中文版 | English
Title

抗白血病药物高三尖杉酯碱的结构改造与修饰

Alternative Title
STRUCTURAL MODIFICATION OF THE ANTI LEUKEMIA DRUG HOMOHARRINGTONINE
Author
Name pinyin
YANG Yujian
School number
12032064
Degree
硕士
Discipline
0703 化学
Subject category of dissertation
07 理学
Supervisor
李迎君
Mentor unit
前沿与交叉科学研究院
Publication Years
2023-05-29
Submission date
2023-06-27
University
南方科技大学
Place of Publication
深圳
Abstract

    

白血病是一类造血干细胞恶性克隆性疾病,是一种血液系统的恶性肿瘤,在骨髓和其他造血器官中,白血病细胞大量积累增生,使正常的造血系统功能受到抑制并且浸润其他器官组织。慢性髓系白血病是白血病的其中一种,其发病率高,占成人白血病比例的 15—20%,我国每年新增病例高达 30000 多例。  以高三尖杉酯碱为代表的三尖杉碱类化合物对不同类型的白血病细胞具有高度抑制活性。然而,天然三尖杉碱类生物碱的结构复杂性使得对其结构改造和修饰有了很大的挑战。在这项研究中,侧链手性丁二酸衍生物被引入到三尖杉碱的母核中,而新侧链的引入提高了新型三尖杉碱类化合物的抗白血病细胞的活性。

我们首先开发了一种高对映选择性的方法,用于β-取代衣康酸单酯与手性催化剂 Ru[DTBM-SegPhos](OAc)2的不对称氢化反应,为新型手性丁二酸酯侧链的合成提供了一条简单便捷的途径。采用该方法合成了 22 个高对映选择性的三尖杉碱类化合物,用 K562U937 HL60 三种白血病细胞对新化合物进行抗白血病活性筛选,对这一系列衍生物的构效关系进行了详细的讨论。活性结果表明,化合物 YYJ-17 K562HL60 U937 三种白血病细胞中显示出广泛的抗白血病活性,其将作为候选化合物进行后续的研究。Docking 实验结果预测 YYJ-17 能够维持高三尖杉酯碱和蛋白之间的大部分关键相互作用,具有抑制蛋白质翻译的潜力。Western Blot 实验结果表明 YYJ-17 以剂量依赖的方式有效下调 Bcr-AblMyc Mcl-1 三种癌蛋白的表达,从而抑制白血病细胞的增殖。在研究 YYJ-17 对源自不同组织的 12 个细胞系的抗增殖活性中,结果表明其对多种肿瘤细胞系具有广谱的细胞毒性。各种研究结果表明 YYJ-17 有希望成为下一个治疗慢性髓系白血病的三尖杉碱类药物,且 YYJ-17 与其他 Bcr-Abl 抑制剂的联合用药也可以成为未来的研究方向。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] NORGAARD J M, OLESEN L H, HOKLAND P. Changing picture of cellular drugresistance in human leukemia[J]. Critical Reviews in Oncology Hematology, 2004, 50(1): 39-49.
[2] PAIETTA E. Open forum: Classification of acute leukemias current debate - Proposals for the immunological classification of acute leukemias - Discussion[J]. Leukemia, 1995, 9(12): 2147-2148.
[3] SENDA N, YOSHITAKE J. Symposium on the classification of leukemia. 6. classification by cellular motility[J]. Nihon Ketsueki Gakkai zasshi : journal of JapanHaematological Society, 1963, 26: 26-30.
[4] ROSS D D. Novel mechanisms of drug resistance in leukemia[J]. Leukemia, 2000, 14(3): 467-473.
[5] GUNZ F W. The etiology of leukemia: review and pilot investigation[J]. BulletinTufts-New England Medical Center, 1957, 3(3): 121-145.
[6] GEORGII A. Experimental and morphological studies on the etiology of leukemia inanimals[J]. Beitrage zur pathologischen Anatomie und zur allgemeinen Pathologie, 1961, 124: 183-228.
[7] YU L, HU T, ZOU T, et al. Chronic Myelocytic Leukemia (CML) Patient-DerivedDendritic Cells Transfected with Autologous Total RNA Induces CML-SpecificCytotoxicity[J]. Indian Journal of Hematology and Blood Transfusion, 2016, 32(4):397-404.
[8] SPECCHIA G, BUQUICCHIO C, ALBANO F, et al. Non-treatment-related chronicmyeloid leukemia as a second malignancy[J]. Leukemia Research, 2004, 28(2): 115- 119.
