[1] Wessjohann L A, Brandt W, Thiemann T. Biosynthesis and metabolism of cyclopropane rings in natural compounds[J]. Chemical Reviews, 2003, 103(4): 1625-1648.
[2] Talele T T. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. Journal of medicinal chemistry, 2016, 59(19): 8712-8756.
[3] Dian L, Marek I. Asymmetric preparation of polysubstituted cyclopropanes based on direct functionalization of achiral three-membered carbocycles: Focus Review[J]. Chemical Reviews, 2018, 118(18): 8415-8434.
[4] Simmons H E, Smith R D. A new synthesis of cyclopropanes from olefins[J]. Journal of the American Chemical Society, 1958, 80(19): 5323-5324.
[5] Pellissier H. Recent developments in asymmetric cyclopropanation[J]. Tetrahedron, 2008, 64(30-31): 7041-7095.
[6] Ukaji Y, Nishimura M, Fujisawa T. Enantioselective construction of cyclopropane rings via asymmetric simmons-smith reaction of allylic alcohols[J]. Chemistry Letters, 1992, 21(1): 61-64.
[7] Vega-Pérez J M, Periñán I, Vega M, et al. Stereoselective cyclopropanation of unsaturated acetals, using carbohydrates with D-gluco, L-rhamno and D-xylo configurations as chiral auxiliaries[J]. Tetrahedron: Asymmetry, 2008, 19(14): 1720-1729.
[8] Bartoli G, Bencivenni G, Dalpozzo R. Asymmetric cyclopropanation reactions[J]. Synthesis, 2014, 46(08): 979-1029.
[9] Charette A B, Juteau H. Design of amphoteric bifunctional ligands: application to the enantioselective simmons-smith cyclopropanation of allylic alcohols[J]. Journal of the American Chemical Society, 1994, 116(6): 2651-2652.
[10] Lacasse M C, Poulard C, Charette A B. Iodomethylzinc phosphates: powerful reagents for the cyclopropanation of alkenes[J]. Journal of the American Chemical Society, 2005, 127(36): 12440-12441.
[11] Long J, Yuan Y, Shi Y. Asymmetric simmons-smith cyclopropanation of unfunctionalized olefins[J]. Journal of the American Chemical Society, 2003, 125(45): 13632-13633.
[12] Long J, Du H, Li K, et al. Catalytic asymmetric simmons-smith cyclopropanation of unfunctionalized olefins[J]. Tetrahedron Letters, 2005, 46(16): 2737-2740.
[13] Shitama H, Katsuki T. Asymmetric simmons-smith reaction of allylic alcohols with Al lewis acid/N lewis base bifunctional Al (salen) catalyst[J]. Angewandte Chemie International Edition, 2008, 47(13): 2450-2453.
[14] Nozaki H, Moriuti S, Takaya H, et al. Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate[J]. Tetrahedron Letters, 1966, 7(43): 5239-5244.
[15] Huang L, Chen Y, Gao G Y, et al. Diastereoselective and enantioselective cyclopropanation of alkenes catalyzed by cobalt porphyrins[J]. The Journal of Organic Chemistry, 2003, 68(21): 8179-8184.
[16] Zhu S., Xu X., Perman J. A., Zhang X. P. A general and efficient cobalt (II)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates[J]. Journal of the American Chemical Society, 2010,132(37): 12796-12799.
[17] Dzik W I, Xu X, Zhang X P, et al. ‘Carbene radicals’ in CoII (por)-catalyzed olefin cyclopropanation[J]. Journal of the American Chemical Society, 2010, 132(31): 10891-10902.
[18] Morandi B, Mariampillai B, Carreira E M. Enantioselective cobalt-catalyzed preparation of trifluoromethyl-substituted cyclopropanes[J]. Angewandte Chemie International Edition, 2011, 50(5): 1101-1104.
