中文版 | English
Title

高强韧中锰钢的变形机理及成型性研究

Alternative Title
INVESTIGATION ON DEFORMATION MECHANISM AND FORMABILITY OF STRONG AND DUCTILE MEDIUM MANGANESE STEEL
Author
Name pinyin
ZHANG Baolin
School number
12032422
Degree
硕士
Discipline
0801Z1 智能制造与机器人
Subject category of dissertation
08 工学
Supervisor
何斌斌
Mentor unit
机械与能源工程系
Publication Years
2023-05-13
Submission date
2023-06-25
University
南方科技大学
Place of Publication
深圳
Abstract

  工业的发展离不开钢铁材料的支撑。然而,我国的高端特种钢材仍然依赖于进口。作为第三代汽车用先进高强钢的一种,中锰钢因其优异的综合力学性能,已成为近年来钢铁材料领域的研究热点。对于高强韧中锰钢的研发是补齐我国工业短板,助力我国经济高质量发展的重要一环。针对高强韧中锰钢变形机理及成型性的研究,有助于更好开发下一代高强韧钢以及服务于其应用。

  本论文使用两种中锰钢材料分别分析了其强化机制和成型性。合金设计基于位错工程理念,即高位错密度可以同时引起高强度高延展性,以及马氏体时效钢中纳米析出相强化的理念。通过优化合金元素比例和价格,开发了一种质量分数为Fe-12Mn-3Ni-3Al-4Mo-0.01B的中锰钢。设计了一系列工艺路线,通过轧制工艺调控中锰钢的奥氏体体积分数。冷轧提高了中锰钢的位错密度,固溶处理和时效工艺获得高密度的纳米析出相从而产生强化效果。拉伸测试结果表明,温轧、冷轧工艺及480°C6小时时效处理的钢获得了较优的力学性能,其马氏体的体积分数高达86.3%。马氏体基体中可以观察到大量纳米析出相,促进其屈服强度和极限抗拉强度分别达到了1845 MPa2030 MPa。基于同步辐射XRD的测试结果,计算了样品时效前后马氏体基体中的位错密度,定量分析了不同强化机制对中锰钢屈服强度的贡献。结果表明,轧制工艺之后高密度位错是该中锰钢的主要强化机制,而时效后析出强化成为了该中锰钢中的主要强化机制,对屈服强度贡献了约917 MPa

  基于质量分数Fe-10Mn-0.2C-2Al-0.1V的中锰钢,开展了双相区退火、双相区退火-淬火配分两种工艺热处理并研究其成型性。通过组织演变和拉伸测试得到的力学性能指标,包括强度、延伸率、应变硬化系数及塑性应变比等,从多个角度评估了其成型性。实验结果表明,双相区退火中锰钢在保持相似各向异性性能的同时具有更好的加工硬化能力和更高的延伸率,因而具有更好的成型性,为今后的工业化生产提供了参考。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] SAEIDI N, JAFARI M, KIM J G, et al. Development of an Advanced Ultrahigh Strength TRIP Steel and Evaluation of Its Unique Strain Hardening Behavior[J]. Met Mater Int, 2019, 26(2):168-178.

[2] AZIZI G, MIRZADEH H, PARSA M H. The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties[J]. Mater Sci Eng A, 2015, 639:402-406.

[3] HOU Y, MIN J Y, GUO N, et al. Investigation of evolving yield surfaces of dual-phase steels[J]. J Mater Process Technol, 2021, 287:116314-116333.

[4] KALHOR A, SOLEIMANI M, MIRZADEH H, et al. A review of recent progress in mechanical and corrosion properties of dual phase steels[J]. Arch Civ Mech Eng, 2020, 20(3):85-99.

[5] COOMAN B C. Structure–properties relationship in TRIP steels containing carbide-free bainite[J]. Curr Opin Solid State Mater Sci, 2004, 8(4):285-303.

[6] BOUAZIZ O, ALLAIN S, SCOTT C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr Opin Solid State Mater Sci, 2011, 15(4):141-168.

[7] JIN J E, LEE Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater, 2012, 60(4):1680-1688.

[8] MADIVALA M, SCHWEDT A, WONG S L, et al. Temperature dependent strain hardening and fracture behavior of TWIP steel[J]. Int J Plast, 2018, 104:80-103.

[9] TANG L, WANG L, WANG M, et al. Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction[J]. Acta Mater, 2020, 200:943-958.

[10] SUH D W, KIM S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Mater, 2017, 126:63-67.

[11] HU B, LUO H W, YANG F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review[J]. J Mater Sci Technol, 2017, 33(12):1457-1464.

