[1] KONG X, LI S, WANG E, et al. Dynamics behaviour of gas-bearing coal subjected to SHPB tests[J]. Composite Structures, 2021, 256: 113088.
[2] CAO H, NIU L, XI S, et al. Mechanical model development of rolling bearing-rotor systems: A review[J]. Mechanical Systems and Signal Processing, 2018, 102: 37-58.
[3] OHTA H, SUGIMOTO N. Vibration characteristics of tapered roller bearings[J]. Journal of Sound and vibration, 1996, 190(2): 137-147.
[4] GUPTA P. Dynamics of rolling-element bearings—Part I: Cylindrical roller bearing analysis[Z]. 1979.
[5] GUPTA P. Dynamics of rolling-element bearings—Part II: Cylindrical roller bearing results [Z]. 1979.
[6] GUPTA P. Dynamics of rolling-element bearings—Part III: Ball bearing analysis[Z]. 1979.
[7] GUPTA P. Dynamics of rolling-element bearings—part IV: Ball bearing results[Z]. 1979.
[8] STACKE L E, FRITZSON D. Dynamic behaviour of rolling bearings: simulations and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215(6): 499-508.
[9] SAHETA V. Dynamics of rolling element bearings using discrete element method[J]. Master of Science thesis, Purdue University, 2001.
[10] GHAISAS N, WASSGREN C R, SADEGHI F. Cage instabilities in cylindrical roller bearings [J]. J. Trib., 2004, 126(4): 681-689.
[11] HARRIS T A, KOTZALAS M N. Advanced concepts of bearing technology: rolling bearing analysis[M]. CRC press, 2006.
[12] TANDON N, CHOUDHURY A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect[J]. Journal of sound and vibration, 1997, 205(3): 275-292.
[13] ARSLAN H. An investigation of rolling element vibrations caused by local defects[Z]. 2008.
[14] PETERSEN D, HOWARD C, SAWALHI N, et al. Analysis of bearing stiffness variations,contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects[J/OL]. Mechanical Systems and Signal Processing, 2015, 50-51: 139-160. https://www.sciencedirect.com/science/article/pii/S0888327014001204. DOI: https://doi.org/10.1016/j.ymssp.2014.04.014.
[15] SOPANEN J, MIKKOLA A. Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2003, 217(3): 201-211.
[16] AHMADI A M, PETERSEN D, HOWARD C. A nonlinear dynamic vibration model of defective bearings–The importance of modelling the finite size of rolling elements[J]. MechanicalSystems and Signal Processing, 2015, 52: 309-326.
[17] SAWALHI N, RANDALL R. Vibration response of spalled rolling element bearings: Observations, simulations and signal processing techniques to track the spall size[J/OL]. Mechanical Systems and Signal Processing, 2011, 25(3): 846-870. https://www.sciencedirect.com/science/article/pii/S0888327010003146. DOI: https://doi.org/10.1016/j.ymssp.2010.09.009.
[18] SINGH S, KöPKE U G, HOWARD C Q, et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J/OL].Journal of Sound and Vibration, 2014, 333(21): 5356-5377. https://www.sciencedirect.com/science/article/pii/S0022460X14004015. DOI:https://doi.org/10.1016/j.jsv.2014.05.011.
[19] PAN H, TANG W, XU J J, et al. Rolling bearing fault diagnosis based on stacked autoencoder network with dynamic learning rate[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
[20] JIANG Y, HUANG W, LUO J, et al. An improved dynamic model of defective bearingsconsidering the three-dimensional geometric relationship between the rolling element and defect area[J/OL]. Mechanical Systems and Signal Processing, 2019, 129: 694-716. https://www.sciencedirect.com/science/article/pii/S0888327019302936. DOI: https://doi.org/10.1016/j.ymssp.2019.04.056.
[21] KECIK K, SMAGALA A, LYUBITSKA K. Ball Bearing Fault Diagnosis Using Recurrence Analysis[J]. Materials, 2022, 15(17): 5940.
