7011): 931-45.
[2] LEONG A Z, LEE P Y, MOHTAR M A, et al. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures [J]. J Biomed Sci, 2022, 29(1): 19.
[3] KUTE P M, SOUKARIEH O, TJELDNES H, et al. Small Open Reading Frames, How to Find Them and Determine Their Function [J]. Front Genet, 2021, 12: 796060.
[4] ORR M W, MAO Y, STORZ G, et al. Alternative ORFs and small ORFs: shedding light on the dark proteome [J]. Nucleic Acids Res, 2020, 48(3): 1029-42.
[5] THARAKAN R, SAWA A. Minireview: Novel Micropeptide Discovery by Proteomics and Deep Sequencing Methods [J]. Front Genet, 2021, 12: 651485.
[6] WERNER M, FELLER A, MESSENGUY F, et al. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression [J]. Cell, 1987, 49(6): 805-13.
[7] GALINDO M I, PUEYO J I, FOUIX S, et al. Peptides encoded by short ORFs control development and define a new eukaryotic gene family [J]. PLoS Biol, 2007, 5(5): e106.
[8] GUTTMAN M, AMIT I, GARBER M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals [J]. Nature, 2009, 458(7235): 223-7.
[9] SLAVOFF S A, MITCHELL A J, SCHWAID A G, et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells [J]. Nat Chem Biol, 2013, 9(1): 59-64.
[10] MUDGE J M, RUIZ-ORERA J, PRENSNER J R, et al. Standardized annotation of translated open reading frames [J]. Nat Biotechnol, 2022, 40(7): 994-9.
[11] ANDERS J, PETRUSCHKE H, JEHMLICH N, et al. A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations [J]. BMC Bioinformatics, 2021, 22(1): 277.
[12] BRUNET M A, BRUNELLE M, LUCIER J F, et al. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes [J]. Nucleic Acids Res, 2019, 47(D1): D403-D10.
[13] HAO Y, ZHANG L, NIU Y, et al. SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci [J]. Brief Bioinform, 2018, 19(4): 636-43.
[14] YU R, HU Y, ZHANG S, et al. LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms [J]. Nucleic Acids Research, 2022, 50(14): 8060-79.
[15] ZHANG C, ZHOU B, GU F, et al. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation [J]. Mol Cell, 2022, 82(7): 1297-312 e8.
[16] ZHANG S, RELJIC B, LIANG C, et al. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly [J]. Nat Commun, 2020, 11(1): 1312.
[17] WANG J, ZHU S, MENG N, et al. ncRNA-Encoded Peptides or Proteins and Cancer [J]. Mol Ther, 2019, 27(10): 1718-25.
[18] WRIGHT B W, YI Z, WEISSMAN J S, et al. The dark proteome: translation from noncanonical open reading frames [J]. Trends Cell Biol, 2022, 32(3): 243-58.
[19] CHEN J, BRUNNER A-D, COGAN J Z, et al. Pervasive functional translation of noncanonical human open reading frames [J]. Science, 2020, 367(6482): 1140-6.
[20] BAZZINI A A, JOHNSTONE T G, CHRISTIANO R, et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation [J]. EMBO J, 2014, 33(9): 981-93.
[21] BHATI K K, BLAAKMEER A, PAREDES E B, et al. Approaches to identify and characterize microProteins and their potential uses in biotechnology [J]. Cell Mol Life Sci, 2018, 75(14): 2529-36.
[22] CHOTHANI S P, ADAMI E, WIDJAJA A A, et al. A high-resolution map of human RNA translation [J]. Mol Cell, 2022, 82(15): 2885-99.e8.
[23] PAN N, WANG Z, WANG B, et al. Mapping Microproteins and ncRNA-Encoded Polypeptides in Different Mouse Tissues [J]. Front Cell Dev Biol, 2021, 9: 687748.
[24] SCHLESINGER D, ELSASSER S J. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins [J]. FEBS J, 2022, 289(1): 53-74.
[25] INGOLIA N T, GHAEMMAGHAMI S, NEWMAN J R S, et al. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling [J]. Science, 2009, 324(5924): 218-23.
[26] INGOLIA N T, LAREAU L F, WEISSMAN J S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes [J]. Cell, 2011, 147(4): 789-802.
