[1] MCCANN MT, JIN KH, UNSER M. Convolutional neural networks for inverse problems in imaging: A review[J]. IEEE Signal Processing Magazine, 2017, 34(6): 85-95.
[2] AHMED SS. Microwave imaging in security—Two decades of innovation[J]. IEEE Journal of Microwaves, 2021, 1(1): 191-201.
[3] GUO L, ABBOSH AM. Optimization-based confocal microwave imaging in medicalapplications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3531-3539.
[4] SCHOEBEL J, HERRERO P. Planar antenna technology for mm-wave automotive radar, sensing, and communications[J]. Radar Technology, 2010, 297-318.
[5] HAYNES M, Stang J, MOGHADDAM M. Real-time microwave imaging of differential temperature for thermal therapy monitoring[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(6): 1787-1797.
[6] PASTORINO M, RANDAZZO A, FEDELI A, et al. A microwave tomographic system for wood characterization in the forest products industry[J]. Wood Material Science & Engineering, 2015, 10(1): 75-85.
[7] LIANG D, JIANG L, CHEN Y. Multi-functional microwave photonic radar system forsimultaneous distance and velocity measurement and high-resolution microwave imaging[J]. Journal of Lightwave Technology, 2021, 39(20): 6470-6478.
[8] ABOU-KHOUSA MA, GHASR MT, KHARKOVSKY S, et al. Modulated elliptical slotantenna for electric field mapping and microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2010, 59(3): 733-741.
[9] LAVIADA J, GHASR MT, LOPEZ-PORTUGUES M, et al. Real-time multiview SAR imaging using a portable microwave camera with arbitrary movement[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7305-7314.
[10] LI L, CUI T, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197.
[11] MUNAWAR HS. Applications of leaky-wave antennas: A review[J]. International Journal of Wireless Microwave Technologies, 2020, 10: 56-62.
[12] MA D, ZHONG J, SHEN S, et al. Single-shot frequency-diverse near-field imaging using high-scanning-rate leaky-wave antenna[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(7): 3399-3412.
[13] RUESINK W G. Introduction to sampling theory[J]. Sampling Methods in Soybean Entomology, 1980: 61-78.
[14] GUPTA S, CALOZ C. Analog inverse Fourier transformer using group delay engineered C-section all-pass network[C]//The 40th European Microwave Conference. IEEE, 2010: 389-392.
[15] NIKOLOVA N K. Introduction to microwave imaging[M]. Cambridge University Press, 2017.
[16] BOLOMEY J C, PICHOT C. Microwave tomography: from theory to practical imaging systems[J]. International Journal of Imaging Systems and Technology, 1990, 2(2): 144-156.
[17] DUBEY A, CHEN X, MURCH R. A New Correction to the Rytov Approximation for Strongly Scattering Lossy Media[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10851-10864.
[18] TAJIK D, KAZEMIVALA R, NIKOLOVA N K. Real-time imaging with simultaneous use of born and Rytov approximations in quantitative microwave holography[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 70(3): 1896-1909.
[19] MIRMOZAFARI M, ZHANG Z, GAO M, et al. Mechanically reconfigurable, beam-scanning reflectarray and transmitarray antennas: A review[J]. Applied Sciences, 2021, 11(15): 6890.
[20] HUANG T, SHLEZINGER N, XU X, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706-5721.
[21] BROOKNER E. Recent developments and future trends in phased arrays[C]//2013 IEEE International Symposium on Phased Array Systems and Technology. IEEE, 2013: 43-53.
[22] DOERRY A W, DICKEY F M. Synthetic aperture radar[J]. Optics and Photonics News, 2004, 15(11): 28-33.
[23] GISHKORI S, DANIEL L, GASHINOVA M, et al. Imaging for a forward scanning automotive synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(3): 1420-1434.
[24] MARKS D L, GOLLUB J, Smith D R. Spatially resolving antenna arrays using frequency diversity[J]. Journal of the Optical Society of America A, 2016, 33(5): 899-912.
[25] SALUCCI M, GELMINI A, POLI L, et al. Progressive compressive sensing for exploiting frequency-diversity in GPR imaging[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(9): 1164-1193.
[26] LI X, WANG D, WANG W Q, et al. Range-angle localization of targets with planar frequency diverse subaperturing MIMO radar[J]. IEEE Access, 2018, 6: 12505-12517.
[27] JACKSON D R, CALOZ C, ITOH T. Leaky-wave antennas[J]. Proceedings of the IEEE, 2012, 100(7):2194-2206.
[28] ESCH J. Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies[J]. Proceedings of the IEEE, 2015, 103(5): 789-792.
[29] LIU J, JACKSON D R, LONG Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots[J]. IEEE Transactions on Antennas and Propagation, 2011, 60(1): 20-29.
[30] LYU Y L, LIU X X, WANG P Y, et al. Leaky-wave antennas based on noncutoff substrate integrated waveguide supporting beam scanning from backward to forward[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2155-2164.
[31] ZHENG D, LYU Y L, WU K. A quasi-uniform transversely slotted SIW leaky-wave structure with enhanced beam-scanning rate for millimeter-wave applications[C]//2019 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2019: 885-888.
[32] GUAN D F, ZHANG Q, YOU P, et al. Scanning rate enhancement of leaky-wave antennas using slow-wave substrate integrated waveguide structure[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3747-3751.