[12] FLOREEN S. The physical metallurgy of maraging steels[J]. Metall Rev, 1968, 13(1):115-128.

[13] HE B B, HU B, YEN H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355):1029-1032.

[14] SPEER J G, ASSUNCAO F C, MATLOCK D K, et al. The "quenching and partitioning" process: background and recent progress[J]. Mater Res, 2005, 8(4):417-423.

[15] MATLOCK D K, BRAUTIGAM V E, SPEER J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[C]// Proc Mater Sci Forum. Zurich-Uetikon: Trans Tech Publ Ltd, 2003, 426:1089-1094.

[16] 徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理,2009,34(06):1-8.

[17] REN Y, XIE Z, ZHANG H, et al. Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si Steel[J]. Acta Metall Sin, 2013, 49(12):1558-1566.

[18] SOMANI M C, PORTER D A, KARJALAINEN L P, et al. Designing a Novel DQ&P Process through Physical Simulation Studies[J]. Mater Sci Forum, 2013, 762:83-88.

[19] MILLER R L. Ultrafine-Grained Microstructures and Mechanical Properties of Alloy-Steels[J]. Metall Trans, 1972, 3(4):905-912.

[20] Merwin M J. Microstructure and properties of cold rolled and annealed low-carbon manganese TRIP steels[J]. Iron & steel technology, 2008, 5(10): 66-84.

[21] Merwin M J. Low-carbon manganese TRIP steels[C]//Proc Mater Sci Forum. Zurich-Uetikon: Trans Tech Publ Ltd, 2007, 539:4327-4332.

[22] JEONG M S, PARK T M, CHOI S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure[J]. Scripta Mater, 2021, 190:16-21.

[23] HE B B, LIU L, HUANG M X. Room-Temperature Quenching and Partitioning Steel[J]. Metall Mater Trans A, 2018, 49(8):3167-3172.

[24] HE B B, WANG M, HUANG M X. Improving Tensile Properties of Room-Temperature Quenching and Partitioning Steel by Dislocation Engineering[J]. Metall Mater Trans A, 2019, 50(9):4021-4026.

[25] SUN W W, WU Y X, YANG S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Mater, 2018, 146:60-63.

[26] AN X L, ZHANG R M, WU Y X, et al. The role of retained austenite on the stress-strain behaviour of chemically patterned steels[J]. Mater Sci Eng A, 2022, 831:142-153.

[27] LIU L, YU Q, WANG Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020, 368(6497):1347-1352.

[28] HUANG M X, HE B B. Alloy design by dislocation engineering[J]. J Mater Sci Technol, 2018, 34(3):417-420.

[29] ZHANG Y, HUI W, WANG J, et al. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling[J]. Scripta Mater, 2019, 165:15-19.

[30] HUANG C P, HUANG M X. Effect of Processing Parameters on Mechanical Properties of Deformed and Partitioned (D&P) Medium Mn Steels[J]. Metals, 2021, 11(2):356-374.

[31] HUI W, SHAO C, ZHANG Y, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling[J]. Mater Sci Eng A, 2017, 707:501-510.

[32] XU J P, WANG Z, YAN Y, et al. Effect of hot/warm rolling on the microstructures and mechanical properties of medium-Mn steels[J]. Mater Charact, 2020, 170:110682-110695.

[33] ZOU Y, DING H, ZHANG Y, et al. Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures[J]. Int J Plasticity, 2022, 151:103212-103226.

[34] WEI Y, LI Y, ZHU L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nat Commun, 2014, 5:3580-3587.

[35] LI J, CAO Y, GAO B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure[J]. J Mater Sci, 2018, 53(14):10442-10456.

[36] ZHOU P, LIANG Z Y, LIU R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel[J]. Acta Mater, 2016, 111:96-107.

[37] JIANG S, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651):460-464.

[38] WANG L, SPEER J G. Quenching and Partitioning Steel Heat Treatment[J]. Metall Microstruct Anal, 2013, 2(4):268-281.

[39] JIAO Z B, LUAN J H, MILLER M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles[J]. Acta Mater, 2015, 97:58-67.

[40] RAABE D, PONGE D, DMITRIEVA O, et al. Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility[J]. Scripta Mater, 2009, 60(12):1141-1144.

[41] RAABE D, PONGE D, DMITRIEVA O, et al. Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging[J]. Adv Eng Mater, 2009, 11(7):547-555.

[42] WANG M M, TASAN C C, PONGE D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels[J]. Acta Mater, 2014, 79:268-281.

