中文版 | English
Title

基于非线性系统频谱分析的轴承早期微小故障检测

Alternative Title
EARLY MINOR BEARING FAULT DETECTION BASED ON SPECTRUM ANALYSIS OF NONLINEAR SYSTEM
Author
Name pinyin
LI Xiaohong
School number
12032902
Degree
硕士
Discipline
0801Z1 智能制造与机器人
Subject category of dissertation
08 工学
Supervisor
杨再跃
Mentor unit
系统设计与智能制造学院
Publication Years
2023-05-17
Submission date
2023-06-26
University
南方科技大学
Place of Publication
深圳
Abstract

随着机械设备的不断发展,滚动轴承作为重要的机械零部件在各种工业设备中广泛应用。然而,由于工作条件的恶劣和长时间的使用,滚动轴承会逐渐出现各种缺陷和故障,影响设备的正常运行,甚至导致机器损坏和生产线停滞。因此,对滚动轴承的状态进行检测和诊断至关重要。对轴承进行定期维修是传统的做法,但这种方法不仅耗费时间和人力,而且可能会错过轴承早期微小故障的发生。本文旨在研究一种基于非线性系统频谱分析的轴承早期微小故障检测方法。
首先,建立了二自由度的轴承动力学模型。针对工业界重要部件的轴承缺乏故障信号样本的问题,研究了轴承的接触刚度、波纹度和Hertz 接触力对其运动的影响。随后分别对正常运行和有局部缺陷的轴承进行了仿真实验,与西储大学的试验台架获得的实际振动信号做了对比,特征频率是相似的,验证了所建立的轴承动力学模型是准确的,为轴承故障检测提供可靠的依据。
接着,根据轴承运动过程是具有正弦输入的非线性系统的特性,提出了一种基于多频正弦输入的轴承故障检测方法。第一步研究了非线性系统的特性,阐述了其输入和输出具有概周期函数的特性。第二步,利用输入频率和输出频率间的混合整数关系,得到输出信号在关键频率上的能量总和,从而减弱噪声对信号的影响,强化信号的能量。然后,使用基于周期图的渐近局部故障检测方法,将故障检测问题转化为假设检验问题,并通过给定的置信度和特定频率矩阵的自由度获得阈值。通过仿真结果的验证,证明该方法能够在强噪声环境下有效快速地检测早期小故障。
最后,提出了一种方法来解决输入频率未知的轴承故障检测问题,该方法可有效提取轴承互调正弦信号,从而实现故障检测。当考虑到轴承打滑时,其各部件间的角速度关系无法直接确定,这意味着输入频率也是未知的。首先,采用周期图法初步估计输出频率向量,然后构建互调结构,并利用输入输出频率间的关系矩阵估计出互调参数矩阵,最终可以精确估计出输入频率。完成输入输出频率的估计后,可以采用基于多频正弦输入的轴承故障检测方法进行故障检测。仿真结果证明,该方法准确地估计了输入输出频率,同时也验证了轴承故障检测的有效性。

Keywords
Other Keyword
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] KONG X, LI S, WANG E, et al. Dynamics behaviour of gas-bearing coal subjected to SHPB tests[J]. Composite Structures, 2021, 256: 113088.
[2] CAO H, NIU L, XI S, et al. Mechanical model development of rolling bearing-rotor systems: A review[J]. Mechanical Systems and Signal Processing, 2018, 102: 37-58.
[3] OHTA H, SUGIMOTO N. Vibration characteristics of tapered roller bearings[J]. Journal of Sound and vibration, 1996, 190(2): 137-147.
[4] GUPTA P. Dynamics of rolling-element bearings—Part I: Cylindrical roller bearing analysis[Z]. 1979.
[5] GUPTA P. Dynamics of rolling-element bearings—Part II: Cylindrical roller bearing results [Z]. 1979.
[6] GUPTA P. Dynamics of rolling-element bearings—Part III: Ball bearing analysis[Z]. 1979.