[27] BRAR G A, WEISSMAN J S. Ribosome profiling reveals the what, when, where and how of protein synthesis [J]. Nat Rev Mol Cell Biol, 2015, 16(11): 651-64.
[28] LACZKOVICH I, MANGANO K, SHAO X, et al. Discovery of Unannotated Small Open Reading Frames in Streptococcus pneumoniae D39 Involved in Quorum Sensing and Virulence Using Ribosome Profiling [J]. mBio, 2022, 13(4): e01247-22.
[29] PATRAQUIM P, MUMTAZ M A S, PUEYO J I, et al. Developmental regulation of canonical and small ORF translation from mRNAs [J]. Genome Biol, 2020, 21(1): 128.
[30] SMITH C, CANESTRARI J G, WANG A J, et al. Pervasive translation in Mycobacterium tuberculosis [J]. Elife, 2022, 11: e73980.
[31] STERN-GINOSSAR N, WEISBURD B, MICHALSKI A, et al. Decoding Human Cytomegalovirus [J]. Science, 2012, 338(6110): 1088-93.
[32] WILSON B A, MASEL J. Putatively noncoding transcripts show extensive association with ribosomes [J]. Genome Biol Evol, 2011, 3: 1245-52.
[33] ASPDEN J L, EYRE-WALKER Y C, PHILLIPS R J, et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq [J]. Elife, 2014, 3: e03528.
[34] MARTINEZ T F, CHU Q, DONALDSON C, et al. Accurate annotation of human protein-coding small open reading frames [J]. Nat Chem Biol, 2020, 16(4): 458-68.
[35] CALVIELLO L, MUKHERJEE N, WYLER E, et al. Detecting actively translated open reading frames in ribosome profiling data [J]. Nature Methods, 2016, 13(2): 165-70.
[36] CHOUDHARY S, LI W, A D S. Accurate detection of short and long active ORFs using Ribo-seq data [J]. Bioinformatics, 2020, 36(7): 2053-9.
[37] CHUN S Y, RODRIGUEZ C M, TODD P K, et al. SPECtre: a spectral coherence--based classifier of actively translated transcripts from ribosome profiling sequence data [J]. BMC Bioinformatics, 2016, 17(1): 482.
[38] ERHARD F, HALENIUS A, ZIMMERMANN C, et al. Improved Ribo-seq enables identification of cryptic translation events [J]. Nat Methods, 2018, 15(5): 363-6.
[39] FIELDS A P, RODRIGUEZ E H, JOVANOVIC M, et al. A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation [J]. Mol Cell, 2015, 60(5): 816-27.
[40] JI Z, SONG R, REGEV A, et al. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins [J]. Elife, 2015, 4: e08890.
[41] MALONE B, ATANASSOV I, AESCHIMANN F, et al. Bayesian prediction of RNA translation from ribosome profiling [J]. Nucleic Acids Res, 2017, 45(6): 2960-72.
[42] RAJ A, WANG S H, SHIM H, et al. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling [J]. Elife, 2016, 5: e13328.
[43] XIAO Z, HUANG R, XING X, et al. De novo annotation and characterization of the translatome with ribosome profiling data [J]. Nucleic Acids Res, 2018, 46(10): e61.
[44] ZHANG P, HE D, XU Y, et al. Genome-wide identification and differential analysis of translational initiation [J]. Nat Commun, 2017, 8(1): 1749.
[45] GELHAUSEN R, MULLER T, SVENSSON S L, et al. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria [J]. Brief Bioinform, 2022, 23(2): bbab549.
[46] HU F, LU J, MATHESON L S, et al. ORFLine: a bioinformatic pipeline to prioritise small open reading frames identifies candidate secreted small proteins from lymphocytes [J]. Bioinformatics, 2021, 37(19): 3152-9.
[47] ZHU M, GRIBSKOV M. MiPepid: MicroPeptide identification tool using machine learning [J]. BMC Bioinformatics, 2019, 20(1): 559.
[48] CAO X, KHITUN A, NA Z, et al. Comparative Proteomic Profiling of Unannotated Microproteins and Alternative Proteins in Human Cell Lines [J]. J Proteome Res, 2020, 19(8): 3418-26.
[49] WANG Z, PAN N, YAN J, et al. Systematic Identification of Microproteins during the Development of Drosophila melanogaster [J]. J Proteome Res, 2022, 21(4): 1114-23.
