中文版 | English


Alternative Title
Name pinyin
YUAN Yidong
School number
0701 数学
Subject category of dissertation
07 理学
Mentor unit
Publication Years
Submission date
Place of Publication
Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] Islam, Aylin Caliskan and Bryson, Joanna J. and Narayanan, Arvind. Semantics derived automatically from language corpora necessarily contain human biases. 2016.
[2] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations withoutopening the black box: Automated decisions and the gpdr. Harv. JL Tech., 31:841, 2017.
[3] J. Angwin, J. Larson, L. Kirchner, and S. Mattu. Machine bias.https://www.propublica.org/article/machine- bias- risk- assessments- in- criminal- sentencing ,Mar 2019
[4] B. Goodman and S. Flaxman. European union regulations on algorithmic decision-making anda right to explanation. AI Magazine, 38(3):50–57, 2017.
[5] D. Boyd and K. Crawford. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5):662–679,2012.
[6] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.arXiv preprint arXiv:1412.6572, 2014.
[7] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method tofool deep neural networks. CoRR, abs/1511.04599, 2015.
[8] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitationsof deep learning in adversarial settings. CoRR, abs/1511.07528, 2015.
[9] Z. C. Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016.
[10] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. arXivpreprint arXiv:1702.08608, 2017.
[11] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:An overview of interpretability of machine learning. In 2018 IEEE 5th International Conferenceon Data Science and Advanced Analytics (DSAA), pages 8089. IEEE, 2018.
[12] W. Cheng, Y. Shen, L. Huang, and Y. Zhu. Incorporating interpretability into latent factormodels via fast influence analysis. In Proceedings of the 25th ACM SIGKDD InternationalConference on Knowledge Discovery & Data Mining, pages 885–893. ACM, 2019.
[13] M. Du, N. Liu, and X. Hu. Techniques for interpretable machine learning. arXiv preprintarXiv:1808.00033, 2018.
[14] S. Wachter, B. D. Mittelstadt, and C. Russell. Counterfactual explanations without opening theblack box: Automated decisions and the GDPR. CoRR, abs/1711.00399, 2017.
[15] S. Liu, B. Kailkhura, D. Loveland, and Y. Han. Generative counterfactual introspection forexplainable deep learning. CoRR, abs/1907.03077, 2019.
[16] R. M. Grath, L. Costabello, C. L. Van, P. Sweeney, F. Kamiab, Z. Shen, and F. Le ́cué. Interpretable credit application predictions with counterfactual explanations. CoRR, abs/1811.05245, 2018.
[17] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counterfactual visual explanations.CoRR, abs/1904.07451, 2019.
[18] Y. Goyal, U. Shalit, and B. Kim. Explaining classifiers with causal concept effect (cace). CoRR,abs/1907.07165, 2019.
[19] J. Moore, N. Hammerla, and C. Watkins. Explaining deep learning models with constrainedadversarial examples. CoRR, abs/1906.10671, 2019.
[20] R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classifiers through diversecounterfactual explanations. CoRR, abs/1905.07697, 2019.
[21] Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.
[22] Duong T D , Li Q , Xu G . Prototype-based Counterfactual Explanation for Causal Classification[J]. 2021.
[23] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on the missing: Towards contrastive explanationswith pertinent negatives. In Advances in Neural Information Processing Systems, pages 592–603, 2018.
[24] Ramaravind Kommiya Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through diverse counterfactual explanations. In Proceedings of the ACM FATconference (to appear), 2020.
[25] Chris Russell. Efficient search for diverse coherent explanations. In Proceedings of FAT, 2019.
[26] Judea Pearl. Causality. Cambridge University Press, 2009.
[27] Spirtes P , Zhang K . Causal discovery and inference: concepts and recent methodologicaladvances[J]. Applied Informatics, 2016, 3(1):1-28.
[28] Glymour C , Zhang K , Spirtes P . Review of Causal Discovery Methods Based on GraphicalModels[J]. Frontiers in Genetics, 2019, 10:-.
[29] Alessandro Magrini, Stefano Di Blasi, and Federico Mattia Stefanini. A conditional linear gaussian network to assess the impact of several agronomic settings on the quality of tuscan sangiovese grapes. Biometrical Letters, 2017.
[30] Goodfellow I J , Pouget-Abadie J , Mirza M , et al. Generative Adversarial Networks[J]. 2014.
[31] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2020. Algorithmic Recourse:from Counterfactual Explanations to Interventions.
[32] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. 2020. Algorithmic recourse under imperfect causal knowledge: a proba-bilistic approach.
[33] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: A common framework to provide explanations and analyse the fairness and ro- bustness of black-box models. In Proceedingsof the AAAI/ACM Conference on AI, Ethics, and Society, pages 166–172, 2020.
[34] Karimi A H , Barthe G , Belle B , et al. Model-Agnostic Counterfactual Explanations for Consequential Decisions[J]. 2019.
[35] Ustun B , Spangher A , Liu Y . Actionable Recourse in Linear Classification:,10.1145/3287560.3287566[P]. 2018.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Statistics and Data Science
Recommended Citation
GB/T 7714
袁宜东. 面向机器学习模型可解释性的反事实样本生成[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132910-袁宜东-统计与数据科学(3556KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[袁宜东]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[袁宜东]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[袁宜东]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.