[1] SAEIDI N, JAFARI M, KIM J G, et al. Development of an Advanced Ultrahigh Strength TRIP Steel and Evaluation of Its Unique Strain Hardening Behavior[J]. Met Mater Int, 2019, 26(2):168-178.
[2] AZIZI G, MIRZADEH H, PARSA M H. The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties[J]. Mater Sci Eng A, 2015, 639:402-406.
[3] HOU Y, MIN J Y, GUO N, et al. Investigation of evolving yield surfaces of dual-phase steels[J]. J Mater Process Technol, 2021, 287:116314-116333.
[4] KALHOR A, SOLEIMANI M, MIRZADEH H, et al. A review of recent progress in mechanical and corrosion properties of dual phase steels[J]. Arch Civ Mech Eng, 2020, 20(3):85-99.
[5] COOMAN B C. Structure–properties relationship in TRIP steels containing carbide-free bainite[J]. Curr Opin Solid State Mater Sci, 2004, 8(4):285-303.
[6] BOUAZIZ O, ALLAIN S, SCOTT C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr Opin Solid State Mater Sci, 2011, 15(4):141-168.
[7] JIN J E, LEE Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater, 2012, 60(4):1680-1688.
[8] MADIVALA M, SCHWEDT A, WONG S L, et al. Temperature dependent strain hardening and fracture behavior of TWIP steel[J]. Int J Plast, 2018, 104:80-103.
[9] TANG L, WANG L, WANG M, et al. Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction[J]. Acta Mater, 2020, 200:943-958.
[10] SUH D W, KIM S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Mater, 2017, 126:63-67.
[11] HU B, LUO H W, YANG F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. J Mater Sci Technol, 2017, 33(12):1457-1464.
[12] FLOREEN S. The physical metallurgy of maraging steels[J]. Metall Rev, 1968, 13(1):115-128.
[13] HE B B, HU B, YEN H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355):1029-1032.
[14] SPEER J G, ASSUNCAO F C, MATLOCK D K, et al. The "quenching and partitioning" process: background and recent progress[J]. Mater Res, 2005, 8(4):417-423.
[15] MATLOCK D K, BRAUTIGAM V E, SPEER J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[C]// Proc Mater Sci Forum. Zurich-Uetikon: Trans Tech Publ Ltd, 2003, 426:1089-1094.
[16] 徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理,2009,34(06):1-8.
[17] REN Y, XIE Z, ZHANG H, et al. Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si Steel[J]. Acta Metall Sin, 2013, 49(12):1558-1566.
[18] SOMANI M C, PORTER D A, KARJALAINEN L P, et al. Designing a Novel DQ&P Process through Physical Simulation Studies[J]. Mater Sci Forum, 2013, 762:83-88.
[19] MILLER R L. Ultrafine-Grained Microstructures and Mechanical Properties of Alloy-Steels[J]. Metall Trans, 1972, 3(4):905-912.
[20] Merwin M J. Microstructure and properties of cold rolled and annealed low-carbon manganese TRIP steels[J]. Iron & steel technology, 2008, 5(10): 66-84.
[21] Merwin M J. Low-carbon manganese TRIP steels[C]//Proc Mater Sci Forum. Zurich-Uetikon: Trans Tech Publ Ltd, 2007, 539:4327-4332.
[22] JEONG M S, PARK T M, CHOI S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure[J]. Scripta Mater, 2021, 190:16-21.
[23] HE B B, LIU L, HUANG M X. Room-Temperature Quenching and Partitioning Steel[J]. Metall Mater Trans A, 2018, 49(8):3167-3172.
[24] HE B B, WANG M, HUANG M X. Improving Tensile Properties of Room-Temperature Quenching and Partitioning Steel by Dislocation Engineering[J]. Metall Mater Trans A, 2019, 50(9):4021-4026.
[25] SUN W W, WU Y X, YANG S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Mater, 2018, 146:60-63.
[26] AN X L, ZHANG R M, WU Y X, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels[J]. Mater Sci Eng A, 2022, 831:142-153.
[27] LIU L, YU Q, WANG Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020, 368(6497):1347-1352.
[28] HUANG M X, HE B B. Alloy design by dislocation engineering[J]. J Mater Sci Technol, 2018, 34(3):417-420.
[29] ZHANG Y, HUI W, WANG J, et al. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling[J]. Scripta Mater, 2019, 165:15-19.
[30] HUANG C P, HUANG M X. Effect of Processing Parameters on Mechanical Properties of Deformed and Partitioned (D&P) Medium Mn Steels[J]. Metals, 2021, 11(2):356-374.
[31] HUI W, SHAO C, ZHANG Y, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling[J]. Mater Sci Eng A, 2017, 707:501-510.
[32] XU J P, WANG Z, YAN Y, et al. Effect of hot/warm rolling on the microstructures and mechanical properties of medium-Mn steels[J]. Mater Charact, 2020, 170:110682-110695.
[33] ZOU Y, DING H, ZHANG Y, et al. Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures[J]. Int J Plasticity, 2022, 151:103212-103226.