[7] GUPTA P. Dynamics of rolling-element bearings—part IV: Ball bearing results[Z]. 1979.
[8] STACKE L E, FRITZSON D. Dynamic behaviour of rolling bearings: simulations and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215(6): 499-508.
[9] SAHETA V. Dynamics of rolling element bearings using discrete element method[J]. Master of Science thesis, Purdue University, 2001.
[10] GHAISAS N, WASSGREN C R, SADEGHI F. Cage instabilities in cylindrical roller bearings [J]. J. Trib., 2004, 126(4): 681-689.
[11] HARRIS T A, KOTZALAS M N. Advanced concepts of bearing technology: rolling bearing analysis[M]. CRC press, 2006.
[12] TANDON N, CHOUDHURY A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect[J]. Journal of sound and vibration, 1997, 205(3): 275-292.
[13] ARSLAN H. An investigation of rolling element vibrations caused by local defects[Z]. 2008.
[14] PETERSEN D, HOWARD C, SAWALHI N, et al. Analysis of bearing stiffness variations,contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects[J/OL]. Mechanical Systems and Signal Processing, 2015, 50-51: 139-160. https://www.sciencedirect.com/science/article/pii/S0888327014001204. DOI: https://doi.org/10.1016/j.ymssp.2014.04.014.
[15] SOPANEN J, MIKKOLA A. Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2003, 217(3): 201-211.
[16] AHMADI A M, PETERSEN D, HOWARD C. A nonlinear dynamic vibration model of defective bearings–The importance of modelling the finite size of rolling elements[J]. MechanicalSystems and Signal Processing, 2015, 52: 309-326.
[17] SAWALHI N, RANDALL R. Vibration response of spalled rolling element bearings: Observations, simulations and signal processing techniques to track the spall size[J/OL]. Mechanical Systems and Signal Processing, 2011, 25(3): 846-870. https://www.sciencedirect.com/science/article/pii/S0888327010003146. DOI: https://doi.org/10.1016/j.ymssp.2010.09.009.
[18] SINGH S, KöPKE U G, HOWARD C Q, et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J/OL].Journal of Sound and Vibration, 2014, 333(21): 5356-5377. https://www.sciencedirect.com/science/article/pii/S0022460X14004015. DOI:https://doi.org/10.1016/j.jsv.2014.05.011.
[19] PAN H, TANG W, XU J J, et al. Rolling bearing fault diagnosis based on stacked autoencoder network with dynamic learning rate[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
[20] JIANG Y, HUANG W, LUO J, et al. An improved dynamic model of defective bearingsconsidering the three-dimensional geometric relationship between the rolling element and defect area[J/OL]. Mechanical Systems and Signal Processing, 2019, 129: 694-716. https://www.sciencedirect.com/science/article/pii/S0888327019302936. DOI: https://doi.org/10.1016/j.ymssp.2019.04.056.
[21] KECIK K, SMAGALA A, LYUBITSKA K. Ball Bearing Fault Diagnosis Using Recurrence Analysis[J]. Materials, 2022, 15(17): 5940.
[22] LIU J. A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J/OL]. Journal of Sound and Vibration, 2020,469: 115144. https://www.sciencedirect.com/science/article/pii/S0022460X19307072. DOI:https://doi.org/10.1016/j.jsv.2019.115144.
[23] LIU J, SHAO Y. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges[J/OL]. Journal of Sound and Vibration, 2017, 398: 84-102. https://www.sciencedirect.com/science/article/pii/S0022460X17302110.DOI: https://doi.org/10.1016/j.jsv.2017.03.007.
[24] LIU J M, WANG X Z, ZHAO C Y, et al. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix[J/OL]. Journal of Hazardous Materials, 2018, 344: 220-229. https://www.sciencedirect.com/science/article/pii/S0304389417307628. DOI: https://doi.org/10.1016/j.jhazmat.2017.10.013.