[50] CASSIDY L, KAULICH P T, MAASS S, et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides [J]. Proteomics, 2021, 21(23-24): e2100008.
[51] DI MEO A, PASIC M D, YOUSEF G M. Proteomics and peptidomics: moving toward precision medicine in urological malignancies [J]. Oncotarget, 2016, 7(32): 52460-74.
[52] ZHANG Y, FONSLOW B R, SHAN B, et al. Protein analysis by shotgun/bottom-up proteomics [J]. Chem Rev, 2013, 113(4): 2343-94.
[53] ZHANG Q, WU E, TANG Y, et al. Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs [J]. Mol Cell Proteomics, 2021, 20: 100109.
[54] CATHERMAN A D, SKINNER O S, KELLEHER N L. Top Down proteomics: facts and perspectives [J]. Biochem Biophys Res Commun, 2014, 445(4): 683-93.
[55] RILEY N M, WESTPHALL M S, COON J J. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation [J]. Journal of the American Society for Mass Spectrometry, 2018, 29(1): 140-9.
[56] LI B, ZHANG Z, WAN C. Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages [J]. J Proteome Res, 2022, 21(4): 1052-60.
[57] CARDON T, HERVE F, DELCOURT V, et al. Optimized Sample Preparation Workflow for Improved Identification of Ghost Proteins [J]. Anal Chem, 2020, 92(1): 1122-9.
[58] FIJALKOWSKI I, PEETERS M K R, VAN DAMME P. Small Protein Enrichment Improves Proteomics Detection of sORF Encoded Polypeptides [J]. Front Genet, 2021, 12: 713400.
[59] WANG B, HAO J, PAN N, et al. Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell [J]. J Proteomics, 2021, 230: 103965.
[60] PARMAR B S, PEETERS M K R, BOONEN K, et al. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry [J]. Front Genet, 2021, 12: 728900.
[61] SUN Y, HUANG J, WANG Z, et al. Identification of Microproteins in Saccharomyces cerevisiae under Different Stress Conditions [J]. J Proteome Res, 2022, 21(8): 1939-47.
[62] CASSIDY L, KAULICH P T, THOLEY A. Depletion of High-Molecular-Mass Proteins for the Identification of Small Proteins and Short Open Reading Frame Encoded Peptides in Cellular Proteomes [J]. J Proteome Res, 2019, 18(4): 1725-34.
[63] CHEN L, YANG Y, ZHANG Y, et al. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies [J]. Chembiochem, 2022, 23(8): e202100534.
[64] KAULICH P T, CASSIDY L, BARTEL J, et al. Multi-protease Approach for the Improved Identification and Molecular Characterization of Small Proteins and Short Open Reading Frame-Encoded Peptides [J]. J Proteome Res, 2021, 20(5): 2895-903.
[65] CAO S, LIU X, HUANG Y, et al. Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis [J]. Commun Biol, 2021, 4(1): 1248.
[66] FABRE B, COMBIER J P, PLAZA S. Recent advances in mass spectrometry-based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions [J]. Curr Opin Chem Biol, 2021, 60: 122-30.
[67] DOMON B, AEBERSOLD R. Mass Spectrometry and Protein Analysis [J]. Science, 2006, 312(5771): 212-7.
[68] LUDWIG C, GILLET L, ROSENBERGER G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial [J]. Mol Syst Biol, 2018, 14(8): e8126.
[69] GALLIEN S, KIM S Y, DOMON B. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM) [J]. Mol Cell Proteomics, 2015, 14(6): 1630-44.
[70] DELCOURT V, BRUNELLE M, ROY A V, et al. The Protein Coded by a Short Open Reading Frame, Not by the Annotated Coding Sequence, Is the Main Gene Product of the Dual-Coding Gene MIEF1 [J]. Mol Cell Proteomics, 2018, 17(12): 2402-11.
[71] MEIER F, BRUNNER A D, FRANK M, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition [J]. Nat Methods, 2020, 17(12): 1229-36.
[72] GILLET L C, NAVARRO P, TATE S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis [J]. Mol Cell Proteomics, 2012, 11(6): O111 016717.
[73] DEMICHEV V, MESSNER C B, VERNARDIS S I, et al. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J]. Nat Methods, 2020, 17(1): 41-4.
