中文版 | English
Title

均值半方差投资组合策略的选择

Alternative Title
MEAN SEMIVARIANCE PORTFOLIO SELECTION
Author
Name pinyin
ZUO Xurun
School number
12132895
Degree
硕士
Discipline
070103 概率论与数理统计
Subject category of dissertation
07 理学
Supervisor
熊捷
Mentor unit
数学系
Publication Years
2023-05-09
Submission date
2023-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

风险是现代金融理论和实践的中心问题,自 Markowitz 提出均值-方差投资组合模型以来,有大量的学者对其进行了研究。但是用半方差作为风险度量比用方差作为风险度量是更为合理的。本文我们首先对近些年与均值-半方差投资组合问题相关的文献做了简单介绍,之后给出了文章中所必须的一些基本数学理论。我们构造了在部分信息下的均值-半方差投资组合选择模型,把滤波问题和投资组合选择问题分离。为解决该均值-半方差投资组合问题,我们利用分解的方法把其分成一个静态优化问题以及一个倒向随机微分方程解的问题,并且证明了这个分解的合理性。对于静态优化问题,我们首先证明了部分信息下市场具有完备性,然后考虑对半方差赋予权重的优化问题,得到了赋权后的终端财富的最优解,最后利用逼近的方法证明了对于均值-半方差投资组合问题在除去某种特殊情况下不存在最优的终端财富。最后我们证明了在部分信息情况下任意可行的终端财富都存在投资组合对其进行复制,所以尽管我们得到不存在最优的终端财富这个负面结论,我们仍然可以利用倒向随机微分方程对渐进的最优终端财富进行复制,进而可以得到均值-半方差问题的最优投资组合。

Other Abstract

Risk is a central issue in modern financial theory and practice, and has been studied by a large number of scholars since Markowitz proposed the mean-variance portfolio model. However, it is more reasonable to use semivariance as a risk measure than variance as a risk measure. In this paper we first give a brief overview of the recent literature related to the mean semivariance portfolio problem, followed by some basic mathematical theory necessary for the discussion in the paper. We construct a model for mean semivariance portfolio selection under partial information, separating the filtering problem from the problem of portfolio selection. To solve this mean semivariance portfolio problem, we use a decomposition to split it into a static optimization problem and a problem with a backward stochastic differential equation's solution, and justify this decomposition. For the static optimisation problem, we first show that the market is complete under partial information, then consider the optimization problem with weights assigned to the semivariance to obtain the optimal solution for the terminal wealth after weighting, and finally use approximation to show that there is no optimal terminal wealth for the mean semivariance portfolio problem except a special case. Finally, we show that there are portfolios that replicate any feasible terminal wealth under partial information, so that despite the negative conclusion that there is no optimal terminal wealth, we can still replicate the asymptotically optimal terminal wealth using the backward stochastic differential equation, which in turn leads to an optimal portfolio for the mean semivariance problem.

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2021
Year of Degree Awarded
2023-07
References List