[25] LARIZZA F, HOWARD C Q, GRAINGER S. Defect size estimation in rolling element bearings with angled leading and trailing edges[J]. Structural Health Monitoring, 2021, 20(3): 1102-1116.
[26] TADINA M, BOLTEžAR M. Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up[J/OL]. Journal of Sound and Vibration, 2011, 330(17): 4287-4301. https://www.sciencedirect.com/science/article/pii/S0022460X11002574. DOI: https://doi.org/10.1016/j.jsv.2011.03.031.
[27] TANG H, LIU H, ZHAO Y, et al. Analysis of mechanics around a localised surface defect of cylindrical roller bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(2): 391-403.
[28] KUMAR R, SINGH M. Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal[J/OL]. Measurement, 2013, 46(1): 537-545.https://www.sciencedirect.com/science/article/pii/S0263224112003077. DOI: https://doi.org/10.1016/j.measurement.2012.08.012.
[29] BOURBATACHE K, GUESSASMA M, BELLENGER E, et al. DEM ball bearing model and defect diagnosis by electrical measurement[J/OL]. Mechanical Systems and Signal Processing, 2013, 41(1): 98-112. https://www.sciencedirect.com/science/article/pii/S0888327013001982.DOI: https://doi.org/10.1016/j.ymssp.2013.04.012.
[30] TAO X, REN C, LI Q, et al. Bearing defect diagnosis based on semi-supervised kernel Local Fisher Discriminant Analysis using pseudo labels[J/OL]. ISA Transactions, 2021, 110: 394-412. https://www.sciencedirect.com/science/article/pii/S0019057820304365. DOI: https://doi.org/10.1016/j.isatra.2020.10.033.
[31] KUMAR A, ZHOU Y, XIANG J. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects[J/OL]. Measurement, 2021, 168:108402. https://www.sciencedirect.com/science/article/pii/S0263224120309362. DOI: https: //doi.org/10.1016/j.measurement.2020.108402.
[32] LIU Y, CHEN Z, TANG L, et al. Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[J]. Mechanical Systems and Signal Processing, 2021,150: 107257.
[33] GUPTA P K. Generalized dynamic simulation of skid in ball bearings[J]. Journal of Aircraft,1975, 12(4): 260-265.
[34] LIAO N T, LIN J F. Ball bearing skidding under radial and axial loads[J]. Mechanism and Machine Theory, 2002, 37(1): 91-113.
[35] KANG Y S, EVANS R D, DOLL G L. Roller-raceway slip simulations of wind turbine gearbox bearings using dynamic bearing model[C]//International Joint Tribology Conference: volume44199. 2010: 407-409.
[36] TU W, SHAO Y, MECHEFSKE C K. An analytical model to investigate skidding in rolling element bearings during acceleration[J]. Journal of mechanical science and technology, 2012,26: 2451-2458.
[37] HAN Q, LI X, CHU F. Skidding behavior of cylindrical roller bearings under time-variable load conditions[J]. International Journal of Mechanical Sciences, 2018, 135: 203-214.
[38] SELVARAJ A, MARAPPAN R. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing[J]. The International Journal of Advanced Manufacturing Technology,2011, 53: 635-644.
[39] WANG Y, WANG W, ZHANG S, et al. Investigation of skidding in angular contact ball bearings under high speed[J]. Tribology International, 2015, 92: 404-417.
[40] SIER D, YUJIA L, ZHANG W, et al. Cage slip characteristics of a cylindrical roller bearing with a trilobe-raceway[J]. Chinese Journal of Aeronautics, 2018, 31(2): 351-362.
[41] OKTAVIANA L, TONG V C, HONG S W. Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment[J]. Journal of Mechanical Science and Technology, 2019, 33: 837-845.
[42] NABHAN A, GHAZALY N, SAMY A, et al. Bearing fault detection techniques-a review[J].Turkish Journal of Engineering, Sciences and Technology, 2015, 3(2): 1-18.
[43] DIMAROGONAS A D, PAIPETIS S A, CHONDROS T G. Analytical methods in rotor dynamics[M]. Springer Science & Business Media, 2013.
