[1] BURGUES J, MARCO S. Environmental chemical sensing using small drones: A review [J]. Science of the Total Environment, 2020, 748: 141172.
[2] MISTLBERGER G, CRESPO G A, BAKKER E. Ionophore-based optical sensors [J]. Annual Review of Analytical Chemistry, 2014, 7: 483-512.
[3] XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale [J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[4] ZHU J, JIA P, LI N, et al. Small-molecule fluorescent probes for the detection of carbon dioxide [J]. Chinese Chemical Letters, 2018, 29(10): 1445-50.
[5] ZOSEL J, OELßNER W, DECKER M, et al. The measurement of dissolved and gaseous carbon dioxide concentration [J]. Measurement Science and Technology, 2011, 22(7).
[6] BAKKER E, BüHLMANN P, PRETSCH E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics [J]. Chemical Reviews, 1997, 97(8): 3083-132.
[7] BAKKER E, QIN Y. Electrochemical sensors [J]. Analytical Chemistry, 2006, 78(12): 3965-84.
[8] LIU Y, XUE Y, TANG H, et al. Click-immobilized K+-selective ionophore for potentiometric and optical sensors [J]. Sensors and Actuators B: Chemical, 2012, 171-172: 556-62.
[9] THAJEE K, WANG L, GRUDPAN K, et al. Colorimetric ionophore-based coextraction titrimetry of potassium ions [J]. Analytica Chimica Acta, 2018, 1029: 37-43.
[10] DU X, WANG R, ZHAI J, et al. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots [J]. ACS Applied Nano Materials, 2020, 3(1): 782-8.
[11] LEE C H, FOLZ J, ZHANG W, et al. Ion-selective nanosensor for photoacoustic and fluorescence imaging of potassium [J]. Analytical Chemistry, 2017, 89(15): 7943-9.
[12] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores [J]. Analytical Chemistry, 2013, 85(20): 9932-8.
[13] XIE X, SZILAGYI I, ZHAI J, et al. Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation [J]. ACS Sensors, 2016, 1(5): 516-20.
[14] DU X, XIE X. Ion-selective optodes: alternative approaches for simplified fabrication and signaling [J]. Sensors and Actuators B: Chemical, 2021, 335.
[15] SUN X, AGATE S, SALEM K S, et al. Hydrogel-based sensor networks: compositions, properties, and applications-a review [J]. ACS Applied Bio Materials, 2021, 4(1): 140-62.
[16] DU X, ZHAI J, LI X, et al. Hydrogel-based optical ion sensors: principles and challenges for point-of-care testing and environmental monitoring [J]. ACS Sensors, 2021, 6(6): 1990-2001.
[17] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles [J]. Sensors and Actuators B: Chemical, 2020, 319.
[18] MAIERHOFER M, RIEGER V, MAYR T. Optical ammonia sensors based on fluorescent aza-BODIPY dyes- a flexible toolbox [J]. Analytical and Bioanalytical Chemistry, 2020, 412(27): 7559-67.
[19] MüLLER B J, BORISOV S M, KLIMANT I. Red- to NIR-emitting, BODIPY-based, K+-selective fluoroionophores and sensing materials [J]. Advanced Functional Materials, 2016, 26(42): 7697-707.
[20] DERVIEUX E, THERON M, UHRING W. Carbon dioxide sensing-biomedical applications to human subjects [J]. Sensors (Basel), 2021, 22(1).
[21] REYES F, GRUTTER M, JAZCILEVICH A, et al. Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City [J]. Atmospheric Chemistry and Physics, 2006, 6(12): 5339-46.
[22] MCDONAGH C, BURKE C S, MACCRAITH B D. Optical chemical sensors [J]. Chemical Reviews, 2008, 108(2): 400-22.
[23] WOLFBEIS O S, WEIDGANS B M. FIBER OPTIC CHEMICAL SENSORS AND BIOSENSORS: A VIEW BACK; proceedings of the Optical Chemical Sensors, Dordrecht, F 2006//, 2006 [C]. Springer Netherlands.