[43] ROHIT B, MUKTINUTALAPATI N R. Austenite reversion in 18% Ni maraging steel and its weldments[J]. Mater Sci Tech-Lond, 2017, 34(3):253-260.

[44] KOYAMA M, ZHANG Z, WANG M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355(6329):1055-1057.

[45] KWIATKOWSKI D S, LEYSON G, KUZMINA M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling[J]. Acta Mater, 2017, 124:305-315.

[46] KUZMINA M, HERBIG M, PONGE D, et al. Linear complexions: Confined chemical and structural states at dislocations[J]. Science, 2015, 349(6252):1080-1083.

[47] MAHIEU J, MAKI J, COOMAN B C, et al. Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel[J]. Metall Mater Trans A, 2002, 33(8):2573-2580.

[48] FURUKAWA T, HUANG H, MATSUMURA O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity[J]. Mater Sci Tech-Lond, 2013, 10(11):964-970.

[49] LEE S, LEE K, DE COOMAN B C. Observation of the TWIP plus TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel[J]. Metall Mater Trans A, 2015, 46a(6):2356-2363.

[50] YOO J, HAN K, PARK Y, et al. Correlation between microstructure and mechanical properties of heat affected zones in Fe–8Mn–0.06C steel welds[J]. Mater Chem Phys, 2014, 146(1-2):175-182.

[51] QI X, DU L, HU J, et al. Enhanced Impact Toughness of Heat Affected Zone in Gas Shield Arc Weld Joint of Low‐C Medium‐Mn High Strength Steel by Post‐Weld Heat Treatment[J]. Steel Res Int, 2017, 89(4):1700422-1700429.

[52] SARMAST-GHAHFAROKHI S, ZHANG S, MIDAWI A R H, et al. The failure mechanism of resistance spot welded third-generation medium-Mn steel during shear-tension loading[J]. J Manuf Proc, 2022, 79:520-531.

[53] LUN N, SAHA D C, MACWAN A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel[J]. Mater Des, 2017, 131:450-459.

[54] JIA Q, LIU L, GUO W, et al. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel[J]. Metals, 2018, 8(1):48-60.

[55] WANG Y Q, DUAN R H, HU J, et al. Improvement in toughness and ductility of friction stir welded medium-Mn steel joint via post-welding annealing[J]. J Mater Proc Tech, 2022, 306:117621-117632.

[56] WANG X G, WANG L, HUANG M X. Kinematic and thermal characteristics of Luders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Mater, 2017, 124:17-29.

[57] HU J, CAO W, WANG C, et al. Phase transformation behavior of cold rolled 0.1C–5Mn steel during heating process studied by differential scanning calorimetry[J]. Mater Sci Eng A, 2015, 636:108-116.

[58] CAI Z H, CAI B, DING H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content[J]. Mater Sci Eng A, 2016, 676:263-270.

[59] CAI M H, ZHU W J, STANFORD N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy[J]. Mater Sci Eng A, 2016, 653:35-42.

[60] SHAO C W, HUI W J, ZHANG Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mat Sci Eng A-Struct, 2017, 682:45-53.

[61] 梁冬梅,朱远志,刘光辉. 马氏体时效钢的研究进展[J]. 金属热处理,2010,35(12):34-39.

[62] 胡斌,屠鑫,王玉,等. 中锰钢塑性失稳现象的研究进展及未来研究展望[J]. 工程科学学报,2020,42(01):48-59.

[63] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁,2008, (06):1-7.

[64] BOUAZIZ O, ZUROB H, HUANG M X. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications[J]. Steel Res Int, 2013, 84(10):937-947.

[65] LIAN Y, HUANG J, ZHANG J, et al. Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel[J]. Mater Sci Eng A, 2018, 712:663-670.

[66] PAN S, HE B B. On the Variants of Thermal Process in Developing Strong and Ductile Medium Mn Steel[J]. Front Mater, 2020, 7:256-264.

[67] MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mater Sci Eng A, 2006, 438-440:237-240.

[68] HAJYAKBARY F, SIETSMA J, BöTTGER A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Mater Sci Eng A, 2015, 639:208-218.

[69] UNGAR T, BORBELY A. The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis[J]. Applied Physics Letters, 1996, 69(21): 3173-3175.

[70] UNGAR T, DRAGOMIR I, REVESZ A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice[J]. J Appl Crystallogr, 1999, 32(5):992-1002.

[71] CONG Z, MURATA Y. Dislocation Density of Lath Martensite in 10Cr-5W Heat-Resistant Steels[J]. Mater Trans, 2011, 52(12):2151-2154.