[74] MARTINEZ T F, LYONS-ABBOTT S, BOOKOUT A L, et al. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins [J]. Cell Metab, 2023, 35(1): 166-83.e11.
[75] CUNNINGHAM F, ALLEN J E, ALLEN J, et al. Ensembl 2022 [J]. Nucleic Acids Res, 2022, 50(D1): D988-D95.
[76] UNIPROT C. UniProt: the universal protein knowledgebase in 2021 [J]. Nucleic Acids Res, 2021, 49(D1): D480-D9.
[77] BRUNET M A, LUCIER J F, LEVESQUE M, et al. OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes [J]. Nucleic Acids Res, 2021, 49(D1): D380-D8.
[78] CHOTEAU S A, WAGNER A, PIERRE P, et al. MetamORF: a repository of unique short open reading frames identified by both experimental and computational approaches for gene and metagene analyses [J]. Database (Oxford), 2021, 2021: baab032.
[79] FREMIN B J, BHATT A S, KYRPIDES N C, et al. Thousands of small, novel genes predicted in global phage genomes [J]. Cell Rep, 2022, 39(12): 110984.
[80] NEVILLE M D C, KOHZE R, ERADY C, et al. A platform for curated products from novel open reading frames prompts reinterpretation of disease variants [J]. Genome Res, 2021, 31(2): 327-36.
[81] OLEXIOUK V, VAN CRIEKINGE W, MENSCHAERT G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling [J]. Nucleic Acids Res, 2018, 46(D1): D497-D502.
[82] JI X, CUI C, CUI Q. smORFunction: a tool for predicting functions of small open reading frames and microproteins [J]. BMC Bioinformatics, 2020, 21(1): 455.
[83] ELIAS J E, GYGI S P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J]. Nat Methods, 2007, 4(3): 207-14.
[84] ZHOU C, WANG Q, HUANG Y, et al. Probing the sORF-Encoded Peptides of Deinococcus radiodurans in Response to Extreme Stress [J]. Mol Cell Proteomics, 2022, 21(11): 100423.
[85] BOGAERT A, FIJALKOWSKA D, STAES A, et al. Limited evidence for protein products of non-coding transcripts in the HEK293T cellular cytosol [J]. Mol Cell Proteomics, 2022, 21(8): 100264.
[86] VAN HEESCH S, WITTE F, SCHNEIDER-LUNITZ V, et al. The Translational Landscape of the Human Heart [J]. Cell, 2019, 178(1): 242-60 e29.
[87] CROOK Z R, NAIRN N W, OLSON J M. Miniproteins as a Powerful Modality in Drug Development [J]. Trends Biochem Sci, 2020, 45(4): 332-46.
[88] LIANG C, ZHANG S, ROBINSON D, et al. Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis [J]. Cell Rep, 2022, 40(7): 111204.
[89] BOSCH J A, UGUR B, PICHARDO-CASAS I, et al. Two neuronal peptides encoded from a single transcript regulate mitochondrial complex III in Drosophila [J]. Elife, 2022, 11: e82709.
[90] STEIN C S, JADIYA P, ZHANG X, et al. Mitoregulin: A lncRNA-Encoded Microprotein that Supports Mitochondrial Supercomplexes and Respiratory Efficiency [J]. Cell Reports, 2018, 23(13): 3710-20.e8.
[91] AVERINA O A, PERMYAKOV O A, EMELIANOVA M A, et al. Mitochondrial peptide Mtln contributes to oxidative metabolism in mice [J]. Biochimie, 2022, 204: 136-9.
[92] SENIS E, ESGLEAS M, NAJAS S, et al. TUNAR lncRNA Encodes a Microprotein that Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics [J]. Front Cell Dev Biol, 2021, 9: 747667.
[93] BOIX O, MARTINEZ M, VIDAL S, et al. pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation [J]. Nat Commun, 2022, 13(1): 6840.
[94] ZHOU H, LOU F, BAI J, et al. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting Treg differentiation [J]. EMBO Rep, 2022, 23(5): e53475.
[95] VITORINO R, GUEDES S, AMADO F, et al. The role of micropeptides in biology [J]. Cell Mol Life Sci, 2021, 78(7): 3285-98.
[96] GARCIA-BENLLOCH S, REVERT-ROS F, BLESA J R, et al. MOTS-c promotes muscle differentiation in vitro [J]. Peptides, 2022, 155: 170840.