[9] YOUN M, SMITH S M, LEE A G, et al. Comparison of the TranscriptomicSignatures in Pediatric and Adult CML[J]. Cancers, 2021, 13(24):33-38.
[10] SHIMADA A. Hematological malignancies and molecular targeting therapy[J]. European Journal of Pharmacology, 2019, 862(5):176241-176248.
[11] ABBOUD C, BERMAN E, COHEN A, et al. The price of drugs for chronic myeloidleukemia (CML) is a reflection of the unsustainable prices of cancer drugs: from theperspective of a large group of CML experts[J]. Blood, 2013, 121(22): 4439-4442.
[12] SHARMA S, PUROHIT A H L, PATI H P, et al. Platelet enzyme abnormalities inleukemias[J]. Indian Journal of Cancer, 2011, 48(3): 323-327.
[13] RADICH J P, DAI H Y, MAO M, et al. Gene expression changes associated withprogression and response in chronic myeloid leukemia[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2006, 103(8): 2794-2799.
[14] KIM T D, FRICK M, LE COUTRE P. Omacetaxine mepesuccinate for the treatmentof leukemia[J]. Expert opinion on pharmacotherapy, 2011, 12(15): 2381-2392.
[15] O'BRIEN S G, GUILHOT F, LARSON R A, et al. Imatinib compared with interferonand low-dose cytarabine for newly diagnosed chronic-phase chronic myeloidleukemia[J]. New England Journal of Medicine, 2003, 348(11): 994-1004.
[16] O'HARE T, EIDE C A, DEININGER M W N. Bcr-Abl kinase domain mutations, drugresistance, and the road to a cure for chronic myeloid leukemia[J]. Blood, 2007, 110(7): 2242-2249.
[17] DRUKER B J, GUILHOT F, O'BRIEN S G, et al. Five-year follow-up of patientsreceiving imatinib for chronic myeloid leukemia[J]. New England Journal ofMedicine, 2006, 355(23): 2408-2417.
[18] HUNTER A, PADRON E. Genomic Landscape and Risk Stratification in ChronicMyelomonocytic Leukemia[J]. Current Hematologic Malignancy Reports, 2021, 16(3): 247-255.
[19] BRAUN T P, EIDE C A, DRUKER B J. Response and Resistance to BCR-ABL1- Targeted Therapies[J]. Cancer Cell, 2020, 37(4): 530-542.
[20] O'HARE T, SHAKESPEARE W C, ZHU X, et al. AP24534, a Pan-BCR-ABLInhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant andOvercomes Mutation-Based Resistance[J]. Cancer Cell, 2009, 16(5): 401-412.
[21] REN X, PAN X, ZHANG Z, et al. Identification of GZD824 as an OrallyBioavailable Inhibitor That Targets Phosphorylated and NonphosphorylatedBreakpoint Cluster Region-Abelson (Bcr-Abl) Kinase and Overcomes ClinicallyAcquired Mutation-Induced Resistance against Imatinib[J]. Journal of MedicinalChemistry, 2013, 56(3): 879-894.
[22] GOODRICH A D. Ponatinib in the leukemia world: why a reevaluation is necessaryfor Philadelphia chromosome-positive patients with T315I mutation[J]. ExpertReview of Hematology, 2014, 7(5): 513-515.
[23] HOLYOAKE T L, VETRIE D. The chronic myeloid leukemia stem cell: stemming thetide of persistence[J]. Blood, 2017, 129(12): 1595-1606.
[24] SELBY G B, ALI L I, CARTER T H, et al. The influence of health insurance onoutcomes of related-donor hematopoietic stem cell transplantation for AML andCML[J]. Biology of Blood and Marrow Transplantation, 2001, 7(10): 576-576.
[25] MAYER J, BRYCHTOVA Y, KREJCI M, et al. Real cost of allogeneicnonmyeloablative hematopoietic stem cell transplantation for CML and hypotheticalcomparison with imatinib therapy[J]. Blood, 2005, 106(11): 476B-476B.
[26] MALAGOLA M, BRECCIA M, SKERT C, et al. Long term outcome of Ph plus CMLpatients achieving complete cytogenetic remission with interferon based therapymoving from interferon to imatinib era[J]. American Journal of Hematology, 2014,89(2): 119-124.
[27] RUSSO D, ALIMENA G, COLOMBI C, et al. Long Term Follow-up of Ph+ CMLPatients Achieving Complete Cytogenetic Response (CCgR) with Interferon BasedTherapy - GIMEMA Protocol CML0509[J]. Blood, 2011, 118(21): 357-358.