[1] MARKOWITZ H. Portfolio Selection, the journal of finance. 7 (1)[Z]. 1952.
[2] ZIEMBA W T, ZHAO Y. Mean-variance versus expected utility in dynamic investment analysis[M]. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät ..., 2000.
[3] ZHOU X Y, LI D. Continuous-time mean-variance portfolio selection: A stochastic LQ frame-work[J]. Applied Mathematics and Optimization, 2000, 42: 19-33.
[4] LIM A E. Quadratic hedging and mean-variance portfolio selection with random parameters inan incomplete market[J]. Mathematics of Operations Research, 2004, 29(1): 132-161.
[5] BIELECKI T R, JIN H, PLISKA S R, et al. Continuous-time mean-variance portfolio selectionwith bankruptcy prohibition[J]. Mathematical Finance: An International Journal of Mathemat-ics, Statistics and Financial Economics, 2005, 15(2): 213-244.
[6] XIA J. Mean–variance portfolio choice: quadratic partial hedging[J]. Mathematical Finance:An International Journal of Mathematics, Statistics and Financial Economics, 2005, 15(3): 533-538.
[7] LI D, NG W L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation[J]. Mathematical finance, 2000, 10(3): 387-406.
[8] XIONG J, ZENG Y, ZHANG S. Mean-variance portfolio selection for partially observed pointprocesses[J]. SIAM Journal on Control and Optimization, 2020, 58(6): 3041-3061.
[9] XIONG J, ZHOU X Y. Mean-variance portfolio selection under partial information[J]. SIAMJournal on Control and Optimization, 2007, 46(1): 156-175.
[10] XIONG J, XU Z Q, ZHENG J. Mean–variance portfolio selection under partial informationwith drift uncertainty[J]. Quantitative Finance, 2021, 21(9): 1461-1473.
[11] MARKOWITZ H. Portfolio selection: Efficient diversification of investments[M]. John Wiley,1959.
[12] MARKOWITZ H, TODD P, XU G, et al. Computation of mean-semivariance efficient sets bythe critical line algorithm[J]. Annals of Operations Research, 1993, 45: 307-317.
[13] LARI-LAVASSANI A, LI X. Dynamic mean semi-variance portfolio selection[C]//Computational Science—ICCS 2003: International Conference, Melbourne, Australia and St.Petersburg, Russia, June 2–4, 2003 Proceedings, Part I. Springer, 2003: 95-104.
[14] JIN H, YAN J A, ZHOU X Y. Continuous-time mean–risk portfolio selection[C]//Annales del’Institut Henri Poincare (B) Probability and Statistics: volume 41. Elsevier, 2005: 559-580.
[15] BI J, ZHONG Y, ZHOU X Y. Mean–semivariance portfolio selection under probability distor-tion[J]. Stochastics, 2013, 85(4): 604-619.
[16] BOROVIČKA A. Stock portfolio selection under unstable uncertainty via fuzzy mean-semivariance model[J]. Central European Journal of Operations Research, 2022, 30(2): 595-616.
[17] CHENG G, AHMADZADE H, FARAHIKIA M, et al. Uncertain random portfolio optimizationvia semi-variance[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(9):2533-2543.
[18] YAN W, MIAO R, LI S. Multi-period semi-variance portfolio selection: Model and numericalsolution[J]. Applied Mathematics and Computation, 2007, 194(1): 128-134.
[19] ZHANG W G, MEI Q, LU Q, et al. Evaluating methods of investment project and optimizingmodels of portfolio selection in fuzzy uncertainty[J]. Computers & industrial engineering, 2011,61(3): 721-728.
[20] SEYEDHOSSEINI S M, ESFAHANI M J, GHAFFARI M. A novel hybrid algorithm based ona harmony search and artificial bee colony for solving a portfolio optimization problem using amean-semi variance approach[J]. Journal of Central South University, 2016, 23: 181-188.
[21] XIONG J. An introduction to stochastic filtering theory: volume 18[M]. OUP Oxford, 2008.
[22] LE GALL J F. Brownian motion, martingales, and stochastic calculus[M]. Springer, 2016.
[23] KARATZAS I, KARATZAS I, SHREVE S, et al. Brownian motion and stochastic calculus:volume 113[M]. Springer Science & Business Media, 1991.
[24] YONG J, ZHOU X Y. Stochastic controls: Hamiltonian systems and HJB equations: volume 43[M]. Springer Science & Business Media, 1999.
[25] KALLIANPUR G. Stochastic filtering theory: volume 13[M]. Springer Science & BusinessMedia, 2013.
[26] EL KAROUI N, PENG S, QUENEZ M C. Backward stochastic differential equations in finance[J]. Mathematical finance, 1997, 7(1): 1-71.
[27] BECK A. First-order methods in optimization[M]. SIAM, 2017.
[28] ROCKAFELLAR R T. Convex analysis: volume 18[M]. Princeton university press, 1970.
[29] ROYDEN H L, FITZPATRICK P. Real Analysis. Featured Titles for Real Analysis Series[M].Prentice Hall Upper Saddle River, 2010.
[30] KARATZAS I, SHREVE S E, KARATZAS I, et al. Methods of mathematical finance: vol-ume 39[M]. Springer, 1998.
[31] ELLIOTT R, KOPP P. Mathematics of Financial Markets, 1999[M]. Springer-Verlag: NewYork.
[32] PLISKA S R, et al. A discrete time stochastic decision model[Z]. 1982.
[33] PLISKA S R. A stochastic calculus model of continuous trading: optimal portfolios[J]. Math-ematics of operations research, 1986, 11(2): 371-382.
[34] BOYD S, BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge universitypress, 2004.

Academic Degree Assessment Sub committee
数学
Domestic book classification number
F830.91
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/543951
DepartmentDepartment of Mathematics
Recommended Citation
GB/T 7714
左旭润. 均值半方差投资组合策略的选择[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132895-左旭润-数学系.pdf(589KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[左旭润]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[左旭润]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[左旭润]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.