中文版 | English
Title

基于物理仿真和深度学习的人体运动接触判断

Alternative Title
HUMAN MOTION CONTACT ESTIMATION BASED ON PHYSICS SIMULATION AND DEEP LEARNING
Author
Name pinyin
LIU Yifan
School number
12032837
Degree
硕士
Discipline
0801Z1 智能制造与机器人
Subject category of dissertation
08 工学
Supervisor
杨再跃
Mentor unit
系统设计与智能制造学院
Publication Years
2023-05-17
Submission date
2023-06-28
University
南方科技大学
Place of Publication
深圳
Abstract
人体运动接触状态对于理解和分析人体运动过程至关重要。惯性动作捕捉系统因其便捷性和通用性被认为是最有应用前景的动作捕捉技术,但无法获得直接的位移测量,需要接触状态进行后期修正。获取准确的多地形场景下的接触状态是一项很有挑战的工作。为了更加高效便捷的获得人体运动接触状态并验证其实用性,本文从接触数据获取、接触判断模型搭建和接触约束下的位移修正三个角度进行研究,提出了完整的技术流程,最后在惯性动作捕捉系统上验证其实际应用效果。
为了获得大量且准确的人体运动数据和接触状态,本研究借助人体运动合成的研究成果,在物理引擎中合成常见的地形和动作,并提取出身体各部位的接触状态。基于物理仿真的运动合成方法不仅保证了接触状态的真实性,同时能够高效的生成大量数据。借助此方法,本研究系统化的生成了大量人体运动数据,以
满足深度学习模型的训练要求。在接触判断模型上,本研究探索了三种深度学习模型,以构建人体运动与接触状态的映射关系,从运动序列中自动化的推理接触状态。由于注意力机制在捕捉长时序依赖性上有很强能力,基于注意力机制设计的接触判断模型取得了最好的实验效果,在仿真数据上和惯性动作捕捉数据上分别取得了高于95%90%接触判断精度。在惯性动作捕捉系统的位移还原上,本文提出了利用人体骨骼模型和接触约
束,通过运动学计算人体位移的方法。本文提出的位移还原方法在仿真数据上达到98%的还原精度。在惯性测量数据上,在水平方向上的位移还原精度达到95%左右。值得注意的是,在复杂地形的高度方向上,本研究提出的位移还原方法要优于惯性测量直接得到的结果。实验结果证明本次研究设计的接触判断模型可以得到准确的接触状态,位移还原方法可以弥补惯性传感器在高度方向上位移测量精度不足的问题。
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] MORDATCH I, TODOROV E, POPOVIĆ Z. Discovery of complex behaviors through contact invariant optimization[J]. ACM Transactions on Graphics (ToG), 2012, 31(4): 1-8.
[2] MORDATCH I, WANG J M, TODOROV E, et al. Animating human lower limbs using contact invariant optimization[J]. ACM Transactions on Graphics (TOG), 2013, 32(6): 1-8.
[3] ZHENG Y, YUMANE K. Human motion tracking control with strict contact force constraintsfor floating-base humanoid robots[M]. Google Patents, 2015.
[4] ABE Y, DA SILVA M, POPOVIĆ J. Multiobjective control with frictional contacts[C]//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation.2007: 249-258.
[5] HOLDEN D, KANOUN O, PEREPICHKA M, et al. Learned motion matching[J]. ACM Transactions on Graphics (TOG), 2020, 39(4): 53-1.
[6] HOLDEN D, KOMURA T, SAITO J. Phase-functioned neural networks for character control[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 1-13.
[7] STARKE S, ZHANG H, KOMURA T, et al. Neural state machine for character-scene interactions.[J]. ACM Trans. Graph., 2019, 38(6): 209-1.
[8] STARKE S, ZHAO Y, KOMURA T, et al. Local motion phases for learning multi-contactcharacter movements[J]. ACM Transactions on Graphics (TOG), 2020, 39(4): 54-1.
[9] REMPE D, GUIBAS L J, HERTZMANN A, et al. Contact and human dynamics from monocular video[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. Springer, 2020: 71-87.
[10] SHIMADA S, GOLYANIK V, XU W, et al. Physcap: Physically plausible monocular 3d motion capture in real time[J]. ACM Transactions on Graphics (ToG), 2020, 39(6): 1-16.
[11] REMPE D, BIRDAL T, HERTZMANN A, et al. Humor: 3d human motion model for robust pose estimation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 11488-11499.
[12] MARUYAMA T, TADA M, SAWATOME A, et al. Constraint-based real-time full-body motioncapture using inertial measurement units[C]//2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018: 4298-4303.
[13] YI X, ZHOU Y, XU F. Transpose: Real-time 3d human translation and pose estimation with six inertial sensors[J]. ACM Transactions on Graphics (TOG), 2021, 40(4): 1-13.
[14] YI X, ZHOU Y, HABERMANN M, et al. Physical inertial poser (pip): Physics-aware realtime human motion tracking from sparse inertial sensors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 13167-13178.
[15] BRUBAKER M A, SIGAL L, FLEET D J. Estimating contact dynamics[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009: 2389-2396.
[16] 徐銘聲, HSU M S, 林奕成, 等. 角色动画中脚步滑动之即时侦测与校正[Z]. 2008.
[17] IKEMOTO L, ARIKAN O, FORSYTH D. Knowing when to put your foot down[C]//Proceedings of the 2006 symposium on Interactive 3D graphics and games. 2006: 49-53.
[18] MA H, YAN W, YANG Z, et al. Real-time foot-ground contact detection for inertial motioncapture based on an adaptive weighted naive bayes model[J]. IEEE Access, 2019, 7: 130312-130326.
[19] MILLARD M, MOMBAUR K. A quick turn of foot: Rigid foot-ground contact models for human motion prediction[J]. Frontiers in neurorobotics, 2019, 13: 62.
[20] BROWN P. Contact modelling for forward dynamics of human motion[D]. University of Waterloo, 2017.
[21] XIE K, WANG T, IQBAL U, et al. Physics-based human motion estimation and synthesis from videos[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021:11532-11541.
[22] ZIEGLER J, KRETZSCHMAR H, STACHNISS C, et al. Accurate human motion capture in large areas by combining IMU-and laser-based people tracking[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011: 86-91.
