中文版 | English
Title

基于微波色散器件的成像系统设计

Alternative Title
DESIGN OF MICROWAVE IMAGING SYSTEM BASED ON DISPERSION DIVICES
Author
Name pinyin
ZHANG Yifu
School number
12032217
Degree
硕士
Discipline
080904 电磁场与微波技术
Subject category of dissertation
08 工学
Supervisor
张青峰
Mentor unit
电子与电气工程系
Publication Years
2023-05-08
Submission date
2023-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

色散一词常用于光学,是指材料的折射率随入射光频率的改变而改变的性质。 微波频率下,色散是指电磁器件的波矢 k 具有的随频率变化的特性。微波色散器 件可分为导波传输线和辐射天线两类,导波结构建立了电磁波沿传输线方向的相 位信息与频率的对应关系,而色散辐射天线可以建立天线波束角度与频率的对应 关系。漏波天线就是一种常见的色散性天线,具有波束扫描角度随频率变化的特 性,可从频率维度对空间信息进行高速感知和成像,在微波成像中具有重要的应 用。另一方面,在搭建成像系统时,系统带宽越宽,往往能够获取到更多的信息, 但现有的无线通信系统在进行高带宽信号收发时,可能会受到接收端采样率的限 制而无法收到完整的信号,具有特殊相位色散特性的导波传输线——相位器 (Phaser)便可以解决这一问题。利用相位器对接收信号做时间拉伸(Time Stretch), 能够在采样率不足的情况下仍能采得完整信号。基于上述两点,本文的主要研究 工作如下: 基于相位器的微波时间拉伸系统设计。本文基于光子时间拉伸的原理,提出了 一种微波频率下的时间拉伸系统。利用 C-Section 结构在高工作带宽下设计了具有 较高线性群时延响应的相位器。利用设计的相位器搭建了一至多路微波时间拉伸 系统,在采样率不变的条件下将接收端得到的采样点数提高 2—4 倍。 基于微波时间拉伸的一维成像系统设计。本文将时间拉伸原理应用于一维成像 系统的搭建中,该系统基于一种频率分集的近场成像算法来对被测物体进行探测。 利用相位器的时间拉伸功能对成像系统进行了改良,使其能够在采样率只有 1GS/s 的情况下仍能保持所需的 1GHz 成像带宽,从而较好地实现了对散射体在一维方向 上位置信息的重构。 基于高扫描率漏波天线阵列的三维成像系统设计。本文设计了一个基于开缝 SIW 结构的高扫描率漏波天线,天线实现了 6.26°每相对带宽的高扫描率。随后在 所提出的漏波天线结构的基础上,设计了 MIMO 漏波天线阵列并将其用于搭建一 个三维成像系统。该成像系统能够在 10mm×10mm 的像素精度下准确定位散射体 的位置,并能精确重构出物体的三维形状。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] MCCANN MT, JIN KH, UNSER M. Convolutional neural networks for inverse problems in imaging: A review[J]. IEEE Signal Processing Magazine, 2017, 34(6): 85-95.
[2] AHMED SS. Microwave imaging in security—Two decades of innovation[J]. IEEE Journal of Microwaves, 2021, 1(1): 191-201.
[3] GUO L, ABBOSH AM. Optimization-based confocal microwave imaging in medicalapplications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3531-3539.
[4] SCHOEBEL J, HERRERO P. Planar antenna technology for mm-wave automotive radar, sensing, and communications[J]. Radar Technology, 2010, 297-318.
[5] HAYNES M, Stang J, MOGHADDAM M. Real-time microwave imaging of differential temperature for thermal therapy monitoring[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(6): 1787-1797.
[6] PASTORINO M, RANDAZZO A, FEDELI A, et al. A microwave tomographic system for wood characterization in the forest products industry[J]. Wood Material Science & Engineering, 2015, 10(1): 75-85.
[7] LIANG D, JIANG L, CHEN Y. Multi-functional microwave photonic radar system forsimultaneous distance and velocity measurement and high-resolution microwave imaging[J]. Journal of Lightwave Technology, 2021, 39(20): 6470-6478.
[8] ABOU-KHOUSA MA, GHASR MT, KHARKOVSKY S, et al. Modulated elliptical slotantenna for electric field mapping and microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2010, 59(3): 733-741.
[9] LAVIADA J, GHASR MT, LOPEZ-PORTUGUES M, et al. Real-time multiview SAR imaging using a portable microwave camera with arbitrary movement[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7305-7314.
[10] LI L, CUI T, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197.
[11] MUNAWAR HS. Applications of leaky-wave antennas: A review[J]. International Journal of Wireless Microwave Technologies, 2020, 10: 56-62.
