中文版 | English
Title

STABILITY OF GENERALIZED BDF2 AND AM2 METHODS

Alternative Title
广义二阶 BDF 和 AM 方法的稳定性
Author
Name pinyin
YU Yinqian
School number
12132890
Degree
硕士
Discipline
070102 计算数学
Subject category of dissertation
07 理学
Supervisor
王晓明
Mentor unit
数学系
Publication Years
2023-05-17
Submission date
2023-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

The main part of this thesis is to develop a unified approach to the uniform-in-time energy stability of a special class of linear two-step numerical methods when applied to some prototype linear dissipative problems. Also, some classical stability properties of these multi-step methods are analyzed, including A-stability(linear stability), G-stability, stability region, and decay rate. The aim is to construct better multi-step methods based on the analysis of these classical properties. Starting from recalling several classical linear multi-step methods, including the classical Adams-Bashforth(AM) methods and Backward differentiation formula(BDF) methods, we borrow the idea of Talor’s expansion based on different time point 𝑡 ∗ in order to construct the generalized two-step methods. After that, considering the efficiency and stability of numerical methods, several stability properties are recalled. It is natural to explore the stability of the generalized two-step methods, especially the generalized second-order Adams-Bashforth(AM2) method and the generalized second-order Backward differentiation formula(BDF) method. The former is derived by the expansion centered on the mid-point of the current and future time grid, while the latter is centered on the future time grid. In terms of the formulas, the generalized AM2 and the generalized BDF2 method are obtained by introducing a free parameter in their classical version. Therefore, we expect the generalized method can have better properties than the classical one, i.e., a lower local error and better stability. As a result, we find that the generalized AM2 method and the generalized BDF2 method are sometimes more stable than their classical version, i.e., with a larger stability region and larger decay rate. Naturally, we expect to make full advantage of these generalized two-step methods in some problems involving long-time behavior such as the coarsening process for the Cahn-Hilliard and several phase-field thin-film models. Lots of past research about the long-time stability issue of numerical schemes motivates us to explore whether the generalized AM2 method and the generalized BDF2 method can inherit the uniform-in-time energy bound in some linear dissipative problems. We eventually have some theoretical results about the uniform-in-time energy stability of the generalized AM2 and the generalized BDF2 methods in some prototype linear dissipative systems with a symmetric positive definite operator and a mild anti-symmetric operator. Additionally, some numerical results are given to show the advantages of these methods in accuracy and stability. On the other hand, we also try to explore the relationship between several stability properties, especially A-stability and uniform-in-time energy stability. It shows that in some cases, A-stability has an equivalent relationship with uniform-in-time energy stability in linear two-step convergent methods. And it can be directly used in some simple linear dissipative models to obtain the unconditionally uniform-in-time energy stability

Other Abstract

本论文的主要内容是对一类特殊的线性两步数值方法在应用于一些原型线性 耗散问题时的均匀时间内的能量稳定性进行了一些统一的研究。同时,还分析了 这些多步骤方法的一些经典稳定性特性,包括 A-稳定性(线性稳定性)、G-稳定性、 稳定区域和衰减率。目的是在分析这些经典性质的基础上构建更好的多步骤方法。 文章正文从回顾几个经典的线性多步方法开始,包括经典的 Adams-Bashforth(AM) 方法和 Backward differentiation formula(BDF) 方法,我们借用基于不同时间点 𝑡 ∗ 的 泰勒展式思想来构造一般的两步方法。之后,考虑到数值方法的效率和稳定性,我 们回顾了几个稳定性性质。探讨一般两步法的稳定性是很自然的,尤其是广义二 阶 Adams-Bashforth(AM2) 方法和广义二阶向后差分公式 (BDF2)。前者是通过以当 前和未来时间网格的中点为中心的扩展得出的,而后者是以未来时间网格为中心 的。就公式而言,广义的 AM2 和广义的 BDF2 方法是通过在其经典版本中引入一 个自由参数而得到的。因此,我们希望广义的方法能比经典的方法有更好的特性, 即更低的局部误差和更稳定地性质。结果是,我们发现广义的 AM2 方法和广义的 BDF2 方法有时比它们的经典版本更稳定,即具有更大的稳定区域和更大的衰减 率。当然,我们期望在一些涉及长时间行为的问题中充分利用这些广义两步法,如 Cahn-Hilliard 和几个相场薄膜模型的粗粒化过程。过去对数值方案的长时间稳定 性问题的大量研究,促使我们探索广义 AM2 方法和广义 BDF2 方法是否能在一些 线性耗散问题中继承均匀时间内的能量约束。我们最终得到了一些关于广义 AM2 和广义 BDF2 方法在一些具有对称正定算子和特殊反对称算子的线性耗散系统中 的关于时间一致的能量稳定性的理论结果。此外,我们还给出了一些数值结果以 显示这些方法在精度和稳定性方面的优势。另一方面,我们还试图探索几个稳定 性性质之间的关系,特别是线性稳定性和关于时间一致的能量稳定性。结果表明, 在某些情况下,线性稳定性与收敛的线性两步方法中的时间一致能量稳定性具有 等价关系。而且它可以直接用于一些简单的线性耗散模型中去得到无条件的时间 一致能量稳定性。

Keywords
Language
English
Training classes
独立培养
Enrollment Year
2021
Year of Degree Awarded
2023-06
References List