[22] LIU J. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J/OL]. Journal of Sound and Vibration, 2020,469: 115144. https://www.sciencedirect.com/science/article/pii/S0022460X19307072. DOI:https://doi.org/10.1016/j.jsv.2019.115144.
[23] LIU J, SHAO Y. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges[J/OL]. Journal of Sound and Vibration, 2017, 398: 84-102. https://www.sciencedirect.com/science/article/pii/S0022460X17302110.DOI: https://doi.org/10.1016/j.jsv.2017.03.007.
[24] LIU J M, WANG X Z, ZHAO C Y, et al. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix[J/OL]. Journal of Hazardous Materials, 2018, 344: 220-229. https://www.sciencedirect.com/science/article/pii/S0304389417307628. DOI: https://doi.org/10.1016/j.jhazmat.2017.10.013.
[25] LARIZZA F, HOWARD C Q, GRAINGER S. Defect size estimation in rolling element bearings with angled leading and trailing edges[J]. Structural Health Monitoring, 2021, 20(3): 1102-1116.
[26] TADINA M, BOLTEžAR M. Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up[J/OL]. Journal of Sound and Vibration, 2011, 330(17): 4287-4301. https://www.sciencedirect.com/science/article/pii/S0022460X11002574. DOI: https://doi.org/10.1016/j.jsv.2011.03.031.
[27] TANG H, LIU H, ZHAO Y, et al. Analysis of mechanics around a localised surface defect of cylindrical roller bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(2): 391-403.
[28] KUMAR R, SINGH M. Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal[J/OL]. Measurement, 2013, 46(1): 537-545.https://www.sciencedirect.com/science/article/pii/S0263224112003077. DOI: https://doi.org/10.1016/j.measurement.2012.08.012.
[29] BOURBATACHE K, GUESSASMA M, BELLENGER E, et al. DEM ball bearing model and defect diagnosis by electrical measurement[J/OL]. Mechanical Systems and Signal Processing, 2013, 41(1): 98-112. https://www.sciencedirect.com/science/article/pii/S0888327013001982.DOI: https://doi.org/10.1016/j.ymssp.2013.04.012.
[30] TAO X, REN C, LI Q, et al. Bearing defect diagnosis based on semi-supervised kernel Local Fisher Discriminant Analysis using pseudo labels[J/OL]. ISA Transactions, 2021, 110: 394-412. https://www.sciencedirect.com/science/article/pii/S0019057820304365. DOI: https://doi.org/10.1016/j.isatra.2020.10.033.
[31] KUMAR A, ZHOU Y, XIANG J. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects[J/OL]. Measurement, 2021, 168:108402. https://www.sciencedirect.com/science/article/pii/S0263224120309362. DOI: https: //doi.org/10.1016/j.measurement.2020.108402.
[32] LIU Y, CHEN Z, TANG L, et al. Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[J]. Mechanical Systems and Signal Processing, 2021,150: 107257.
[33] GUPTA P K. Generalized dynamic simulation of skid in ball bearings[J]. Journal of Aircraft,1975, 12(4): 260-265.
[34] LIAO N T, LIN J F. Ball bearing skidding under radial and axial loads[J]. Mechanism and Machine Theory, 2002, 37(1): 91-113.
[35] KANG Y S, EVANS R D, DOLL G L. Roller-raceway slip simulations of wind turbine gearbox bearings using dynamic bearing model[C]//International Joint Tribology Conference: volume44199. 2010: 407-409.
[36] TU W, SHAO Y, MECHEFSKE C K. An analytical model to investigate skidding in rolling element bearings during acceleration[J]. Journal of mechanical science and technology, 2012,26: 2451-2458.
[37] HAN Q, LI X, CHU F. Skidding behavior of cylindrical roller bearings under time-variable load conditions[J]. International Journal of Mechanical Sciences, 2018, 135: 203-214.
[38] SELVARAJ A, MARAPPAN R. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing[J]. The International Journal of Advanced Manufacturing Technology,2011, 53: 635-644.
[39] WANG Y, WANG W, ZHANG S, et al. Investigation of skidding in angular contact ball bearings under high speed[J]. Tribology International, 2015, 92: 404-417.