[12] MA D, ZHONG J, SHEN S, et al. Single-shot frequency-diverse near-field imaging using high-scanning-rate leaky-wave antenna[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(7): 3399-3412.
[13] RUESINK W G. Introduction to sampling theory[J]. Sampling Methods in Soybean Entomology, 1980: 61-78.
[14] GUPTA S, CALOZ C. Analog inverse Fourier transformer using group delay engineered C-section all-pass network[C]//The 40th European Microwave Conference. IEEE, 2010: 389-392.
[15] NIKOLOVA N K. Introduction to microwave imaging[M]. Cambridge University Press, 2017.
[16] BOLOMEY J C, PICHOT C. Microwave tomography: from theory to practical imaging systems[J]. International Journal of Imaging Systems and Technology, 1990, 2(2): 144-156.
[17] DUBEY A, CHEN X, MURCH R. A New Correction to the Rytov Approximation for Strongly Scattering Lossy Media[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10851-10864.
[18] TAJIK D, KAZEMIVALA R, NIKOLOVA N K. Real-time imaging with simultaneous use of born and Rytov approximations in quantitative microwave holography[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 70(3): 1896-1909.
[19] MIRMOZAFARI M, ZHANG Z, GAO M, et al. Mechanically reconfigurable, beam-scanning reflectarray and transmitarray antennas: A review[J]. Applied Sciences, 2021, 11(15): 6890.
[20] HUANG T, SHLEZINGER N, XU X, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706-5721.
[21] BROOKNER E. Recent developments and future trends in phased arrays[C]//2013 IEEE International Symposium on Phased Array Systems and Technology. IEEE, 2013: 43-53.
[22] DOERRY A W, DICKEY F M. Synthetic aperture radar[J]. Optics and Photonics News, 2004, 15(11): 28-33.
[23] GISHKORI S, DANIEL L, GASHINOVA M, et al. Imaging for a forward scanning automotive synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(3): 1420-1434.
[24] MARKS D L, GOLLUB J, Smith D R. Spatially resolving antenna arrays using frequency diversity[J]. Journal of the Optical Society of America A, 2016, 33(5): 899-912.
[25] SALUCCI M, GELMINI A, POLI L, et al. Progressive compressive sensing for exploiting frequency-diversity in GPR imaging[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(9): 1164-1193.
[26] LI X, WANG D, WANG W Q, et al. Range-angle localization of targets with planar frequency diverse subaperturing MIMO radar[J]. IEEE Access, 2018, 6: 12505-12517.
[27] JACKSON D R, CALOZ C, ITOH T. Leaky-wave antennas[J]. Proceedings of the IEEE, 2012, 100(7):2194-2206.
[28] ESCH J. Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies[J]. Proceedings of the IEEE, 2015, 103(5): 789-792.
[29] LIU J, JACKSON D R, LONG Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots[J]. IEEE Transactions on Antennas and Propagation, 2011, 60(1): 20-29.
[30] LYU Y L, LIU X X, WANG P Y, et al. Leaky-wave antennas based on noncutoff substrate integrated waveguide supporting beam scanning from backward to forward[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2155-2164.
[31] ZHENG D, LYU Y L, WU K. A quasi-uniform transversely slotted SIW leaky-wave structure with enhanced beam-scanning rate for millimeter-wave applications[C]//2019 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2019: 885-888.
[32] GUAN D F, ZHANG Q, YOU P, et al. Scanning rate enhancement of leaky-wave antennas using slow-wave substrate integrated waveguide structure[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3747-3751.
[33] ZHANG G, ZHANG Q, CHEN Y, et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2531-2540.
[34] XU S D, GUAN D F, ZHANG Q, et al. A wide-angle narrowband leaky-wave antenna based on substrate integrated waveguide-spoof surface plasmon polariton structure[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1386-1389.
[35] LIU J, ZHOU W, LONG Y. A simple technique for open-stopband suppression in periodic leaky-wave antennas using two nonidentical elements per unit cell[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2741-2751.
[36] ZHOU W, LIU J, LONG Y. Applications of the open-stopband suppression in various periodic leaky-wave antennas with tapered half-wavelength line[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 6811-6820.
[37] CALOZ C, GUPTA S, ZHANG Q, et al. Analog signal processing: A possible alternative or complement to dominantly digital radio schemes[J]. IEEE Microwave Magazine, 2013, 14(6): 87-103.
[38] SCHWARTZ J D, AZANA J, PLANT D V. Experimental demonstration of real-time spectrum analysis using dispersive microstrip[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(4): 215-217.