[97] SCHIEMANN R, BUHR A, CORDES E, et al. Neprilysins regulate muscle contraction and heart function via cleavage of SERCA-inhibitory micropeptides [J]. Nat Commun, 2022, 13(1): 4420.
[98] MAKAREWICH C A, MUNIR A Z, SCHIATTARELLA G G, et al. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy [J]. Elife, 2018, 7: e38319.
[99] MILLER B, KIM S-J, MEHTA H H, et al. Mitochondrial DNA variation in Alzheimer’s disease reveals a unique microprotein called SHMOOSE [J]. Molecular Psychiatry, 2022.
[100] SANG Y, LIU J Y, WANG F Y, et al. Mitochondrial micropeptide STMP1 promotes G1/S transition by enhancing mitochondrial complex IV activity [J]. Mol Ther, 2022, 30(8): 2844-55.
[101] WANG Y, WU S, ZHU X, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis [J]. J Exp Med, 2020, 217(3): jem.20190950.
[102] XIE C, WANG F Y, SANG Y, et al. Mitochondrial Micropeptide STMP1 Enhances Mitochondrial Fission to Promote Tumor Metastasis [J]. Cancer Res, 2022, 82(13): 2431-43.
[103] ZHENG X, CHEN L, ZHOU Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling [J]. Mol Cancer, 2019, 18(1): 47.
[104] XIAO M H, LIN Y F, XIE P P, et al. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity [J]. Mol Ther, 2022, 30(2): 714-25.
[105] OTT P A, HU Z, KESKIN D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma [J]. Nature, 2017, 547(7662): 217-21.
[106] OUSPENSKAIA T, LAW T, CLAUSER K R, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer [J]. Nat Biotechnol, 2022, 40(2): 209-17.
[107] RAO V S, SRINIVAS K, SUJINI G N, et al. Protein-protein interaction detection: methods and analysis [J]. Int J Proteomics, 2014, 2014: 147648.
[108] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res, 2021, 49(D1): D605-D12.
[109] GINGRAS A-C, GSTAIGER M, RAUGHT B, et al. Analysis of protein complexes using mass spectrometry [J]. Nature Reviews Molecular Cell Biology, 2007, 8(8): 645-54.
[110] KOH M, AHMAD I, KO Y, et al. A short ORF-encoded transcriptional regulator [J]. Proc Natl Acad Sci U S A, 2021, 118(4): e2021943118.
[111] CAO X, KHITUN A, HAROLD C M, et al. Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor [J]. Nat Chem Biol, 2022, 18(6): 643-51.
[112] CHU Q, RATHORE A, DIEDRICH J K, et al. Identification of Microprotein-Protein Interactions via APEX Tagging [J]. Biochemistry, 2017, 56(26): 3299-306.
[113] CARDON T, FRANCK J, COYAUD E, et al. Alternative proteins are functional regulators in cell reprogramming by PKA activation [J]. Nucleic Acids Res, 2020, 48(14): 7864-82.
[114] LIU F, RIJKERS D T, POST H, et al. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry [J]. Nat Methods, 2015, 12(12): 1179-84.
[115] BEVERIDGE R, STADLMANN J, PENNINGER J M, et al. A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes [J]. Nature Communications, 2020, 11(1): 742.
[116] HUTTLIN E L, BRUCKNER R J, NAVARRETE-PEREA J, et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome [J]. Cell, 2021, 184(11): 3022-40 e28.
[117] HUTTLIN E L, BRUCKNER R J, PAULO J A, et al. Architecture of the human interactome defines protein communities and disease networks [J]. Nature, 2017, 545(7655): 505-9.
[118] HUTTLIN E L, TING L, BRUCKNER R J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome [J]. Cell, 2015, 162(2): 425-40.
[119] CARDON T, SALZET M, FRANCK J, et al. Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation [J]. Biochim Biophys Acta Gen Subj, 2019, 1863(10): 1458-70.
[120] LEBLANC S, BRUNET M A, JACQUES J-F, et al. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities [J]. Genomics, Proteomics & Bioinformatics, 2022.
[121] TAN C S H, GO K D, BISTEAU X, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells [J]. Science, 2018, 359(6380): 1170-7.