[34] WEI Y, LI Y, ZHU L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nat Commun, 2014, 5:3580-3587.
[35] LI J, CAO Y, GAO B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure[J]. J Mater Sci, 2018, 53(14):10442-10456.
[36] ZHOU P, LIANG Z Y, LIU R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel[J]. Acta Mater, 2016, 111:96-107.
[37] JIANG S, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651):460-464.
[38] WANG L, SPEER J G. Quenching and Partitioning Steel Heat Treatment[J]. Metall Microstruct Anal, 2013, 2(4):268-281.
[39] JIAO Z B, LUAN J H, MILLER M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater, 2015, 97:58-67.
[40] RAABE D, PONGE D, DMITRIEVA O, et al. Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility[J]. Scripta Mater, 2009, 60(12):1141-1144.
[41] RAABE D, PONGE D, DMITRIEVA O, et al. Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging[J]. Adv Eng Mater, 2009, 11(7):547-555.
[42] WANG M M, TASAN C C, PONGE D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels[J]. Acta Mater, 2014, 79:268-281.
[43] ROHIT B, MUKTINUTALAPATI N R. Austenite reversion in 18% Ni maraging steel and its weldments[J]. Mater Sci Tech-Lond, 2017, 34(3):253-260.
[44] KOYAMA M, ZHANG Z, WANG M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355(6329):1055-1057.
[45] KWIATKOWSKI D S, LEYSON G, KUZMINA M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling[J]. Acta Mater, 2017, 124:305-315.
[46] KUZMINA M, HERBIG M, PONGE D, et al. Linear complexions: Confined chemical and structural states at dislocations[J]. Science, 2015, 349(6252):1080-1083.
[47] MAHIEU J, MAKI J, COOMAN B C, et al. Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel[J]. Metall Mater Trans A, 2002, 33(8):2573-2580.
[48] FURUKAWA T, HUANG H, MATSUMURA O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity[J]. Mater Sci Tech-Lond, 2013, 10(11):964-970.
[49] LEE S, LEE K, DE COOMAN B C. Observation of the TWIP plus TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel[J]. Metall Mater Trans A, 2015, 46a(6):2356-2363.
[50] YOO J, HAN K, PARK Y, et al. Correlation between microstructure and mechanical properties of heat affected zones in Fe–8Mn–0.06C steel welds[J]. Mater Chem Phys, 2014, 146(1-2):175-182.
[51] QI X, DU L, HU J, et al. Enhanced Impact Toughness of Heat Affected Zone in Gas Shield Arc Weld Joint of Low‐C Medium‐Mn High Strength Steel by Post‐Weld Heat Treatment[J]. Steel Res Int, 2017, 89(4):1700422-1700429.
[52] SARMAST-GHAHFAROKHI S, ZHANG S, MIDAWI A R H, et al. The failure mechanism of resistance spot welded third-generation medium-Mn steel during shear-tension loading[J]. J Manuf Proc, 2022, 79:520-531.
[53] LUN N, SAHA D C, MACWAN A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel[J]. Mater Des, 2017, 131:450-459.
[54] JIA Q, LIU L, GUO W, et al. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel[J]. Metals, 2018, 8(1):48-60.
[55] WANG Y Q, DUAN R H, HU J, et al. Improvement in toughness and ductility of friction stir welded medium-Mn steel joint via post-welding annealing[J]. J Mater Proc Tech, 2022, 306:117621-117632.
[56] WANG X G, WANG L, HUANG M X. Kinematic and thermal characteristics of Luders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Mater, 2017, 124:17-29.
[57] HU J, CAO W, WANG C, et al. Phase transformation behavior of cold rolled 0.1C–5Mn steel during heating process studied by differential scanning calorimetry[J]. Mater Sci Eng A, 2015, 636:108-116.
[58] CAI Z H, CAI B, DING H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content[J]. Mater Sci Eng A, 2016, 676:263-270.
[59] CAI M H, ZHU W J, STANFORD N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy[J]. Mater Sci Eng A, 2016, 653:35-42.
[60] SHAO C W, HUI W J, ZHANG Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mat Sci Eng A-Struct, 2017, 682:45-53.
[61] 梁冬梅,朱远志,刘光辉. 马氏体时效钢的研究进展[J]. 金属热处理,2010,35(12):34-39.
[62] 胡斌,屠鑫,王玉,等. 中锰钢塑性失稳现象的研究进展及未来研究展望[J]. 工程科学学报,2020,42(01):48-59.
[63] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁,2008, (06):1-7.
[64] BOUAZIZ O, ZUROB H, HUANG M X. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications[J]. Steel Res Int, 2013, 84(10):937-947.
[65] LIAN Y, HUANG J, ZHANG J, et al. Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel[J]. Mater Sci Eng A, 2018, 712:663-670.
[66] PAN S, HE B B. On the Variants of Thermal Process in Developing Strong and Ductile Medium Mn Steel[J]. Front Mater, 2020, 7:256-264.