[1] M. ANITESCU, F. PAHLEVANI, AND W. J. LAYTON, Implicit for local effects and explicit for nonlocal effects is unconditionally stable, Electron. Trans. Numer. Anal, 18 (2004), pp. 174–187.
[2] U. M. ASCHER, S. J. RUUTH, AND B. T. WETTON, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995), pp. 797–823.
[3] W. CHEN, M. GUNZBURGER, D. SUN, AND X. WANG, Efficient and long-time accurate second-order methods for the Stokes–Darcy system, SIAM Journal on Numerical Analysis, 51 (2013), pp. 2563–2584.
[4] W. CHEN, W. LI, C. WANG, S. WANG, AND X. WANG, Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy, Research in the Mathematical Sciences, 7 (2020), pp. 1–27.
[5] Y. CHEN AND J. SHEN, Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models, Journal of Computational Physics, 308 (2016), pp. 40–56.
[6] B. COCKBURN, D. JONES, AND E. TITI, Estimating the number of asymptotic degrees of freedomfor nonlinear dissipative systems, Mathematics of Computation, 66 (1997), pp. 1073–1087.
[7] C. W. CRYER, A new class of highly-stable methods: A_0-stable methods, BIT Numerical Mathematics, 13 (1973), pp. 153–159.
[8] G. DAHLQUIST, Convergence and stability in the numerical integration of ordinary differential equations, Mathematica Scandinavica, (1956), pp. 33–53.
[9] G. G. DAHLQUIST, A special stability problem for linear multistep methods, BIT Numerical Mathematics, 3 (1963), pp. 27–43.
[10] DAHLQUIST, GERMUND, Error analysis for a class of methods for stiff non-linear initial value problems, in Numerical Analysis, Springer, 1976, pp. 60–72.
[11] DAHLQUIST, GERMUND, G-stability is equivalent to A-stability, BIT Numerical Mathematics, 18 (1978), pp. 384–401.
[12] DAHLQUIST, GERMUND, 33 years of numerical instability, Part I, BIT Numerical Mathematics, 25 (1985), pp. 188–204.
[13] C. FOIAS, G. R. SELL, AND E. S. TITI, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, Journal of Dynamics and Differential Equations, 1 (1989), pp. 199–244.
[14] C. W. GEAR, Numerical initial value problems in ordinary differential equations, Prentice-Hall Series in Automatic Computation, (1971).
[15] S. GOTTLIEB, F. TONE, C. WANG, X. WANG, AND D. WIROSOETISNO, Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations, SIAM Journal on Numerical Analysis, 50 (2012), pp. 126–150.E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving ordinary differential equations I, Nonstiff problems, Springer-Vlg, 1993.
[17] P. HENRICI, Discrete variable methods in ordinary differential equations, New York: Wiley,(1962).
[18] A. ISERLES, A first course in the numerical analysis of differential equations, no. 44, CambridgeUniversity Press, 2009.
[19] R. JELTSCH, d its relation to A_0-and A(0)-Stability, SIAM Journal on Numerical Analysis, 13(1976), pp. 8–17.
[20] R. JELTSCH AND O. NEVANLINNA, Stability and accuracy of time discretizations for initial value problems, Numerische Mathematik, 40 (1982), pp. 245–296.
[21] N. JIANG, M. MOHEBUJJAMAN, L. G. REBHOLZ, AND C. TRENCHEA, An optimally accurate discrete regularization for second order time stepping methods for Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, 310 (2016), pp. 388–405.
[22] W. LAYTON AND C. TRENCHEA, Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Applied Numerical Mathematics, 62 (2012), pp. 112–120.
[23] W. E. MILNE, Numerical integration of ordinary differential equations, The American Mathematical Monthly, 33 (1926), pp. 455–460.
[24] W. E. MILNE AND W. MILNE, Numerical solution of differential equations, vol. 64, Wiley New York, 1953.
[25] A. R. MITCHELL AND J. W. CRAGGS, Stability of difference relations in the solution of ordinary differential equations, Mathematics of Computation, 7 (1953), pp. 127–129.
[26] O. NEVANLINNA AND W. LINIGER, Contractive methods for stiff differential equations part ii, BIT Numerical Mathematics, 19 (1979), pp. 53–72.
[27] E. J. NYSTRÖM, Über die numerische Integration von Differentialgleichungen, akademische Abhandlung... von EJ Nyström, Druckerei der finnischen Literaturgesellschaft, 1925.
[28] H. ROBERTSON, The solution of a set of reaction rate equations, Numerical Analysis: An Introduction, 178182 (1966).
[29] H. RUTISHAUSER, Über die instabilität von methoden zur integration gewöhnlicher differentialgleichungen, Zeitschrift für angewandte Mathematik und Physik ZAMP, 3 (1952), pp. 65–74.
[30] J. SHEN, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Applicable Analysis, 38 (1990), pp. 201–229.
[31] B. SOMMEIJER, Explicit, high-order Runge-Kutta-Nyström methods for parallel computers, Applied Numerical Mathematics, 13 (1993), pp. 221–240.
[32] A. STUART AND A. R. HUMPHRIES, Dynamical systems and numerical analysis, vol. 2, Cambridge University Press, 1998.
[33] A. M. STUART, Numerical analysis of dynamical systems, Acta Numerica, 3 (1994), pp. 467–572.
[34] J. TODD, Notes on modern numerical analysis. I. Solution of differential equations by recurrence relations, Mathematics of Computation, 4 (1950), pp. 39–44.
[35] G. WANNER AND E. HAIRER, Solving ordinary differential equations II, vol. 375, Springer Berlin Heidelberg New York, 1996.
[36] O. B. WIDLUND, A note on unconditionally stable linear multistep methods, BIT Numerical Mathematics, 7 (1967), pp. 65–70.

Academic Degree Assessment Sub committee
数学
Domestic book classification number
O241
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544405
DepartmentDepartment of Mathematics
Recommended Citation
GB/T 7714
Yu YQ. STABILITY OF GENERALIZED BDF2 AND AM2 METHODS[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132890-于寅乾-数学系.pdf(1402KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[于寅乾]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[于寅乾]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[于寅乾]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.