[44] MCFADDEN P, SMITH J. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of sound and vibration, 1984, 96(1): 69-82.
[45] AKTU ̈RK N. The effect of waviness on vibrations associated witli ball bearings[Z]. 1999.
[46] BRIE D. Modelling of the spalled rolling element bearing vibration signal: an overview and some new results[J]. Mechanical Systems and Signal Processing, 2000, 14(3):353-369.
[47] SASSI S, BADRI B, THOMAS M. A numerical model to predict damaged bearing vibrations [J]. Journal of Vibration and Control, 2007, 13(11): 1603-1628.
[48] AHMADI N, TARAGHI H, SADEGHIAZAD M. A numerical study of a three-dimensionalproton exchange membrane fuel cell (PEMFC) with parallel and counter flow gas channels[J].Iranian Journal of Science and Technology. Transactions of Mechanical Engineering, 2015, 39(M2): 309.
[49] SHAO Y, LIU J, YE J. A new method to model a localized surface defect in a cylindrical rollerbearing dynamic simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2014, 228(2): 140-159.
[50] SOBIE C, FREITAS C, NICOLAI M. Simulation-driven machine learning: Bearing fault classification[J]. Mechanical Systems and Signal Processing, 2018, 99: 403-419.
[51] LI C J, WU S. On-line detection of localized defects in bearings by pattern recognition analysis[Z]. 1989.
[52] TSE P W, PENG Y, , et al. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—their effectiveness and flexibilities[J]. J. Vib. Acoust., 2001, 123(3): 303-310.
[53] KANG M, KIM J, WILLS L M, et al. Time-varying and multiresolution envelope analysis and discriminative feature analysis for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7749-7761.
[54] YU Y, JUNSHENG C, et al. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of sound and vibration, 2006, 294(1-2): 269-277.
[55] SHARIF M, GROSVENOR R. Process plant condition monitoring and fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 1998, 212(1): 13-30.
[56] CAMCI F, MEDJAHER K, ZERHOUNI N, et al. Feature evaluation for effective bearing prognostics[J]. Quality and reliability engineering international, 2013, 29(4): 477-486.
[57] ZIAJA A, ANTONIADOU I, BARSZCZ T, et al. Fault detection in rolling element bearings using wavelet-based variance analysis and novelty detection[J]. Journal of Vibration and Control,2016, 22(2): 396-411.
[58] RAUBER T W, DE ASSIS BOLDT F, VAREJAO F M. Heterogeneous feature models and featureselection applied to bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics,2014, 62(1): 637-646.
[59] CHOI S W, MARTIN E B, MORRIS A J, et al. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture[J]. Industrial & engineering chemistry research,2005, 44(7): 2316-2327.
[60] CIABATTONI L, CIMINI G, FERRACUTI F, et al. A novel LDA-based approach for motor bearing fault detection[C]//2015 IEEE 13th International Conference on Industrial Informatics(INDIN). IEEE, 2015: 771-776.
[61] ZIDI S, MOULAHI T, ALAYA B. Fault detection in wireless sensor networks through SVM classifier[J]. IEEE Sensors Journal, 2017, 18(1): 340-347.
[62] OCAK H, LOPARO K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221): volume 5. IEEE, 2001:3141-3144.
[63] ZHANG H, LI S, CAO Y. A TFG-CNN Fault Diagnosis Method for Rolling Bearing[M]//Proceedings of IncoME-VI and TEPEN 2021: Performance Engineering and Maintenance Engineering. Springer, 2022: 237-249.
[64] XIANG L, WANG P, YANG X, et al. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism[J]. Measurement, 2021, 175: 109094.
[65] YANG Y, TANG W. Study of remote bearing fault diagnosis based on BP neural network combination[C]//2011 Seventh International Conference on Natural Computation: volume 2.IEEE, 2011: 618-621.
[66] HOANG D T, KANG H J. A survey on deep learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335.