[19] Ke J, Lee W C C, Wang X, et al. Metalloradical activation of in situ-generated α-alkynyldiazomethanes for asymmetric radical cyclopropanation of alkenes[J]. Journal of the American Chemical Society, 2022, 144(5): 2368-2378.
[20] Honma M, Takeda H, Takano M, et al. Development of catalytic asymmetric intramolecular cyclopropanation of α-diazo-β-keto sulfones and applications to natural product synthesis[J]. Synlett, 2009, 11: 1695-1712.
[21] Evans D A, Woerpel K A, Hinman M M, et al. Bis (oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. catalytic, asymmetric cyclopropanation of olefins[J]. Journal of the American Chemical Society, 1991, 113(2): 726-728.
[22] Li J, Liao S H, Xiong H, et al. Highly diastereo and enantioselective cyclopropanation of 1,2-disubstituted alkenes[J]. Angewandte Chemie International Edition, 2012, 51(35): 8838-8841.
[23] Carreras J, Caballero A, Pérez P J. Enantio and diastereoselective cyclopropanation of 1-alkenylboronates: synthesis of 1-boryl-2,3-disubstituted cyclopropanes[J]. Angewandte Chemie International Edition, 2018, 57(9): 2334-2338.
[24] Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective cyclopropanation reactions[J]. Chemical Reviews, 2003, 103(4): 977-1050.
[25] Davies H M L, Bruzinski P R, Lake D H, et al. Asymmetric cyclopropanations by rhodium (II) N-(arylsulfonyl) prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid[J]. Journal of the American Chemical Society, 1996, 118(29): 6897-6907.
[26] Lindsay V N G, Lin W, Charette A B. Experimental evidence for the all-up reactive conformation of chiral rhodium (II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane α-amino acids[J]. Journal of the American Chemical Society, 2009, 131(45): 16383-16385.
[27] Zhang J, Xu W, Xu M H. Low Coordination state Rh(I)-complex as high performance catalyst for asymmetric intramolecular cyclopropanation: Construction of penta-substituted cyclopropanes[J]. Angewandte Chemie International Edition, 2023, 62(10): e202216799.
[28] Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective cyclopropanation reactions[J]. Chemical Reviews, 2003, 103(4): 977-1050.
[29] Marcin L R, Denhart D J, Mattson R J. Catalytic asymmetric diazoacetate cyclopropanation of 1-tosyl-3-vinylindoles. a route to conformationally restricted homotryptamines[J]. Organic Letters, 2005, 7(13): 2651-2654.
[30] Xu Z J, Fang R, Zhao C, et al. cis-β-Bis (carbonyl) ruthenium- salen complexes: X-ray crystal structures and remarkable catalytic properties toward asymmetric intramolecular alkene cyclopropanation[J]. Journal of the American Chemical Society, 2009, 131(12): 4405-4417.
[31] Ito J, Ujiie S, Nishiyama H. Chiral bis (oxazolinyl) phenyl Ru(II) catalysts for highly enantioselective cyclopropanation[J]. Chemistry-A European Journal, 2010, 16(17): 4986-4990.
[32] Suematsu H, Kanchiku S, Uchida T, et al. Construction of aryliridium− salen complexes: enantio-and cis-selective cyclopropanation of conjugated and nonconjugated olefins[J]. Journal of the American Chemical Society, 2008, 130(31): 10327-10337.
[33] Cao Z Y, Zhou F, Yu Y H, et al. A highly diastereo-and enantioselective Hg(II)-catalyzed cyclopropanation of diazooxindoles and alkenes[J]. Organic letters, 2013, 15(1): 42-45.
[34] Cao Z Y, Wang X, Tan C, et al. Highly stereoselective olefin cyclopropanation of diazooxindoles catalyzed by a 2-symmetric spiroketal bisphosphine/Au (I) complex[J]. Journal of the American Chemical Society, 2013, 135(22): 8197-8200.
[35] Sreenilayam G, Moore E J, Steck V, et al. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor[J]. ACS catalysis, 2017, 7(11): 7629-7633.
