[1] WU J. The Development and Application of Semiconductor Materials; proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), F, 2020 [C]. IEEE.
[2] YANG G, ZHANG Y, ZIEGLER M. The Application of Third Generation Semiconductor in Power Industry [J]. E3S Web of Conferences, 2020, 198.
[3] LIU P. Atomic structure of the vicinal interface between silicon carbide and silicon dioxide [J]. 2014.
[4] RAVINDRA D, PATTEN J, VANGER S. Ductile regime material removal of silicon carbide (SiC) [J]. Silicon Carbide NewMaterials Production Methods and Application, edited by SH Vanger, NovaPublishers, Trivandrum, India, 2011: 141-67.
[5] 吴昊, 陈宇哲, 吴天元. 碳化硅产业:已处于爆发前夜,有望引领中国半导体进入黄金时代 [R]: 东兴证券, 2021.
[6] KLOCKE F, KUCHLE A. Manufacturing processes 2 : grinding, honing, lapping [J]. Springer Berlin Heidelberg, 2009.
[7] 张兰娣, 温秀梅. 纳米加工技术及其应用 [J]. 河北建筑工程学院学报, 2003, 21(3): 4.
[8] YUAN J, LYU B, HANG W, et al. Review on the progress of ultra-precision machining technologies [J]. Frontiers of Mechanical Engineering, 2017, 12(2): 158-80.
[9] HATEFI S, ABOU-EL-HOSSEIN K. Review of single-point diamond turning process in terms of ultra-precision optical surface roughness [J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5): 2167-87.
[10] M.TANAKA. Development of Ultra-high Precision Machine AHN15 Series [R], 2006.
[11] WANG S, ZHANG Q, ZHAO Q, et al. Surface generation and materials removal mechanism in ultra-precision grinding of biconical optics based on slow tool servo with diamond grinding wheels [J]. Journal of Manufacturing Processes, 2021, 72: 1-14.
[12] UNEDA M, FUJII K. Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas [J]. Precision Engineering, 2020, 64: 91-7.
[13] 方磊, 孙铭骏, 曹昕睿, et al. 类单晶硅结构Si(C≡C-C6H4-C≡C)4新材料的力学与光学性质:第一性原理研究 [J]. 物理化学学报, 2018, 034(003): 296-302.
[14] PARASHAR M, SHUKLA V K, SINGH R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications [J]. J Mater Sci: Mater Electron, 2020, 31(5): 3729-49.
[15] CAI H, WOLFENSON H, DEPOIL D, et al. Molecular occupancy of nanodot arrays [J]. ACS Nano, 2016, 10(4): 4173-83.
[16] MENG B, ZHANG Y, ZHANG F. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter [J]. Applied Physics A, 2016, 122(3): 1-9.
[17] WU Z, ZHANG L. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. Journal of Materials Science & Technology, 2021, 90: 58-65.
[18] DATYE A, LI L, ZHANG W, et al. Extraction of anisotropic mechanical properties from nanoindentation of SiC-6H single crystals [J]. Journal of Applied Mechanics, 2016, 83(9): 091003.
[19] SHIM S, JANG J-I, PHARR G M. Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation [J]. Acta Materialia, 2008, 56(15): 3824-32.
[20] ZHAO X, LANGFORD R M, SHAPIRO I P, et al. Onset plastic deformation and cracking behavior of silicon carbide under contact load at room temperature [J]. Journal of the American Ceramic Society, 2011, 94(10): 3509-14.
[21] SHEDD G M, RUSSELL P. The scanning tunneling microscope as a tool for nanofabrication [J]. Nanotechnology, 1990, 1(1): 67.
[22] RANGELOW I W, KAESTNER M, IVANOV T, et al. Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2018, 36(6): 06J102.
[23] 何洋. 基于AFM敲击模式的纳米结构动态刻划加工技术研究 [D]; 哈尔滨工业大学, 2020.
[24] 彭平. 基于AFM的微纳尺度模板加工技术研究 [J]. 华中科技大学, 2010.
[25] 杨帆. 基于AFM的纳米机械刻划切屑形成过程试验研究 [D]; 哈尔滨工业大学, 2007.
[26] DENG J, JIANG L, SI B, et al. AFM-Based nanofabrication and quality inspection of three-dimensional nanotemplates for soft lithography [J]. Journal of Manufacturing Processes, 2021, 66: 565-73.
[27] HOLZ M, REUTER C, AHMAD A, et al. Correlative microscopy and nanofabrication with AFM integrated with SEM [J]. Microscopy Today, 2019, 27(6): 24-30.
[28] SCHUH C A, LUND A C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation [J]. Journal of Materials Research, 2004, 19(7): 2152-8.
[29] YIN L, VANCOILLE E Y, RAMESH K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 607-15.
[30] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials [J]. 1991.
[31] AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding [J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 698-710.
[32] YAN J, ZHANG Z, KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide [J]. International Journal of Machine Tools and Manufacture, 2009, 49(5): 366-74.
[33] PATTEN J, GAO W, YASUTO K. Ductile regime nanomachining of single-crystal silicon carbide [J]. 2005.
[34] CHEN H-P, KALIA R K, NAKANO A, et al. Multimillion-atom nanoindentation simulation of crystalline silicon carbide: Orientation dependence and anisotropic pileup [J]. Journal of Applied Physics, 2007, 102(6): 063514.
[35] MISHRA M, SZLUFARSKA I. Dislocation controlled wear in single crystal silicon carbide [J]. Journal of Materials Science, 2013, 48(4): 1593-603.
[36] PAGE T, RIESTER L, HAINSWORTH S. The plasticity response of 6H-SiC and related isostructural materials to nanoindentation: slip vs densification [J]. MRS Online Proceedings Library (OPL), 1998, 522.