[67] MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mater Sci Eng A, 2006, 438-440:237-240.
[68] HAJYAKBARY F, SIETSMA J, BöTTGER A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Mater Sci Eng A, 2015, 639:208-218.
[69] UNGAR T, BORBELY A. The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis[J]. Applied Physics Letters, 1996, 69(21): 3173-3175.
[70] UNGAR T, DRAGOMIR I, REVESZ A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice[J]. J Appl Crystallogr, 1999, 32(5):992-1002.
[71] CONG Z, MURATA Y. Dislocation Density of Lath Martensite in 10Cr-5W Heat-Resistant Steels[J]. Mater Trans, 2011, 52(12):2151-2154.
[72] SAUZAY M, FOURNIER B, MOTTOT M, et al. Cyclic softening of martensitic steels at high temperature—Experiments and physically based modelling[J]. Mater Sci Eng A, 2008, 483-484:410-414.
[73] UNGAR T, STOICA A D, TICHY G, et al. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel[J]. Acta Mater, 2014, 66:251-261.
[74] LANI F, FURNEMONT Q, ROMPAEY T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling[J]. Acta Mater, 2007, 55(11):3695-3705.
[75] TAKEDA K, NAKADA N, TSUCHIYAMA T. Effect of Interstitial Elements on Hall–Petch Coefficient of Ferritic Iron[J]. Isij Int, 2008, 48(8):1122-1125.
[76] TAYLOR T, FOURLARIS G, EVANS P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies[J]. Mater Sci Tech-Lond, 2013, 30(7):818-826.
[77] NEWBY J R, NIEMEIER B. Formability of Metallic Materials-2000 AD[M]. ASTM International, 1982, 753:103-106.
[78] TISZA M. Development of Advanced High Strength Automotive Steels[J]. Acta Mater Trans, 2021, 4(1):9-17.
[79] YI H L, SUN L, XIONG X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater Sci Tech-Lond, 2018, 34(9):1112-1117.
[80] NIKHARE C P. Experimental and Numerical Investigation of Forming Limit Differences in Biaxial and Dome Test[J]. J Manuf Sci Eng, 2018, 140(8):81005-081016.
[81] RUSSO S P, CORTESE L, NALLI F, et al. Local formability and strength of TWIP-TRIP weldments for stamping tailor welded blanks (TWBs)[J]. Int J Adv Manuf Technol, 2018, 101(1-4):757-771.
[82] DANCKERT J. Experimental Investigation of a Square-Cup Deep-Drawing Process[J]. J Mater Proc Technol, 1995, 50(1-4):375-384.
[83] LI K P, HABRAKEN A M, BRUNEEL H. Simulation of Square-Cup Deep-Drawing with Different Finite-Elements[J]. J Mater Proc Technol, 1995, 50(1-4):81-91.
[84] ZHENG G, LI X, CHANG Y, et al. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel[J]. J Mater Eng Perf, 2018, 27(2):530-540.
[85] SHEN F, WANG H, LIU Z, et al. Local formability of medium-Mn steel[J]. J Mater Proc Tech, 2022, 299:117368-117377.
[86] CHANG Y, HAN S, LI X, et al. Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite[J]. J Mater Proc Technol, 2018, 259:216-227.
[87] CHANG Y, WANG M, WANG N, et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability[J]. Mater Sci Eng A, 2018, 721:179-188.
[88] CHANG Y, ZHENG G, LI X, et al. Evaluation on the formability of the third-generation automotive medium-Mn steel based on experiment and simulation[J]. The International J Adv Manuf Technol, 2021, 117(3-4):1015-1027.
[89] LIU L, HE B B, CHENG G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Mater, 2018, 150:1-6.
[90] CHO L, SEO E J, COOMAN B C. Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel[J]. Scripta Mater, 2016, 123:69-72.
[91] YANG D P, DU P J, WU D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J Mater Sci Technol, 2021, 75:205-215.
[92] SPEER J, MATLOCK D K, DE COOMAN B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater, 2003, 51(9):2611-2622.
[93] LEE S, DE COOMAN B C. On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel[J]. Metall Mater Trans A, 2013, 44(11):5018-5024.
[94] HE B B, HUANG M X. Revealing heterogeneous C partitioning in a medium Mn steel by nanoindentation[J]. Mater Sci Tech-Lond, 2016, 33(5):552-558.
[95] HAN Q, ZHANG Y, WANG L. Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel[J]. Metall Mater Trans A, 2015, 46(5):1917-1926.
[96] SUN B, VANDERESSE N, FAZELI F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel[J]. Scripta Mater, 2017, 133:9-13.
[97] PAN S, HE B B. The respective strain hardening of constituting phases during Lüders deformation of a medium-Mn steel[J]. Phil Mag Lett, 2021, 101(5): 211-221.
[98] HE B B, WANG M, HUANG M X. Resetting the Austenite Stability in a Medium Mn Steel via Dislocation Engineering[J]. Metall Mater Trans A, 2019, 50(6):2971-2977.
Edit Comment