中文版 | English
Title

钴催化还原二卤甲烷非稳定卡宾转移(不对称)环丙烷化反应

Alternative Title
COBALT-CATALYZED NON-STABILIZED CARBENE TRANSFER (ASYMMETRIC) CYCLOPROPANATION REACTIONS VIA REDUCING OF DIHALOMETHANES
Author
Name pinyin
LI Li
School number
12132752
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
周友运
Mentor unit
化学系
Publication Years
2023-05-29
Submission date
2023-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

  环丙烷是最小的环状有机化合物之一,具有全碳平面三元环结构、高度的环张力以及独特的化学性质和物理性质。手性环丙烷在有机合成和药物设计中具有重要的应用。不仅天然产物分子和众多商业化药物分子含有对其生物活性有重要影响的手性环丙烷结构单元,而且具有较高反应活性的手性环丙烷化合物作为合成子也被应用于天然产物和生物活性小分子的合成。因此,发展高效、高对映选择性的不对称催化合成手性环丙烷化合物的方法和策略,是不对称催化研究领域的科学问题之一,不仅具有非常重要的科学意义,而且也有潜在的工业应用价值,一直是化学家的研究兴趣和有机合成的重要研究方向。由于环丙烷的高度环张力,手性环丙烷的高效不对称催化合成依然十分具有挑战性。本课题研究通过发展手性配体和催化剂来调控反应立体选择性,在还原剂作用下,实现过渡金属钴催化还原二卤甲烷形成金属类卡宾,再经历类似Simmons-Smith机制转移非稳定卡宾与烯烃反应形成手性环丙烷。本文研究主要包括两部分内容:

  (1)设计合成了一系列含N,N,N-三齿手性配体,并成功应用于过渡金属Co催化还原二溴甲烷与α,β-不饱和羰基化合物非稳定卡宾的不对称环丙烷化反应,以高产率(85-98%)和中等至优秀对映选择性(62-96% ee)得到手性环丙烷产物。该反应体系适用于α,β-不饱和酮、酯、酰胺底物,有20个底物被成功构建手性环丙烷化合物。对非导向苯乙烯类内烯烃的不对称催化还原卡宾转移环丙烷化反应也进行了初步研究,最高可以获得80% ee

  (2)利用吡啶二亚胺配体/过渡金属作为催化剂,在还原剂锌的作用下,催化还原廉价易得二氯甲烷与二烯化合物的非稳定卡宾转移环丙烷化反应,高效合成含环丙烷的高能量密度燃料化合物。降冰片二烯进行反应能以优秀的产率(大于99%)得到双环丙烷产物,并且环戊二烯同样适用于该反应体系,以优秀(大于99%)产率得到双环丙烷化合物。当使用4 mol%的催化剂,反应底物放大至10 mmol时,降冰片二烯与双环戊二烯也能以优秀的产率得到双环丙烷化合物。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2021
Year of Degree Awarded
2023-06
References List