[37] WU Z, ZHANG L, LIU W. Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide [J]. Wear, 2021, 476: 203677.
[38] WU Z, LIU W, ZHANG L, et al. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC [J]. Acta Materialia, 2020, 182: 60-7.
[39] WU Z, LIU W, ZHANG L. Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting [J]. Computational Materials Science, 2017, 137: 282-8.
[40] NAWAZ A, MAO W, LU C, et al. Mechanical properties, stress distributions and nanoscale deformation mechanisms in single crystal 6H-SiC by nanoindentation [J]. Journal Of Alloys And Compounds, 2017, 708: 1046-53.
[41] LI Z, ZHANG F, LUO X. Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding [J]. Applied Surface Science, 2018, 448: 341-50.
[42] LUO X, GOEL S, REUBEN R L. A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide [J]. Journal of the European Ceramic Society, 2012, 32(12): 3423-34.
[43] ZHANG L-C, TANAKA H. On the mechanics and physics in the nano-indentation of silicon monocrystals [J]. JSME International Journal Series A Solid Mechanics and Material Engineering, 1999, 42(4): 546-59.
[44] TIAN Z, CHEN X, XU X. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045104.
[45] TIAN Z, XU X, JIANG F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations [J]. Ceramics International, 2019, 45(17): 21998-2006.
[46] MENG B, YUAN D, XU S. Atomic-Scale characterization of slip deformation and nanometric machinability of single-crystal 6H-SiC [J]. Nanoscale Research Letters, 2019, 14(1): 1-9.
[47] WANG J, YAN Y, LI Z, et al. Towards understanding the machining mechanism of the atomic force microscopy tip-based nanomilling process [J]. International Journal of Machine Tools and Manufacture, 2021, 162: 103701.
[48] STYLIANOU A. Assessing collagen D-band periodicity with atomic force microscopy [J]. Materials, 2022, 15(4): 1608.
[49] GROVER A, SINHA R, JYOTI D, et al. Imperative role of electron microscopy in toxicity assessment: A review [J]. Microscopy Research and Technique, 2022, 85(5): 1976-89.
[50] WU H, ZHENG F, WU D, et al. Advanced electron microscopy for thermoelectric materials [J]. Nano Energy, 2015, 13: 626-50.
[51] HAMMOND C. The basics of crystallography and diffraction [M]. International Union of Crystal, 2015.
[52] CAS A, TCH B, UR C. Mechanical behavior of amorphous alloys - ScienceDirect [J]. Acta Materialia, 2007, 55(12): 4067-109.
[53] NYE J F. Physical properties of crystals: their representation by tensors and matrices [M]. Oxford university press, 1985.
[54] HERBERT E, PHARR G, OLIVER W, et al. On the measurement of stress–strain curves by spherical indentation [J]. Thin Solid Films, 2001, 398: 331-5.
[55] YAN Y, SUN T, LIANG Y, et al. Effects of scratching directions on AFM-based abrasive abrasion process [J]. Tribology international, 2009, 42(1): 66-70.
[56] BOWDEN F P, TABOR D. The friction and lubrication of solids [M]. Oxford university press, 2001.
[57] JING X, MAITI S, SUBHASH G. A new analytical model for estimation of scratch‐induced damage in brittle solids [J]. Journal of the American Ceramic Society, 2007, 90(3): 885-92.
[58] KARMANN S, HELBIG R, STEIN R. Piezoelectric properties and elastic constants of 4H and 6H SiC at temperatures 4–320 K [J]. Journal of Applied Physics, 1989, 66(8): 3922-4.
[59] KWON G, JO H-H, LIM S, et al. Room-temperature yield and fracture strength of single-crystalline 6H silicon carbide [J]. Journal of Materials Science 2015, 50: 8104-10.
[60] SADER J E, CHON J W, MULVANEY P. Calibration of rectangular atomic force microscope cantilevers [J]. Review of Scientific Instruments, 1999, 70(10): 3967-9.
[61] GIESSIBL F J. Advances in atomic force microscopy [J]. Reviews of modern physics, 2003, 75(3): 949.
[62] WU Z, LIU W, ZHANG L. Effect of structural anisotropy on the dislocation nucleation and evolution in 6HSiC under nanoindentation [J]. Ceramics International, 2019, 45(11): 14229-37.
[63] LIU J, NOTBOHM J K, CARPICK R W, et al. Method for characterizing nanoscale wear of atomic force microscope tips [J]. ACS Nano, 2010, 4(7): 3763-72.
[64] GOEL S, LUO X, REUBEN R L. Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide [J]. Computational Materials Science, 2012, 51(1): 402-8.
[65] FENG S, QI L, LI G, et al. Molecular dynamics simulation of structural characterization of elastic and inelastic deformation in ZrCu metallic glasses [J]. Journal of Nanomaterials, 2014, 2014: 71-.
[66] YUAN L, SHAN D, GUO B. Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum [J]. Journal of Materials Processing Technology, 2007, 184(1-3): 1-5.
[67] HERTZBERG R W, VINCI R P, HERTZBERG J L. Deformation and fracture mechanics of engineering materials [M]. John Wiley & Sons, 2020.
[68] ZHANG S, CHENG X, CHEN J. Surface deformation, phase transition and dislocation mechanisms of single crystalline 6H-SiC in oblique nano-cutting [J]. Applied Surface Science, 2022, 588: 152944.
[69] WU Z, LIU W, ZHANG L. Critical loading conditions of amorphization, phase transformation, and dilation cracking in 6H‐silicon carbide [J]. Journal of the American Ceramic Society, 2018, 101(8): 3585-96.
[70] MOONEY C Z. Monte carlo simulation [M]. Sage, 1997.
Edit Comment