[39] GUPTA S, PARSA A, PERRET E, et al. Group-delay engineered noncommensuratetransmission line all-pass network for analog signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(9): 2392-2407.
[40] CALOZ C, GUPTA S, NIKFAL B, et al. Analog signal processing (ASP) for high-speed microwave and millimeter-wave systems[C]//2012 Asia Pacific Microwave Conference Proceedings. IEEE, 2012: 691-692.
[41] ZHANG Q, GUPTA S, CALOZ C. Synthesis of narrowband reflection-type phasers with arbitrary prescribed group delay[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(8): 2394-2402.
[42] ABIELMONA S, GUPTA S, CALOZ C. Experimental demonstration and characterization of a tunable CRLH delay line system for impulse/continuous wave[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(12): 864-866.
[43] NGUYEN H V, CALOZ C. CRLH delay line pulse position modulation transmitter[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(8): 527-529.
[44] ABIELMONA S, GUPTA S, CALOZ C. Compressive receiver using a CRLH-baseddispersive delay line for analog signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(11): 2617-2626.
[45] GUPTA S, NIKFAL B, CALOZ C. Chipless RFID system based on group delay engineered dispersive delay structures[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1366-1368.
[46] NIKFAL B, BADIERE D, REPETA M, et al. Distortion-less real-time spectrum sniffing based on a stepped group-delay phaser[J]. IEEE Microwave and Wireless Components Letters, 2012, 22(11): 601-603.
[47] ZOU L, GUPTA S, CALOZ C. Reconfigurable phaser using gain-loss C-sections for radio analog signal processing (R-ASP)[C]//2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015, 3: 1-3.
[48] ZOU L, GUPTA S, CALOZ C. Loss-gain equalized reconfigurable C-section analog signal processor[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 65(2): 555-564.
[49] TARAVATI S, GUPTA S, ZHANG Q, et al. Enhanced bandwidth and diversity in real-time analog signal processing (R-ASP) using nonuniform C-section phasers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 663-665.
[50] BALANIS C A. Modern antenna handbook[M]. John Wiley & Sons, 2011.
[51] CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971 (2): 269-278.
[52] JALALI B, BHUSHAN A S, COPPINGER F. Photonic time-stretch: a potential solution for ultrafast A/D conversion[C]//International Topical Meeting on Microwave Photonics. Technical Digest (including High Speed Photonics Components Workshop)(Cat. No. 98EX181). IEEE, 1998: 197-198.
[53] LIAO Y, WANG W, SHAO H. Symmetrical logarithmic frequency diverse array for target imaging[C]//2018 IEEE Radar Conference (RadarConf18). IEEE, 2018: 0039-0042.
[54] ABBASI MAB, FUSCO VF, YURDUSEVEN O, et al. Frequency-diverse multimodemillimetre-wave constant-ϵ r lens-loaded cavity[J]. Scientific Reports, 2020, 10(1): 22145.
[55] ZHOU Y, WANG W, CHEN Z, et al. High-resolution and wide-swath SAR imaging mode using frequency diverse planar array[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(2): 321-325.
[56] ZHANG Q, MA D, TANG X, et al. 1-D frequency-diverse single-shot guided-wave imaging using surface-wave Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 3194-3206.
[57] HOANG TV, FROMENTEZE T, ABBASI MAB, et al. Spatial diversity improvement in frequency-diverse computational imaging with a multi-port antenna[J]. Results in Physics, 2021, 22: 103906.
[58] ZHAO M, ZHU S, LI J, et al. Frequency-diverse bunching metamaterial antenna for coincidence imaging[J]. Materials, 2019, 12(11): 1817.
[59] ZHANG Y, RASHID A K, ZHANG Q. High-Scanning-Rate Leaky-Wave Antenna Based on Slotted SIW at Millimeter-Wave Frequency[C]//2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2021: 1-3.
[60] MA D, ZHANG Y, DUBEY A, et al. Millimeter-Wave 3-D Imaging Using Leaky-Wave Antennas and an Extended Rytov Approximation in a Frequency-Diverse MIMO System[J]. IEEE Transactions on Microwave Theory and Techniques, 2022.
[61] DUBEY A, DESHMUKH S, PAN L, et al. A phaseless extended Rytov approximation for strongly scattering low-loss media and its application to indoor imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.

Academic Degree Assessment Sub committee
电子科学与技术
Domestic book classification number
TN925+.6
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/543972
DepartmentDepartment of Electrical and Electronic Engineering
Recommended Citation
GB/T 7714
张一夫. 基于微波色散器件的成像系统设计[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032217-张一夫-电子与电气工程(11195KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张一夫]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张一夫]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张一夫]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.