[1] Wessjohann L A, Brandt W, Thiemann T. Biosynthesis and metabolism of cyclopropane rings in natural compounds[J]. Chemical Reviews, 2003, 103(4): 1625-1648.
[2] Talele T T. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. Journal of medicinal chemistry, 2016, 59(19): 8712-8756.
[3] Dian L, Marek I. Asymmetric preparation of polysubstituted cyclopropanes based on direct functionalization of achiral three-membered carbocycles: Focus Review[J]. Chemical Reviews, 2018, 118(18): 8415-8434.
[4] Simmons H E, Smith R D. A new synthesis of cyclopropanes from olefins[J]. Journal of the American Chemical Society, 1958, 80(19): 5323-5324.
[5] Pellissier H. Recent developments in asymmetric cyclopropanation[J]. Tetrahedron, 2008, 64(30-31): 7041-7095.
[6] Ukaji Y, Nishimura M, Fujisawa T. Enantioselective construction of cyclopropane rings via asymmetric simmons-smith reaction of allylic alcohols[J]. Chemistry Letters, 1992, 21(1): 61-64.
[7] Vega-Pérez J M, Periñán I, Vega M, et al. Stereoselective cyclopropanation of unsaturated acetals, using carbohydrates with D-gluco, L-rhamno and D-xylo configurations as chiral auxiliaries[J]. Tetrahedron: Asymmetry, 2008, 19(14): 1720-1729.
[8] Bartoli G, Bencivenni G, Dalpozzo R. Asymmetric cyclopropanation reactions[J]. Synthesis, 2014, 46(08): 979-1029.
[9] Charette A B, Juteau H. Design of amphoteric bifunctional ligands: application to the enantioselective simmons-smith cyclopropanation of allylic alcohols[J]. Journal of the American Chemical Society, 1994, 116(6): 2651-2652.
[10] Lacasse M C, Poulard C, Charette A B. Iodomethylzinc phosphates: powerful reagents for the cyclopropanation of alkenes[J]. Journal of the American Chemical Society, 2005, 127(36): 12440-12441.
[11] Long J, Yuan Y, Shi Y. Asymmetric simmons-smith cyclopropanation of unfunctionalized olefins[J]. Journal of the American Chemical Society, 2003, 125(45): 13632-13633.
[12] Long J, Du H, Li K, et al. Catalytic asymmetric simmons-smith cyclopropanation of unfunctionalized olefins[J]. Tetrahedron Letters, 2005, 46(16): 2737-2740.
[13] Shitama H, Katsuki T. Asymmetric simmons-smith reaction of allylic alcohols with Al lewis acid/N lewis base bifunctional Al (salen) catalyst[J]. Angewandte Chemie International Edition, 2008, 47(13): 2450-2453.
[14] Nozaki H, Moriuti S, Takaya H, et al. Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate[J]. Tetrahedron Letters, 1966, 7(43): 5239-5244.
[15] Huang L, Chen Y, Gao G Y, et al. Diastereoselective and enantioselective cyclopropanation of alkenes catalyzed by cobalt porphyrins[J]. The Journal of Organic Chemistry, 2003, 68(21): 8179-8184.
[16] Zhu S., Xu X., Perman J. A., Zhang X. P. A general and efficient cobalt (II)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates[J]. Journal of the American Chemical Society, 2010,132(37): 12796-12799.
[17] Dzik W I, Xu X, Zhang X P, et al. ‘Carbene radicals’ in CoII (por)-catalyzed olefin cyclopropanation[J]. Journal of the American Chemical Society, 2010, 132(31): 10891-10902.
[18] Morandi B, Mariampillai B, Carreira E M. Enantioselective cobalt-catalyzed preparation of trifluoromethyl-substituted cyclopropanes[J]. Angewandte Chemie International Edition, 2011, 50(5): 1101-1104.
[19] Ke J, Lee W C C, Wang X, et al. Metalloradical activation of in situ-generated α-alkynyldiazomethanes for asymmetric radical cyclopropanation of alkenes[J]. Journal of the American Chemical Society, 2022, 144(5): 2368-2378.
[20] Honma M, Takeda H, Takano M, et al. Development of catalytic asymmetric intramolecular cyclopropanation of α-diazo-β-keto sulfones and applications to natural product synthesis[J]. Synlett, 2009, 11: 1695-1712.
[21] Evans D A, Woerpel K A, Hinman M M, et al. Bis (oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. catalytic, asymmetric cyclopropanation of olefins[J]. Journal of the American Chemical Society, 1991, 113(2): 726-728.
[22] Li J, Liao S H, Xiong H, et al. Highly diastereo and enantioselective cyclopropanation of 1,2-disubstituted alkenes[J]. Angewandte Chemie International Edition, 2012, 51(35): 8838-8841.
[23] Carreras J, Caballero A, Pérez P J. Enantio and diastereoselective cyclopropanation of 1-alkenylboronates: synthesis of 1-boryl-2,3-disubstituted cyclopropanes[J]. Angewandte Chemie International Edition, 2018, 57(9): 2334-2338.
[24] Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective cyclopropanation reactions[J]. Chemical Reviews, 2003, 103(4): 977-1050.
[25] Davies H M L, Bruzinski P R, Lake D H, et al. Asymmetric cyclopropanations by rhodium (II) N-(arylsulfonyl) prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid[J]. Journal of the American Chemical Society, 1996, 118(29): 6897-6907.