[67] 杜秋华. 球轴承振动的非线性模型及信号分析方法研究[D]. 华中科技大学, 2007.
[68] 康建雄. 滚动轴承系统局部缺陷位移激励动力学建模及振动响应分析[D]. 兰州理工大学,2017.
[69] ASHTEKAR A, SADEGHI F, STACKE L. Surface defects effects on bearing dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(1): 25-35.
[70] ASHTEKAR A, SADEGHI F, STACKE L E. A new approach to modeling surface defects in bearing dynamics simulations[Z]. 2008.
[71] ZHANG X, HAN Q, PENG Z, et al. A new nonlinear dynamic model of the rotor-bearing system considering preload and varying contact angle of the bearing[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3): 821-841.
[72] 刘静. 滚动轴承缺陷非线性激励机理与建模研究[D]. 重庆大学.
[73] QUINN B G, HANNAN E J. The estimation and tracking of frequency: number 9[M]. Cambridge University Press, 2001.
[74] BASSEVILLE M. Model-based statistical signal processing and decision theoretic approaches to monitoring[J]. IFAC Proceedings Volumes, 2003, 36(5): 1-12.
[75] YANG Z, CHAN C W. Fault detection for nonlinear systems with multitone sinusoidal input[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(9): 2753-2759.
[76] YANG Z, CHAN C W. Simultaneous estimation of the input and output frequencies of nonlinear systems[J]. Automatica, 2008, 44(7): 1822-1830.
[77] LANG Z Q, BILLINGS S. Evaluation of output frequency responses of nonlinear systems under multiple inputs[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2000, 47(1): 28-38.
[78] CHUA L, GREEN D. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks[J/OL]. IEEE Transactions on Circuits and Systems, 1976, 23(6): 355-379. DOI: 10.1109/TCS.1976.1084228.
[79] BILLINGS S, TSANG K. Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions[J/OL]. Mechanical Systems and Signal Processing, 1989, 3(4): 341-359. https://www.sciencedirect.com/science/article/pii/0888327089900423.DOI: https://doi.org/10.1016/0888-3270(89)90042-3.
[80] BROWN M, HARRIS C. Neurofuzzy adaptive modelling and control[M]. Prentice Hall International(UK) Ltd., 1995.
[81] LI J, CHAN C, ZHANG H Y. Asymptotic local approach in fault detection based on predictive filters[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1112-1122.
[82] ZHANG Q, BASSEVILLE M, BENVENISTE A. Fault detection and isolation in nonlineardynamic systems: A combined input–output and local approach[J]. Automatica, 1998, 34(11):1359-1373.
[83] COUTO MENDONCA L D, RENIERS J, HOWEY D D, et al. Detection and Isolation ofSmall Faults in Lithium-Ion Batteries via the Asymptotic Local Approach[C]//Proceedings of the American Control Conference. 2021.
[84] TU W, LUO Y, YU W, et al. Investigation of the dynamic local skidding behaviour of rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(4): 899-909.
[85] GUPTA P K. Dynamic loads and cage wear in high-speed rolling bearings[J]. Wear, 1991, 147(1): 119-134.
[86] KAY S M. Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall,Inc., 1993.
[87] MOORE T J, KOZICK R J, SADLER B M. The constrained Cramér–Rao bound from theperspective of fitting a model[J]. IEEE Signal Processing Letters, 2007, 14(8): 564-567.
[88] YANG Z, CHAN C W, WANG Y. A high-accuracy detection and estimation method of intermodulated sinusoids[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011,58(10): 2477-2484.

Academic Degree Assessment Sub committee
力学
Domestic book classification number
TP29
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544098
DepartmentDepartment of Mechanical and Energy Engineering
Recommended Citation
GB/T 7714
李晓鸿. 基于非线性系统频谱分析的轴承早期微小故障检测[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032902-李晓鸿-机械与能源工程(6463KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李晓鸿]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李晓鸿]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李晓鸿]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.