[28] AXDORPH U, STENKE L, GRIMFORS G, et al. Intensive chemotherapy in patientswith chronic myelogenous leukaemia (CML) in accelerated or blastic phase - a reportfrom the Swedish CML Group[J]. British Journal of Haematology, 2002, 118(4):1048-1054.
[29] LENGFELDER E, HEHLMANN R. Intensive combination chemotherapy in treatmentof CML[J]. Bone Marrow Transplantation, 1996, 17: S55-S57.
[30] POWELL R G, WEISLEDER D, SMITH C R, JR., et al. Structures of harringtonine, isoharringtonine, and homoharringtonine[J]. Tetrahedron letters, 1970, (11): 815-818.
[31] HE J Y, CHEUNG A P, WANG E, et al. Stability-indicating LC assay of and impurityidentification in homoharringtonine samples[J]. Journal of Pharmaceutical andBiomedical Analysis, 2000, 22(3): 541-554.
[32] POWELL R G, WEISLEDER D, SMITH C R, et al. Alkaloids of cephalotaxus- harringtonia var drupacea-11-hydroxycephalotaxine and drupacine[J]. Abstracts ofPapers of the American Chemical Society, 1973, 118(21): 120-124.
[33] POWELL R G, MADRIGAL R V, SMITH C R, et al. Alkaoids of cephalotaxus- harringtonia var drupacea-11-hydroxycephalotaxine and drupacine[J]. Journal ofOrganic Chemistry, 1974, 39(5): 676-680.
[34] POWELL R G, WEISLEDER D, SMITH C R, et al. Structure of cephalotaxine andrelated alkaloids[J]. Tetrahedron Letters, 1969, 10(46): 4081-4084.
[35] CHEN Y, LI S. Omacetaxine mepesuccinate in the treatment of intractable chronicmyeloid leukemia[J]. Oncotargets and Therapy, 2014, 7: 177-186.
[36] FRESNO M, JIMENEZ A, VAZQUEZ D. INHIBITION OF TRANSLATION INEUKARYOTIC SYSTEMS BY HARRINGTONINE[J]. European Journal ofBiochemistry, 1977, 72(2): 323-330.
[37] LI S, BO Z, JIANG Y, et al. Homoharringtonine promotes BCR-ABL degradationthrough the p62-mediated autophagy pathway[J]. Oncology Reports, 2020, 43(1):113-120.
[38] CHEN R, GUO L, CHEN Y, et al. Homoharringtonine reduced Mcl-1 expression andinduced apoptosis in chronic lymphocytic leukemia[J]. Blood, 2011, 117(1): 156-164.
[39] DE LOUBRESSE N G, PROKHOROVA I, HOLTKAMP W, et al. Structural basis forthe inhibition of the eukaryotic ribosome[J]. Nature, 2014, 513(7519): 517-522.
[40] QU M, LI J, YUAN L. Uncovering the action mechanism of homoharringtonineagainst colorectal cancer by using network pharmacology and experimentalevaluation[J]. Bioengineered, 2021, 12(2): 12940-12953.
[41] YAKHNI M, BRIAT A, EL GUERRAB A, et al. Homoharringtonine, an approvedanti-leukemia drug, suppresses triple negative breast cancer growth through a rapidreduction of anti-apoptotic protein abundance[J]. American Journal of CancerResearch, 2019, 9(5): 1043-1060.
[42] PAUDLER W W, MCKAY J, KERLEY G I. Alkaloids of cephalotaxus drupacea andcephalotaxus fortune [J]. Journal of Organic Chemistry, 1963, 28(9): 2194-2197.
[43] BERHAL F, TARDY S, PERARD-VIRET J, et al. Synthesis of Optically ActiveMonoacid Side-Chains of Cephalotaxus Alkaloids[J]. European Journal of OrganicChemistry, 2009, 2009(3): 437-443.
[44] ANCLIFF R A, RUSSELL A T, SANDERSON A J. Synthesis of the ester side chainsof some potently antileukemic harringtonia alkaloids from chiral citrates[J]. Chemical Communications, 2006, (30): 3243-3245.
[45] CHANG Y, MENG F C, WANG R, et al. Chemistry, Bioactivity, and the Structure- Activity Relationship of Cephalotaxine-Type Alkaloids From Cephalotaxus sp[J]. Studies in Natural Products Chemistry, 2017, 53: 339-373.