[26] Lindsay V N G, Lin W, Charette A B. Experimental evidence for the all-up reactive conformation of chiral rhodium (II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane α-amino acids[J]. Journal of the American Chemical Society, 2009, 131(45): 16383-16385.
[27] Zhang J, Xu W, Xu M H. Low Coordination state Rh(I)-complex as high performance catalyst for asymmetric intramolecular cyclopropanation: Construction of penta-substituted cyclopropanes[J]. Angewandte Chemie International Edition, 2023, 62(10): e202216799.
[28] Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective cyclopropanation reactions[J]. Chemical Reviews, 2003, 103(4): 977-1050.
[29] Marcin L R, Denhart D J, Mattson R J. Catalytic asymmetric diazoacetate cyclopropanation of 1-tosyl-3-vinylindoles. a route to conformationally restricted homotryptamines[J]. Organic Letters, 2005, 7(13): 2651-2654.
[30] Xu Z J, Fang R, Zhao C, et al. cis-β-Bis (carbonyl) ruthenium- salen complexes: X-ray crystal structures and remarkable catalytic properties toward asymmetric intramolecular alkene cyclopropanation[J]. Journal of the American Chemical Society, 2009, 131(12): 4405-4417.
[31] Ito J, Ujiie S, Nishiyama H. Chiral bis (oxazolinyl) phenyl Ru(II) catalysts for highly enantioselective cyclopropanation[J]. Chemistry-A European Journal, 2010, 16(17): 4986-4990.
[32] Suematsu H, Kanchiku S, Uchida T, et al. Construction of aryliridium− salen complexes: enantio-and cis-selective cyclopropanation of conjugated and nonconjugated olefins[J]. Journal of the American Chemical Society, 2008, 130(31): 10327-10337.
[33] Cao Z Y, Zhou F, Yu Y H, et al. A highly diastereo-and enantioselective Hg(II)-catalyzed cyclopropanation of diazooxindoles and alkenes[J]. Organic letters, 2013, 15(1): 42-45.
[34] Cao Z Y, Wang X, Tan C, et al. Highly stereoselective olefin cyclopropanation of diazooxindoles catalyzed by a 2-symmetric spiroketal bisphosphine/Au (I) complex[J]. Journal of the American Chemical Society, 2013, 135(22): 8197-8200.
[35] Sreenilayam G, Moore E J, Steck V, et al. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor[J]. ACS catalysis, 2017, 7(11): 7629-7633.
[36] Chu Z, Tang Z, Zhang K, et al. Gold (I)-catalyzed enantioselective cyclopropanation of α-aryl diazoacetates with enamides[J]. Organometallics, 2019, 38(20): 4036-4042.
[37] Cheong P H Y, Legault C Y, Um J M, et al. Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities[J]. Chemical Reviews, 2011, 111(8): 5042-5137.
[38] Shinohara N, Haga J, Yamazaki T, et al. Stereoselective synthesis of trifluoromethylated compounds with controlled adjacent tertiary carbons by michael addition to (E)-3-(trifluoromethyl) acrylates[J]. The Journal of Organic Chemistry, 1995, 60(14): 4363-4374.
[39] Ivashkin P, Couve-Bonnaire S, Jubault P, et al. Asymmetric synthesis of cyclopropanes with a monofluorinated quaternary stereocenter[J]. Organic Letters, 2012, 14(19): 5130-5133.
[40] Shen X, Zhang W, Zhang L, et al. Enantioselective synthesis of cyclopropanes that contain fluorinated tertiary stereogenic carbon centers: a chiral α-fluoro carbanion strategy[J]. Angewandte Chemie International Edition, 2012, 51(28): 6966-6970.
[41] Liao W W, Li K, Tang Y. Controllable diastereoselective cyclopropanation. Enantioselective synthesis of vinylcyclopropanes via chiral telluronium ylides[J]. Journal of the American Chemical Society, 2003, 125(43): 13030-13031.
[42] Kakei H, Sone T, Sohtome Y, et al. Catalytic asymmetric cyclopropanation of enones with dimethyloxosulfonium methylide promoted by a La-Li3-(Biphenyldiolate)3 + NaI complex[J]. Journal of the American Chemical Society, 2007, 129(44): 13410-13411.
[43] Abramovitch A, Fensterbank L, Malacria M, et al. Convergent preparation of enantiomerically pure polyalkylated cyclopropane derivatives[J]. Angewandte Chemie International Edition, 2008, 47(36): 6865-6868.
[44] Zhu B H, Zhou R, Zheng J C, et al. Highly selective ylide-initiated Michael addition/cyclization reaction for synthesis of cyclohexadiene epoxide and vinylcyclopropane derivatives[J]. The Journal of Organic Chemistry, 2010, 75(10): 3454-3457.
[45] Sarkar S D. Enantioselective cyclopropanation of enals by oxidative N-heterocyclic carbene catalysis[J]. Chemical Communications, 2012, 48(42): 5190-5192.
[46] Wang J, Liu X, Dong S, et al. Asymmetric organocatalytic cyclopropanation of cinnamone derivatives with stabilized sulfonium ylides[J]. The Journal of Organic Chemistry, 2013, 78(12): 6322-6327.