[24] NEURAUTER G, KLIMANT I, WOLFBEIS O S. Fiber-optic microsensor for high resolution pCO2 sensing in marine environment [J]. Fresenius' Journal of Analytical Chemistry, 2000, 366(5): 481-7.
[25] STAUDINGER C, BREININGER J, KLIMANT I, et al. Near-infrared fluorescent aza-BODIPY dyes for sensing and imaging of pH from the neutral to highly alkaline range [J]. Analyst, 2019, 144(7): 2393-402.
[26] MULLER B J, RAPPITSCH T, STAUDINGER C, et al. Sodium-selective fluoroionophorebased optodes for seawater salinity measurement [J]. Analytical Chemistry, 2017, 89(13): 7195-202.
[27] LI X, GAO X, SHI W, et al. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes [J]. Chemical Reviews, 2014, 114(1): 590-659.
[28] HAN Z-X, ZHANG X-B, LI Z, et al. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ using a rhodamine spirolactam as a trigger [J]. Analytical Chemistry, 2010, 82(8): 3108-13.
[29] HUANG S, WU Y, ZENG F, et al. Handy ratiometric detection of gaseous nerve agents with AIE-fluorophore-based solid test strips [J]. Journal of Materials Chemistry C, 2016, 4(42): 10105-10.
[30] XIE X, GUTIERREZ A, TROFIMOV V, et al. Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors [J]. Analytical Chemistry, 2015, 87(19): 9954-9.
[31] WANG L, XIE X, ZHAI J, et al. Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon [J]. Chemical Communications (Camb), 2016, 52(99): 14254-7.
[32] PHICHI M, IMYIM A, TUNTULANI T, et al. Paper-based cation-selective optode sensor containing benzothiazole calix
[4]arene for dual colorimetric Ag+ and Hg2+ detection [J]. Analytica Chimica Acta, 2020, 1104: 147-55.
[33] CHEN Q, LI X, WANG R, et al. Rapid equilibrated colorimetric detection of protamine and heparin: Recognition at the nanoscale liquid-liquid interface [J]. Analytical Chemistry, 2019, 91(16): 10390-4.
[34] DU X, WANG Y, ZHAI J, et al. One-pot synthesized organosilica nanospheres for multiplexed fluorescent nanobarcoding and subcellular tracking [J]. Nanoscale, 2022, 14(5): 1787-95.
[35] CICCIONE J, JIA T, COLL J-L, et al. Unambiguous and controlled one-pot synthesis of multifunctional silica nanoparticles [J]. Chemistry of Materials, 2016, 28(3): 885-9.
[36] XIE X, ZHAI J, CRESPO G A, et al. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode [J]. Analytical Chemistry, 2014, 86(17): 8770-5.
[37] WANG L, BAKKER E. A tunable detection range of ion-selective nano-optodes by controlling solvatochromic dye transducer lipophilicity [J]. Chemical Communications (Camb), 2019, 55(83): 12539-42.
[38] GE Y, ZHU J, ZHAO W, et al. Ion-selective optodes based on near infrared fluorescent chromoionophores for pH and metal ion measurements [J]. Sensors and Actuators B: Chemical, 2012, 166-167: 480-4.
[39] XIE X, LI X, GE Y, et al. Rhodamine-based ratiometric fluorescent ion-selective bulk optodes [J]. Sensors and Actuators B: Chemical, 2010, 151(1): 71-6.
[40] JOKIC T, BORISOV S M, SAF R, et al. Highly photostable near-infrared fluorescent ph indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes [J]. Analytical Chemistry, 2012, 84(15): 6723-30.
[41] XIE X, CRESPO G A, BAKKER E. Oxazinoindolines as fluorescent H+turn-on chromoionophores for optical and electrochemical ion sensors [J]. Analytical Chemistry, 2013, 85(15): 7434-40.
[42] TENJIMBAYASHI M, KOMATSU H, AKAMATSU M, et al. Determination of blood potassium using a fouling-resistant PVDF–HFP-based optode [J]. RSC Advances, 2016, 6(17): 14261-5.