[122] MARTINEZ MOLINA D, JAFARI R, IGNATUSHCHENKO M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay [J]. Science, 2013, 341(6141): 84-7.
[123] SAVITSKI M M, REINHARD F B, FRANKEN H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome [J]. Science, 2014, 346(6205): 1255784.
[124] HASHIMOTO Y, SHENG X, MURRAY-NERGER L A, et al. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection [J]. Nat Commun, 2020, 11(1): 806.
[125] JUSTICE J L, KENNEDY M A, HUTTON J E, et al. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity [J]. Science, 2021, 7(25): eabg6680.
[126] CHAMBERS M C, MACLEAN B, BURKE R, et al. A cross-platform toolkit for mass spectrometry and proteomics [J]. Nat Biotechnol, 2012, 30(10): 918-20.
[127] DA VEIGA LEPREVOST F, HAYNES S E, AVTONOMOV D M, et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis [J]. Nat Methods, 2020, 17(9): 869-70.
[128] KONG A T, LEPREVOST F V, AVTONOMOV D M, et al. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics [J]. Nat Methods, 2017, 14(5): 513-20.
[129] WEN B, WANG X, ZHANG B. PepQuery enables fast, accurate, and convenient proteomic validation of novel genomic alterations [J]. Genome Res, 2019, 29(3): 485-93.
[130] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215(3): 403-10.
[131] ABBAS W, KUMAR A, HERBEIN G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections [J]. Front Oncol, 2015, 5: 75.
[132] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-9.
[133] GENE ONTOLOGY C. The Gene Ontology resource: enriching a GOld mine [J]. Nucleic Acids Res, 2021, 49(D1): D325-D34.
[134] KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Res, 2000, 28(1): 27-30.
[135] KANEHISA M, FURUMICHI M, SATO Y, et al. KEGG for taxonomy-based analysis of pathways and genomes [J]. Nucleic Acids Res, 2023, 51(D1): D587-D92.
[136] PINERO J, SAUCH J, SANZ F, et al. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data [J]. Comput Struct Biotechnol J, 2021, 19: 2960-7.
[137] PINERO J, RAMIREZ-ANGUITA J M, SAUCH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update [J]. Nucleic Acids Res, 2020, 48(D1): D845-D55.
[138] DIEZ-FERNANDEZ C, RUFENACHT V, HABERLE J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations [J]. Hum Mutat, 2017, 38(5): 471-84.
[139] HALLGREN J, TSIRIGOS K D, PEDERSEN M D, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks [J]. BioRxiv, 2022.
[140] KAROSIENE E, LUNDEGAARD C, LUND O, et al. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions [J]. Immunogenetics, 2012, 64(3): 177-86.
[141] PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, et al. InterPro in 2022 [J]. Nucleic Acids Res, 2023, 51(D1): D418-D27.
[142] TEUFEL F, ALMAGRO ARMENTEROS J J, JOHANSEN A R, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models [J]. Nat Biotechnol, 2022, 40(7): 1023-5.
[143] KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology, 1982, 157(1): 105-32.
[144] NIELSEN H, TSIRIGOS K D, BRUNAK S, et al. A Brief History of Protein Sorting Prediction [J]. Protein J, 2019, 38(3): 200-16.
[145] MARX S, DAL MASO T, CHEN J W, et al. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process [J]. Semin Cancer Biol, 2020, 60: 96-106.
[146] BALL K A, WEBB K J, COLEMAN S J, et al. An isothermal shift assay for proteome scale drug-target identification [J]. Commun Biol, 2020, 3(1): 75.
[147] ENG J K, MCCORMACK A L, YATES J R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database [J]. Journal of the American Society for Mass Spectrometry, 1994, 5(11): 976-89.
[148] GIURGIU M, REINHARD J, BRAUNER B, et al. CORUM: the comprehensive resource of mammalian protein complexes-2019 [J]. Nucleic Acids Res, 2019, 47(D1): D559-D63.
[149] BOUWMEESTER T, BAUCH A, RUFFNER H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway [J]. Nat Cell Biol, 2004, 6(2): 97-105.
[150] NAKAO A, YOSHIHAMA M, KENMOCHI N. RPG: the Ribosomal Protein Gene database [J]. Nucleic Acids Res, 2004, 32(Database issue): D168-70.
Edit Comment