[36] Chu Z, Tang Z, Zhang K, et al. Gold (I)-catalyzed enantioselective cyclopropanation of α-aryl diazoacetates with enamides[J]. Organometallics, 2019, 38(20): 4036-4042.
[37] Cheong P H Y, Legault C Y, Um J M, et al. Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities[J]. Chemical Reviews, 2011, 111(8): 5042-5137.
[38] Shinohara N, Haga J, Yamazaki T, et al. Stereoselective synthesis of trifluoromethylated compounds with controlled adjacent tertiary carbons by michael addition to (E)-3-(trifluoromethyl) acrylates[J]. The Journal of Organic Chemistry, 1995, 60(14): 4363-4374.
[39] Ivashkin P, Couve-Bonnaire S, Jubault P, et al. Asymmetric synthesis of cyclopropanes with a monofluorinated quaternary stereocenter[J]. Organic Letters, 2012, 14(19): 5130-5133.
[40] Shen X, Zhang W, Zhang L, et al. Enantioselective synthesis of cyclopropanes that contain fluorinated tertiary stereogenic carbon centers: a chiral α-fluoro carbanion strategy[J]. Angewandte Chemie International Edition, 2012, 51(28): 6966-6970.
[41] Liao W W, Li K, Tang Y. Controllable diastereoselective cyclopropanation. Enantioselective synthesis of vinylcyclopropanes via chiral telluronium ylides[J]. Journal of the American Chemical Society, 2003, 125(43): 13030-13031.
[42] Kakei H, Sone T, Sohtome Y, et al. Catalytic asymmetric cyclopropanation of enones with dimethyloxosulfonium methylide promoted by a La-Li3-(Biphenyldiolate)3 + NaI complex[J]. Journal of the American Chemical Society, 2007, 129(44): 13410-13411.
[43] Abramovitch A, Fensterbank L, Malacria M, et al. Convergent preparation of enantiomerically pure polyalkylated cyclopropane derivatives[J]. Angewandte Chemie International Edition, 2008, 47(36): 6865-6868.
[44] Zhu B H, Zhou R, Zheng J C, et al. Highly selective ylide-initiated Michael addition/cyclization reaction for synthesis of cyclohexadiene epoxide and vinylcyclopropane derivatives[J]. The Journal of Organic Chemistry, 2010, 75(10): 3454-3457.
[45] Sarkar S D. Enantioselective cyclopropanation of enals by oxidative N-heterocyclic carbene catalysis[J]. Chemical Communications, 2012, 48(42): 5190-5192.
[46] Wang J, Liu X, Dong S, et al. Asymmetric organocatalytic cyclopropanation of cinnamone derivatives with stabilized sulfonium ylides[J]. The Journal of Organic Chemistry, 2013, 78(12): 6322-6327.
[47] Nishimura T, Kawamoto T, Nagaosa M, et al. Chiral tetrafluorobenzobarrelene Ligands for the rhodium-catalyzed asymmetric cycloisomerization of Oxygen-and nitrogen-bridged 1,6-enynes[J]. Angewandte Chemie International Edition, 2010, 49(9): 1638-1641.
[48] Ebner C, Carreira E M. Cyclopropanation strategies in recent total syntheses[J]. Chemical reviews, 2017, 117(18): 11651-11679
[49] Werth J, Uyeda C. Regioselective simmons-smith-type cyclopropanations of polyalkenes enabled by transition metal catalysis[J]. Chemical Science, 2018, 9(6): 1604-1609.
[50] Werth J, Uyeda C. Cobalt-catalyzed reductive dimethylcyclopropanation of 1,3-dienes[J]. Angewandte Chemie International Edition, 2018, 57(42): 13902-13906.
[51] Werth J, Berger K, Uyeda C. Cobalt catalyzed reductive spirocyclopropanation reactions[J]. Advanced Synthesis & Catalysis, 2020, 362(2): 348-352.