[43] WANG X, QIN Y, MEYERHOFF M E. Paper-based plasticizer-free sodium ion-selective sensor with camera phone as a detector [J]. Chemical Communications, 2015, 51(82): 15176-9.
[44] SHIBATA H, IKEDA Y, HIRUTA Y, et al. Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye [J]. Analytical and Bioanalytical Chemistry, 2020, 412(14): 3489-97.
[45] RUCKH T T, SKIPWITH C G, CHANG W, et al. Ion-switchable quantum dot förster resonance energy transfer rates in ratiometric potassium sensors [J]. ACS Nano, 2016, 10(4): 4020-30.
[46] DUBACH J M, LIM E, ZHANG N, et al. In vivo sodium concentration continuously monitored with fluorescent sensors [J]. Integrative Biology, 2011, 3(2): 142-8.
[47] LI Y, DENG C, YANG M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity [J]. Sensors and Actuators B: Chemical, 2012, 165(1): 7-12.
[48] CAJLAKOVIC M, LOBNIK A, WERNER T. Stability of new optical pH sensing material based on cross-linked poly(vinyl alcohol) copolymer [J]. Analytica Chimica Acta, 2002, 455(2): 207-13.
[49] JIANG H, ZHU Y, CHEN C, et al. Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel [J]. New Journal of Chemistry, 2012, 36(4): 1051-6.
[50] CUMMINS B M, LIM J, SIMANEK E E, et al. Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres [J]. Biomedical Optics Express, 2011, 2(5): 1243-57.
[51] WANG R, DU X, ZHAI J, et al. Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations [J]. ACS Sensors, 2019, 4(4): 1017-22.
[52] ZHANG Y, GE J. Liquid photonic crystal detection reagent for reliable sensing of Cu2+ in water [J]. RSC Advances, 2020, 10(18): 10972-9.
[53] SAITO H, TAKEOKA Y, WATANABE M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration [J]. Chemical Communications (Camb), 2003, (17): 2126-7.
[54] AIGNER D, UNGERBOCK B, MAYR T, et al. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-
[3,4-c]pyrrole dyesdaggerElectronic supplementary information (ESI) available: NMR and MS spectra, further sensor characteristics and sensor long-time performance. See DOI: 10.1039/c3tc31130aClick here for additional data file [J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2013, 1(36): 5685-93.
[55] AXPE E, CHAN D, OFFEDDU G S, et al. A multiscale model for solute diffusion in hydrogels [J]. Macromolecules, 2019, 52(18): 6889-97.
[56] DALFEN I, DMITRIEV R I, HOLST G, et al. Background-free fluorescence-decay-time sensing and imaging of ph with highly photostable diazaoxotriangulenium dyes [J]. Analytical Chemistry, 2019, 91(1): 808-16.
[57] GOTOR R, ASHOKKUMAR P, HECHT M, et al. Optical ph sensor covering the range from pH 0-14 compatible with mobile-device readout and based on a set of rationally designed indicator dyes [J]. Analytical Chemistry, 2017, 89(16): 8437-44.
[58] DU X, HUANG M, WANG R, et al. A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels [J]. Chemical Communications, 2019, 55(12): 1774-7.
[59] JOKIC T, BORISOV S M, SAF R, et al. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes [J]. Analytical Chemistry, 2012, 84(15): 6723-30.
[60] KENNEY R M, BOYCE M W, WHITMAN N A, et al. A pH-sensing optode for mapping spatiotemporal gradients in 3D paper-based cell cultures[J]. Analytical Chemistry, 2018, 90(3): 2376-83.
[61] MEIER R J, SIMBURGER J M, SOUKKA T, et al. Background-free referenced luminescence sensing and imaging of pH using upconverting phosphors and color camera read-out [J]. Analytical Chemistry, 2014, 86(11): 5535-40.
[62] MüLLER B J, STEINMANN N, BORISOV S M, et al. Ammonia sensing with fluoroionophores – A promising way to minimize interferences caused by volatile amines [J]. Sensors and Actuators B: Chemical, 2018, 255: 1897-901.