[23] MADARAS M, RIEČICKỲ A, MESÁROŠ M, et al. Position Estimation and Calibration of Inertial Motion Capture Systems Using Single Camera[J]. Journal of Virtual Reality and Broadcasting, 2019, 15(3).
[24] RIECICKỲ A, MADARAS M, PIOVARCI M, et al. Optical-inertial Synchronization of MoCap Suit with Single Camera Setup for Reliable Position Tracking.[C]//VISIGRAPP (1: GRAPP). 2018: 40-47.
[25] ZHU L, XU C, SHI K, et al. Recovering Walking Trajectories from Local Measurements and Inertia Data[J]. Mathematical Problems in Engineering, 2020, 2020: 1-11.
[26] KAICHI T, MARUYAMA T, TADA M, et al. Resolving position ambiguity of imu-based human pose with a single rgb camera[J]. Sensors, 2020, 20(19): 5453.
[27] SCHREINER P, PEREPICHKA M, LEWIS H, et al. Global position prediction for interactive motion capture[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4(3): 1-16.
[28] MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: Archive of Motion Capture as Surface Shapes[J/OL]. CoRR, 2019, abs/1904.03278. http://arxiv.org/abs/1904.03278.
[29] MAEDA T, UKITA N. MotionAug: Augmentation with Physical Correction for Human Motion Prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 6427-6436.
[30] YAO L, YANG W, HUANG W. A data augmentation method for human action recognition using dense joint motion images[J]. Applied Soft Computing, 2020, 97: 106713.
[31] ZHANG J, WU F, WEI B, et al. Data augmentation and dense-LSTM for human activity recognition using WiFi signal[J]. IEEE Internet of Things Journal, 2020, 8(6): 4628-4641.
[32] MAEDA T, UKITA N. Data Augmentation for Human Motion Prediction[C]//2021 17th International Conference on Machine Vision and Applications (MVA). IEEE, 2021: 1-5.
[33] AGRAWAL R, JOSHI A, BETKE M. Enabling early gesture recognition by motion augmentation[C]//Proceedings of the 11th PErvasive Technologies Related to Assistive EnvironmentsConference. 2018: 98-101.
[34] STEVEN EYOBU O, HAN D S. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network[J]. Sensors, 2018, 18(9): 2892.
[35] ROGEZ G, SCHMID C. Mocap-guided data augmentation for 3d pose estimation in the wild[J]. Advances in neural information processing systems, 2016, 29.
[36] YIN K, LOKEN K, VAN DE PANNE M. Simbicon: Simple biped locomotion control[J]. ACM Transactions on Graphics (TOG), 2007, 26(3): 105-es.
[37] LIU L, YIN K, VAN DE PANNE M, et al. Sampling-based contact-rich motion control[M]//ACM SIGGRAPH 2010 papers. 2010: 1-10.
[38] MONDAL A K, JAMALI N. A survey of reinforcement learning techniques: strategies, recent development, and future directions[A]. 2020.
[39] PENG X B, ABBEEL P, LEVINE S, et al. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills[J]. ACM Transactions On Graphics (TOG), 2018, 37(4): 1-14.
[40] PENG X B, MA Z, ABBEEL P, et al. Amp: Adversarial motion priors for stylized physics-based character control[J]. ACM Transactions on Graphics (TOG), 2021, 40(4): 1-20.
[41] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681.
[42] LI Z, HE D, TIAN F, et al. Towards binary-valued gates for robust lstm training[C]//International Conference on Machine Learning. PMLR, 2018: 2995-3004.
[43] MICHELUCCI U. An introduction to autoencoders[A]. 2022.
[44] KINGMA D P, WELLING M. Auto-encoding variational bayes[A]. 2013.
[45] SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[J]. Advances in neural information processing systems, 2015, 28.
[46] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[47] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[J].Advances in neural information processing systems, 2015, 28.
[48] ZHENG C, ZHU S, MENDIETA M, et al. 3d human pose estimation with spatial and temporal transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 11656-11665.
[49] SONG Z, WANG D, JIANG N, et al. Actformer: A gan transformer framework towards general action-conditioned 3d human motion generation[A]. 2022.
[50] PETROVICH M, BLACK M J, VAROL G. Action-conditioned 3D human motion synthesis with transformer VAE[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10985-10995.
[51] MALEK-PODJASKI M, DELIGIANNI F. Adversarial Attention for Human Motion Synthesis[A]. 2022.
[52] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.

Academic Degree Assessment Sub committee
力学
Domestic book classification number
TP391.4
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544457
DepartmentDepartment of Mechanical and Energy Engineering
Recommended Citation
GB/T 7714
刘逸凡. 基于物理仿真和深度学习的人体运动接触判断[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032837-刘逸凡-机械与能源工程(10667KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘逸凡]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘逸凡]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘逸凡]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.