[40] SIER D, YUJIA L, ZHANG W, et al. Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway[J]. Chinese Journal of Aeronautics, 2018, 31(2): 351-362.
[41] OKTAVIANA L, TONG V C, HONG S W. Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment[J]. Journal of Mechanical Science and Technology, 2019, 33: 837-845.
[42] NABHAN A, GHAZALY N, SAMY A, et al. Bearing fault detection techniques-a review[J].Turkish Journal of Engineering, Sciences and Technology, 2015, 3(2): 1-18.
[43] DIMAROGONAS A D, PAIPETIS S A, CHONDROS T G. Analytical methods in rotor dynamics[M]. Springer Science & Business Media, 2013.
[44] MCFADDEN P, SMITH J. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of sound and vibration, 1984, 96(1): 69-82.
[45] AKTU ̈RK N. The effect of waviness on vibrations associated witli ball bearings[Z]. 1999.
[46] BRIE D. Modelling of the spalled rolling element bearing vibration signal: an overview and some new results[J]. Mechanical Systems and Signal Processing, 2000, 14(3):353-369.
[47] SASSI S, BADRI B, THOMAS M. A numerical model to predict damaged bearing vibrations [J]. Journal of Vibration and Control, 2007, 13(11): 1603-1628.
[48] AHMADI N, TARAGHI H, SADEGHIAZAD M. A numerical study of a three-dimensionalproton exchange membrane fuel cell (PEMFC) with parallel and counter flow gas channels[J].Iranian Journal of Science and Technology. Transactions of Mechanical Engineering, 2015, 39(M2): 309.
[49] SHAO Y, LIU J, YE J. A new method to model a localized surface defect in a cylindrical rollerbearing dynamic simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2014, 228(2): 140-159.
[50] SOBIE C, FREITAS C, NICOLAI M. Simulation-driven machine learning: Bearing fault classification[J]. Mechanical Systems and Signal Processing, 2018, 99: 403-419.
[51] LI C J, WU S. On-line detection of localized defects in bearings by pattern recognition analysis[Z]. 1989.
[52] TSE P W, PENG Y, , et al. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—their effectiveness and flexibilities[J]. J. Vib. Acoust., 2001, 123(3): 303-310.
[53] KANG M, KIM J, WILLS L M, et al. Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7749-7761.
[54] YU Y, JUNSHENG C, et al. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of sound and vibration, 2006, 294(1-2): 269-277.
[55] SHARIF M, GROSVENOR R. Process plant condition monitoring and fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1998, 212(1): 13-30.
[56] CAMCI F, MEDJAHER K, ZERHOUNI N, et al. Feature evaluation for effective bearing prognostics[J]. Quality and reliability engineering international, 2013, 29(4): 477-486.
[57] ZIAJA A, ANTONIADOU I, BARSZCZ T, et al. Fault detection in rolling element bearings using wavelet-based variance analysis and novelty detection[J]. Journal of Vibration and Control,2016, 22(2): 396-411.
[58] RAUBER T W, DE ASSIS BOLDT F, VAREJAO F M. Heterogeneous feature models and featureselection applied to bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics,2014, 62(1): 637-646.
[59] CHOI S W, MARTIN E B, MORRIS A J, et al. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture[J]. Industrial & engineering chemistry research,2005, 44(7): 2316-2327.
[60] CIABATTONI L, CIMINI G, FERRACUTI F, et al. A novel LDA-based approach for motor bearing fault detection[C]//2015 IEEE 13th International Conference on Industrial Informatics(INDIN). IEEE, 2015: 771-776.
[61] ZIDI S, MOULAHI T, ALAYA B. Fault detection in wireless sensor networks through SVM classifier[J]. IEEE Sensors Journal, 2017, 18(1): 340-347.
[62] OCAK H, LOPARO K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221): volume 5. IEEE, 2001:3141-3144.
[63] ZHANG H, LI S, CAO Y. A TFG-CNN Fault Diagnosis Method for Rolling Bearing[M]//Proceedings of IncoME-VI and TEPEN 2021: Performance Engineering and Maintenance Engineering. Springer, 2022: 237-249.