[46] NIJENHUIS C M, HELLRIEGEL E, BEIJNEN J H, et al. Pharmacokinetics andexcretion of C-14-omacetaxine in patients with advanced solid tumors[J]. Investigational New Drugs, 2016, 34(5): 565-574.
[47] NI D, HO D H, VIJJESWARAPU M, et al. Metabolism of homoharringtonine, acytotoxic component of the evergreen plant Cephalotaxus harringtonia[J]. Journal ofexperimental therapeutics & oncology, 2003, 3(1): 47-52.
[48] LEVY V, ZOHAR S, BARDIN C, et al. A phase I dose-finding and pharmacokineticstudy of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients withadvanced acute myeloid leukaemia[J]. British Journal of Cancer, 2006, 95(3): 253- 259.
[49] OKABE S, TAUCHI T, TANAKA Y, et al. Activity of omacetaxine mepesuccinateagainst ponatinib-resistant BCR-ABL-positive cells[J]. Blood, 2013, 122(17): 3086- 3088.
[50] HUE V T, NHUNG N T H, HUNG M D. Enantioselective synthesis of the ester sidechain of homoharringtonine[J]. Arkivoc, 2014: 206-212.
[51] DANG F-F, WANG C-C, HAN F, et al. Synthesis of the ester side chains ofhomoharringtonine and harringtonine using lactones as building blocks[J]. SyntheticCommunications, 2021, 51(2): 317-323.
[52] HIRANUMA S, HUDLICKY T. SYNTHESIS OF HOMOHARRINGTONINE ANDITS DERIVATIVE BY PARTIAL ESTERIFICATION OF CEPHALOTAXINE[J]. Tetrahedron Letters, 1982, 23(34): 3431-3434.
[53] ROBIN J-P, DHAL R, DUJARDING, et al. The first semi-synthesis of enantiopurehomoharringtonine via anhydrohomoharringtonine from a preformed chiral acylmoiety[J]. Tetrahedron letters, 1999, 40(15): 2931-2934.
[54] WANG F-X, ZHANG W-G, HE A-L, et al. Effect of granulocyte colony-stimulatingfactor priming combined with low-dose cytarabine and homoharringtonine in higherrisk myelodysplastic syndrome patients[J]. Leukemia Research, 2016, 48: 57-61.
[55] DAVER N, VEGA-RUIZ A, KANTARJIAN H M, et al. A phase II open-label study ofthe intravenous administration of homoharringtonine in the treatment ofmyelodysplastic syndrome[J]. European Journal of Cancer Care, 2013, 22(5): 605- 611.
[56] LI X, WANG S, DAI J, et al. Homoharringtonine prevents surgery-induced epiduralfibrosis through endoplasmic reticulum stress signaling pathway[J]. EuropeanJournal of Pharmacology, 2017, 815: 437-445.
[57] WOLFF N C, PAVIA-JIMENEZ A, TCHEUYAP V T, et al. High-throughputsimultaneous screen and counterscreen identifies homoharringtonine as syntheticlethal with von Hippel-Lindau loss in renal cell carcinoma[J]. Oncotarget, 2015, 6(19): 16951-16962.
[58] HU L A, ZHANG Y, ZHANG Q W, et al. Ruthenium-Catalyzed Direct AsymmetricReductive Amination of Diaryl and Sterically Hindered Ketones with AmmoniumSalts and H-2[J]. Angewandte Chemie-International Edition, 2020, 59(13): 5321- 5325.
[59] CHEN C, WEN S, GENG M, et al. A new ferrocenyl bisphosphorus ligand for theasymmetric hydrogenation of α-methylene-γ-keto-carboxylic acids[J]. ChemicalCommunications, 2017,53:9785-9788.
[60] HEKKING K F W, LEFORT L, DE VRIES A H M, et al. Synthesis of versatilebuilding blocks through asymmetric hydrogenation of functionalized itaconic acidmono-esters[J]. Advanced Synthesis & Catalysis, 2008, 350(1): 85-94.
[61] DRUKER B J, TALPAZ M, RESTA D J, et al. Efficacy and safety of a specificinhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J]. NewEngland Journal of Medicine, 2001, 344(14): 1031-1037.

Academic Degree Assessment Sub committee
化学
Domestic book classification number
TQ463
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544109
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
杨彧鉴. 抗白血病药物高三尖杉酯碱的结构改造与修饰[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032064-杨彧鉴-化学系.pdf(16590KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[杨彧鉴]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[杨彧鉴]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[杨彧鉴]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.