[63] HOLTZ J H, ASHER S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature, 1997, 389(6653): 829-32.
[64] ASHER S A, SHARMA A C, GOPONENKO A V, et al. Photonic crystal aqueous metal cation sensing materials [J]. Analytical Chemistry, 2003, 75(7): 1676-83.
[65] SAITO H, TAKEOKA Y, WATANABE M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration [J]. Chemical Communications, 2003, (17): 2126-7.
[66] GUO J, ZHOU M, YANG C. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions [J]. Scientific Reports, 2017, 7(1): 7902.
[67] HUANG Y, WU X, TIAN T, et al. Target-responsive DNAzyme hydrogel for portable colorimetric detection of lanthanide(III) ions [J]. Science China Chemistry, 2017, 60(2): 293-8.
[68] LIN H, ZOU Y, HUANG Y, et al. DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions [J]. Chemical Communications, 2011, 47(33): 9312-4.
[69] HUANG Y, MA Y, CHEN Y, et al. Target-responsive dnazyme cross-linked hydrogel for visual quantitative detection of lead [J]. Analytical Chemistry, 2014, 86(22): 11434-9.
[70] QING Z, MAO Z, QING T, et al. Visual and portable strategy for copper(Ⅱ) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel [J]. Analytical Chemistry, 2014, 86(22): 11263-8.
[71] SUN Y, LI S, CHEN R, et al. Ultrasensitive and rapid detection of T-2 toxin using a target-responsive DNA hydrogel [J]. Sensors and Actuators B: Chemical, 2020, 311: 127912.
[72] BISWAKARMA D, DEY N, BHATTACHARYA S. A thermo-responsive supramolecular hydrogel that senses cholera toxin via color-changing response [J]. Chemical Communications, 2020, 56(56): 7789-92.
[73] GE J, YIN Y. Responsive photonic crystals [J]. Angewandte Chemie, International Edition in English, 2011, 50(7): 1492-522.
[74] LEE J Y, KO K, CHUNG H. Application of colorimetric sensor in monitoring dissolved CO2 in natural waters [J]. Journal of Environmental Management, 2022, 312: 114893.
[75] CALVO-LOPEZ A, YMBERN O, IZQUIERDO D, et al. Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer [J]. Analytica Chimica Acta, 2016, 931: 64-9.
[76] BEYENAL H, DAVIS C C, LEWANDOWSKI Z. An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms [J]. Sensors and Actuators B: Chemical, 2004, 97(2-3): 202-10.
[77] STEININGER F, REVSBECH N P, KOREN K. Total dissolved inorganic carbon sensor based on amperometric CO2 microsensor and local acidification [J]. ACS Sensors, 2021, 6(7): 2529-33.
[78] XIE X, BAKKER E. Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics [J]. Analytical Chemistry, 2013, 85(3): 1332-6.
[79] WANG H, VAGIN S I, RIEGER B, et al. An ultrasensitive fluorescent paper-based CO2 sensor [J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20507-13.
[80] LI T, WU Y, HUANG J, et al. Gas sensors based on membrane diffusion for environmental monitoring [J]. Sensors and Actuators B: Chemical, 2017, 243: 566-78.
[81] LI X, TANG B, WU B, et al. Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection [J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4639-49.
[82] KONG Y, JIANG G, WU Y, et al. Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration [J]. Chemical Engineering Journal, 2016, 306: 362-8.
[83] XU X, HEATH C, PEJCIC B, et al. CO2 capture by amine infused hydrogels (AIHs) [J]. Journal of Materials Chemistry A, 2018, 6(11): 4829-38.
[84] MA Y, CAMETTI M, DŽOLIĆ Z, et al. AIE-active bis-cyanostilbene-based organogels for quantitative fluorescence sensing of CO2 based on molecular recognition principles [J]. Journal of Materials Chemistry C, 2018, 6(34): 9232-7.
Edit Comment