[64] XIANG L, WANG P, YANG X, et al. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism[J]. Measurement, 2021, 175: 109094.
[65] YANG Y, TANG W. Study of remote bearing fault diagnosis based on BP neural network combination[C]//2011 Seventh International Conference on Natural Computation: volume 2.IEEE, 2011: 618-621.
[66] HOANG D T, KANG H J. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335.
[67] 杜秋华. 球轴承振动的非线性模型及信号分析方法研究[D]. 华中科技大学, 2007.
[68] 康建雄. 滚动轴承系统局部缺陷位移激励动力学建模及振动响应分析[D]. 兰州理工大学,2017.
[69] ASHTEKAR A, SADEGHI F, STACKE L. Surface defects effects on bearing dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(1): 25-35.
[70] ASHTEKAR A, SADEGHI F, STACKE L E. A new approach to modeling surface defects in bearing dynamics simulations[Z]. 2008.
[71] ZHANG X, HAN Q, PENG Z, et al. A new nonlinear dynamic model of the rotor-bearing system considering preload and varying contact angle of the bearing[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3): 821-841.
[72] 刘静. 滚动轴承缺陷非线性激励机理与建模研究[D]. 重庆大学.
[73] QUINN B G, HANNAN E J. The estimation and tracking of frequency: number 9[M]. Cambridge University Press, 2001.
[74] BASSEVILLE M. Model-based statistical signal processing and decision theoretic approaches to monitoring[J]. IFAC Proceedings Volumes, 2003, 36(5): 1-12.
[75] YANG Z, CHAN C W. Fault detection for nonlinear systems with multitone sinusoidal input[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(9): 2753-2759.
[76] YANG Z, CHAN C W. Simultaneous estimation of the input and output frequencies of nonlinear systems[J]. Automatica, 2008, 44(7): 1822-1830.
[77] LANG Z Q, BILLINGS S. Evaluation of output frequency responses of nonlinear systems under multiple inputs[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2000, 47(1): 28-38.
[78] CHUA L, GREEN D. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks[J/OL]. IEEE Transactions on Circuits and Systems, 1976, 23(6): 355-379. DOI: 10.1109/TCS.1976.1084228.
[79] BILLINGS S, TSANG K. Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions[J/OL]. Mechanical Systems and Signal Processing, 1989, 3(4): 341-359. https://www.sciencedirect.com/science/article/pii/0888327089900423.DOI: https://doi.org/10.1016/0888-3270(89)90042-3.
[80] BROWN M, HARRIS C. Neurofuzzy adaptive modelling and control[M]. Prentice Hall International(UK) Ltd., 1995.
[81] LI J, CHAN C, ZHANG H Y. Asymptotic local approach in fault detection based on predictive filters[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1112-1122.
[82] ZHANG Q, BASSEVILLE M, BENVENISTE A. Fault detection and isolation in nonlineardynamic systems: A combined input–output and local approach[J]. Automatica, 1998, 34(11):1359-1373.
[83] COUTO MENDONCA L D, RENIERS J, HOWEY D D, et al. Detection and Isolation ofSmall Faults in Lithium-Ion Batteries via the Asymptotic Local Approach[C]//Proceedings of the American Control Conference. 2021.
[84] TU W, LUO Y, YU W, et al. Investigation of the dynamic local skidding behaviour of rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(4): 899-909.
[85] GUPTA P K. Dynamic loads and cage wear in high-speed rolling bearings[J]. Wear, 1991, 147(1): 119-134.
[86] KAY S M. Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall,Inc., 1993.
[87] MOORE T J, KOZICK R J, SADLER B M. The constrained Cramér–Rao bound from theperspective of fitting a model[J]. IEEE Signal Processing Letters, 2007, 14(8): 564-567.
[88] YANG Z, CHAN C W, WANG Y. A high-accuracy detection and estimation method of intermodulated sinusoids[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011,58(10): 2477-2484.
Edit Comment