[47] Nishimura T, Kawamoto T, Nagaosa M, et al. Chiral tetrafluorobenzobarrelene Ligands for the rhodium-catalyzed asymmetric cycloisomerization of Oxygen-and nitrogen-bridged 1,6-enynes[J]. Angewandte Chemie International Edition, 2010, 49(9): 1638-1641.
[48] Ebner C, Carreira E M. Cyclopropanation strategies in recent total syntheses[J]. Chemical reviews, 2017, 117(18): 11651-11679
[49] Werth J, Uyeda C. Regioselective simmons-smith-type cyclopropanations of polyalkenes enabled by transition metal catalysis[J]. Chemical Science, 2018, 9(6): 1604-1609.
[50] Werth J, Uyeda C. Cobalt-catalyzed reductive dimethylcyclopropanation of 1,3-dienes[J]. Angewandte Chemie International Edition, 2018, 57(42): 13902-13906.
[51] Werth J, Berger K, Uyeda C. Cobalt catalyzed reductive spirocyclopropanation reactions[J]. Advanced Synthesis & Catalysis, 2020, 362(2): 348-352.
[52] Babu S A, Krishnan K K, Ujwaldev S M, et al. Applications of pybox complexes in asymmetric catalysis[J]. Asian Journal of Organic Chemistry, 2018, 7(6): 1033-1053.
[53] Ma X, Zuo Z, Liu G, et al. Manganese-catalyzed asymmetric hydrosilylation of aryl ketones[J]. ACS omega, 2017, 2(8): 4688-4692.
[54] Cruz-Morales P, Yin K, Landera A, et al. Biosynthesis of polycyclopropanated high energy biofuels[J]. Joule, 2022, 6(7): 1590-1605.
[55] Zhang X, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[56] Wang S, Cui Z, Yu C, et al. Computational assessment of the molecular structure and properties for high energy density Fuel[J]. The Journal of Physical Chemistry A, 2020, 124(33): 6660-6666.
[57] Oh C H, Park D I, Ryu J H, et al. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials[J]. Bulletin of the Korean Chemical Society, 2007, 28(2): 322-324.
[58] Bojase G, Nguyen T V, Payne A D, et al. Synthesis and properties of the ivyanes: the parent 1,1-oligocyclopropanes[J]. Chemical Science, 2011, 2(2): 229-232.
[59] Liu Y, Ma C, Shi C, et al. Synthesis of strained high-energy rocket bio-kerosene via cyclopropanation of myrcene[J]. Fuel Processing Technology, 2020, 201: 106339.
[60] Vogler H C, Hogeveen H, Gaasbeek M M P. Rhodium (I)-catalyzed valence isomerization of exo-tricyclo
[3.2.1.02,4]oct-6-ene[J]. Journal of the American Chemical Society, 1969, 91(1): 218-219.
[61] Niggli U, Neuenschwander M. Bilden sich aus pentafulven und cyclopentadien
[6+ 4]‐cycloaddukte [J]. Helvetica chimica acta, 1990, 73(8): 2199-2208.
[62] Han X W, Daugulis O, Brookhart M. Unsaturated alcohols as chain-Transfer agents in olefin polymerization: synthesis of aldehyde end-capped oligomers and polymers[J]. Journal of the American Chemical Society, 2020, 142(36): 15431-15437.
[63] Schmidt R, Welch M B, Knudsen R D, et al. N,N,N-Tridentate iron (II) and vanadium (III) complexes: part I. synthesis and characterization[J]. Journal of Molecular Catalysis A: Chemical, 2004, 222(1-2): 9-15.
[64] Singh A P, Roesky H W, Carl E, et al. Lewis base mediated autoionization of GeCl2 and SnCl2[J]. Journal of the American Chemical Society, 2012, 134(10): 4998-5003.
[65] Howard S, Amin N, Benowitz A B, et al. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase[J]. ACS Medicinal Chemistry Letters, 2013, 4(12): 1208-1212.
[66] Li Y S, Liao J L, Lin K T, et al. Sky blue-emitting iridium (III) complexes bearing nonplanar tetradentate chromophore and bidentate ancillary[J]. Inorganic Chemistry, 2017, 56(16): 10054-10060.
[67] Carroll J, Woolard H G, Mroz R, et al. Regiospecific acylation of cycloplatinated complexes: scope, limitations, and mechanistic implications[J]. Organometallics, 2016, 35(9): 1313-1322.
[68] Li F, Long L, He Y M, et al. Manganese-catalyzed asymmetric formal hydroamination of allylic alcohols: a remarkable macrocyclic ligand effect[J]. Angewandte Chemie International Edition, 2022, 134(26): e202202972.
[69] Chen J, Xi T, Lu Z. 10 gram-scale synthesis of a chiral oxazoline iminopyridine ligand and its applications[J]. Organic Chemistry Frontiers, 2018, 5(2): 247-253.
[70] Wolleb H, Carreira E M. Total synthesis of dendrowardol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10890-10893.

Academic Degree Assessment Sub committee
化学
Domestic book classification number
O62
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/543965
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
李立. 钴催化还原二卤甲烷非稳定卡宾转移(不对称)环丙烷化反应[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132752-李立-化学系.pdf(10643KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李立]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李立]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李立]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.