[52] Babu S A, Krishnan K K, Ujwaldev S M, et al. Applications of pybox complexes in asymmetric catalysis[J]. Asian Journal of Organic Chemistry, 2018, 7(6): 1033-1053.
[53] Ma X, Zuo Z, Liu G, et al. Manganese-catalyzed asymmetric hydrosilylation of aryl ketones[J]. ACS omega, 2017, 2(8): 4688-4692.
[54] Cruz-Morales P, Yin K, Landera A, et al. Biosynthesis of polycyclopropanated high energy biofuels[J]. Joule, 2022, 6(7): 1590-1605.
[55] Zhang X, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[56] Wang S, Cui Z, Yu C, et al. Computational assessment of the molecular structure and properties for high energy density Fuel[J]. The Journal of Physical Chemistry A, 2020, 124(33): 6660-6666.
[57] Oh C H, Park D I, Ryu J H, et al. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials[J]. Bulletin of the Korean Chemical Society, 2007, 28(2): 322-324.
[58] Bojase G, Nguyen T V, Payne A D, et al. Synthesis and properties of the ivyanes: the parent 1,1-oligocyclopropanes[J]. Chemical Science, 2011, 2(2): 229-232.
[59] Liu Y, Ma C, Shi C, et al. Synthesis of strained high-energy rocket bio-kerosene via cyclopropanation of myrcene[J]. Fuel Processing Technology, 2020, 201: 106339.
[60] Vogler H C, Hogeveen H, Gaasbeek M M P. Rhodium (I)-catalyzed valence isomerization of exo-tricyclo
[3.2.1.02,4]oct-6-ene[J]. Journal of the American Chemical Society, 1969, 91(1): 218-219.
[61] Niggli U, Neuenschwander M. Bilden sich aus pentafulven und cyclopentadien
[6+ 4]‐cycloaddukte [J]. Helvetica chimica acta, 1990, 73(8): 2199-2208.
[62] Han X W, Daugulis O, Brookhart M. Unsaturated alcohols as chain-Transfer agents in olefin polymerization: synthesis of aldehyde end-capped oligomers and polymers[J]. Journal of the American Chemical Society, 2020, 142(36): 15431-15437.
[63] Schmidt R, Welch M B, Knudsen R D, et al. N,N,N-Tridentate iron (II) and vanadium (III) complexes: part I. synthesis and characterization[J]. Journal of Molecular Catalysis A: Chemical, 2004, 222(1-2): 9-15.
[64] Singh A P, Roesky H W, Carl E, et al. Lewis base mediated autoionization of GeCl2 and SnCl2[J]. Journal of the American Chemical Society, 2012, 134(10): 4998-5003.
[65] Howard S, Amin N, Benowitz A B, et al. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase[J]. ACS Medicinal Chemistry Letters, 2013, 4(12): 1208-1212.
[66] Li Y S, Liao J L, Lin K T, et al. Sky blue-emitting iridium (III) complexes bearing nonplanar tetradentate chromophore and bidentate ancillary[J]. Inorganic Chemistry, 2017, 56(16): 10054-10060.
[67] Carroll J, Woolard H G, Mroz R, et al. Regiospecific acylation of cycloplatinated complexes: scope, limitations, and mechanistic implications[J]. Organometallics, 2016, 35(9): 1313-1322.
[68] Li F, Long L, He Y M, et al. Manganese-catalyzed asymmetric formal hydroamination of allylic alcohols: a remarkable macrocyclic ligand effect[J]. Angewandte Chemie International Edition, 2022, 134(26): e202202972.
[69] Chen J, Xi T, Lu Z. 10 gram-scale synthesis of a chiral oxazoline iminopyridine ligand and its applications[J]. Organic Chemistry Frontiers, 2018, 5(2): 247-253.
[70] Wolleb H, Carreira E M. Total synthesis of dendrowardol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10890-10893.
Edit Comment