[33] ZHANG G, ZHANG Q, CHEN Y, et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2531-2540.
[34] XU S D, GUAN D F, ZHANG Q, et al. A wide-angle narrowband leaky-wave antenna based on substrate integrated waveguide-spoof surface plasmon polariton structure[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1386-1389.
[35] LIU J, ZHOU W, LONG Y. A simple technique for open-stopband suppression in periodic leaky-wave antennas using two nonidentical elements per unit cell[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2741-2751.
[36] ZHOU W, LIU J, LONG Y. Applications of the open-stopband suppression in various periodic leaky-wave antennas with tapered half-wavelength line[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 6811-6820.
[37] CALOZ C, GUPTA S, ZHANG Q, et al. Analog signal processing: A possible alternative or complement to dominantly digital radio schemes[J]. IEEE Microwave Magazine, 2013, 14(6): 87-103.
[38] SCHWARTZ J D, AZANA J, PLANT D V. Experimental demonstration of real-time spectrum analysis using dispersive microstrip[J]. IEEE Microwave and Wireless Components Letters, 2006, 16(4): 215-217.
[39] GUPTA S, PARSA A, PERRET E, et al. Group-delay engineered noncommensuratetransmission line all-pass network for analog signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(9): 2392-2407.
[40] CALOZ C, GUPTA S, NIKFAL B, et al. Analog signal processing (ASP) for high-speed microwave and millimeter-wave systems[C]//2012 Asia Pacific Microwave Conference Proceedings. IEEE, 2012: 691-692.
[41] ZHANG Q, GUPTA S, CALOZ C. Synthesis of narrowband reflection-type phasers with arbitrary prescribed group delay[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(8): 2394-2402.
[42] ABIELMONA S, GUPTA S, CALOZ C. Experimental demonstration and characterization of a tunable CRLH delay line system for impulse/continuous wave[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(12): 864-866.
[43] NGUYEN H V, CALOZ C. CRLH delay line pulse position modulation transmitter[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(8): 527-529.
[44] ABIELMONA S, GUPTA S, CALOZ C. Compressive receiver using a CRLH-baseddispersive delay line for analog signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(11): 2617-2626.
[45] GUPTA S, NIKFAL B, CALOZ C. Chipless RFID system based on group delay engineered dispersive delay structures[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1366-1368.
[46] NIKFAL B, BADIERE D, REPETA M, et al. Distortion-less real-time spectrum sniffing based on a stepped group-delay phaser[J]. IEEE Microwave and Wireless Components Letters, 2012, 22(11): 601-603.
[47] ZOU L, GUPTA S, CALOZ C. Reconfigurable phaser using gain-loss C-sections for radio analog signal processing (R-ASP)[C]//2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015, 3: 1-3.
[48] ZOU L, GUPTA S, CALOZ C. Loss-gain equalized reconfigurable C-section analog signal processor[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 65(2): 555-564.
[49] TARAVATI S, GUPTA S, ZHANG Q, et al. Enhanced bandwidth and diversity in real-time analog signal processing (R-ASP) using nonuniform C-section phasers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 663-665.
[50] BALANIS C A. Modern antenna handbook[M]. John Wiley & Sons, 2011.
[51] CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971 (2): 269-278.
[52] JALALI B, BHUSHAN A S, COPPINGER F. Photonic time-stretch: a potential solution for ultrafast A/D conversion[C]//International Topical Meeting on Microwave Photonics. Technical Digest (including High Speed Photonics Components Workshop)(Cat. No. 98EX181). IEEE, 1998: 197-198.
[53] LIAO Y, WANG W, SHAO H. Symmetrical logarithmic frequency diverse array for target imaging[C]//2018 IEEE Radar Conference (RadarConf18). IEEE, 2018: 0039-0042.
[54] ABBASI MAB, FUSCO VF, YURDUSEVEN O, et al. Frequency-diverse multimodemillimetre-wave constant-ϵ r lens-loaded cavity[J]. Scientific Reports, 2020, 10(1): 22145.
[55] ZHOU Y, WANG W, CHEN Z, et al. High-resolution and wide-swath SAR imaging mode using frequency diverse planar array[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(2): 321-325.
[56] ZHANG Q, MA D, TANG X, et al. 1-D frequency-diverse single-shot guided-wave imaging using surface-wave Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 3194-3206.
[57] HOANG TV, FROMENTEZE T, ABBASI MAB, et al. Spatial diversity improvement in frequency-diverse computational imaging with a multi-port antenna[J]. Results in Physics, 2021, 22: 103906.
[58] ZHAO M, ZHU S, LI J, et al. Frequency-diverse bunching metamaterial antenna for coincidence imaging[J]. Materials, 2019, 12(11): 1817.
[59] ZHANG Y, RASHID A K, ZHANG Q. High-Scanning-Rate Leaky-Wave Antenna Based on Slotted SIW at Millimeter-Wave Frequency[C]//2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2021: 1-3.
[60] MA D, ZHANG Y, DUBEY A, et al. Millimeter-Wave 3-D Imaging Using Leaky-Wave Antennas and an Extended Rytov Approximation in a Frequency-Diverse MIMO System[J]. IEEE Transactions on Microwave Theory and Techniques, 2022.
[61] DUBEY A, DESHMUKH S, PAN L, et al. A phaseless extended Rytov approximation for strongly scattering low-loss media and its application to indoor imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
Edit Comment