[72] SAUZAY M, FOURNIER B, MOTTOT M, et al. Cyclic softening of martensitic steels at high temperature—Experiments and physically based modelling[J]. Mater Sci Eng A, 2008, 483-484:410-414.

[73] UNGAR T, STOICA A D, TICHY G, et al. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel[J]. Acta Mater, 2014, 66:251-261.

[74] LANI F, FURNEMONT Q, ROMPAEY T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling[J]. Acta Mater, 2007, 55(11):3695-3705.

[75] TAKEDA K, NAKADA N, TSUCHIYAMA T. Effect of Interstitial Elements on Hall–Petch Coefficient of Ferritic Iron[J]. Isij Int, 2008, 48(8):1122-1125.

[76] TAYLOR T, FOURLARIS G, EVANS P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies[J]. Mater Sci Tech-Lond, 2013, 30(7):818-826.

[77] NEWBY J R, NIEMEIER B. Formability of Metallic Materials-2000 AD[M]. ASTM International, 1982, 753:103-106.

[78] TISZA M. Development of Advanced High Strength Automotive Steels[J]. Acta Mater Trans, 2021, 4(1):9-17.

[79] YI H L, SUN L, XIONG X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater Sci Tech-Lond, 2018, 34(9):1112-1117.

[80] NIKHARE C P. Experimental and Numerical Investigation of Forming Limit Differences in Biaxial and Dome Test[J]. J Manuf Sci Eng, 2018, 140(8):81005-081016.

[81] RUSSO S P, CORTESE L, NALLI F, et al. Local formability and strength of TWIP-TRIP weldments for stamping tailor welded blanks (TWBs)[J]. Int J Adv Manuf Technol, 2018, 101(1-4):757-771.

[82] DANCKERT J. Experimental Investigation of a Square-Cup Deep-Drawing Process[J]. J Mater Proc Technol, 1995, 50(1-4):375-384.

[83] LI K P, HABRAKEN A M, BRUNEEL H. Simulation of Square-Cup Deep-Drawing with Different Finite-Elements[J]. J Mater Proc Technol, 1995, 50(1-4):81-91.

[84] ZHENG G, LI X, CHANG Y, et al. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel[J]. J Mater Eng Perf, 2018, 27(2):530-540.

[85] SHEN F, WANG H, LIU Z, et al. Local formability of medium-Mn steel[J]. J Mater Proc Tech, 2022, 299:117368-117377.

[86] CHANG Y, HAN S, LI X, et al. Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite[J]. J Mater Proc Technol, 2018, 259:216-227.

[87] CHANG Y, WANG M, WANG N, et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability[J]. Mater Sci Eng A, 2018, 721:179-188.

[88] CHANG Y, ZHENG G, LI X, et al. Evaluation on the formability of the third-generation automotive medium-Mn steel based on experiment and simulation[J]. The International J Adv Manuf Technol, 2021, 117(3-4):1015-1027.

[89] LIU L, HE B B, CHENG G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Mater, 2018, 150:1-6.

[90] CHO L, SEO E J, COOMAN B C. Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel[J]. Scripta Mater, 2016, 123:69-72.

[91] YANG D P, DU P J, WU D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. J Mater Sci Technol, 2021, 75:205-215.

[92] SPEER J, MATLOCK D K, DE COOMAN B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater, 2003, 51(9):2611-2622.

[93] LEE S, DE COOMAN B C. On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel[J]. Metall Mater Trans A, 2013, 44(11):5018-5024.

[94] HE B B, HUANG M X. Revealing heterogeneous C partitioning in a medium Mn steel by nanoindentation[J]. Mater Sci Tech-Lond, 2016, 33(5):552-558.

[95] HAN Q, ZHANG Y, WANG L. Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel[J]. Metall Mater Trans A, 2015, 46(5):1917-1926.

[96] SUN B, VANDERESSE N, FAZELI F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel[J]. Scripta Mater, 2017, 133:9-13.

[97] PAN S, HE B B. The respective strain hardening of constituting phases during Lüders deformation of a medium-Mn steel[J]. Phil Mag Lett, 2021, 101(5): 211-221.

[98] HE B B, WANG M, HUANG M X. Resetting the Austenite Stability in a Medium Mn Steel via Dislocation Engineering[J]. Metall Mater Trans A, 2019, 50(6):2971-2977.

Academic Degree Assessment Sub committee
力学
Domestic book classification number
TG142.1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544047
DepartmentDepartment of Mechanical and Energy Engineering
Recommended Citation
GB/T 7714
张宝林. 高强韧中锰钢的变形机理及成型性研究[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032422-张宝林-机械与能源工程(5525KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张宝林]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张宝林]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张宝林]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.