中文版 | English
Title

基因工程T细胞改造及其在实体瘤治疗中的应用探索

Alternative Title
Modification of genetically engineeredTcellsandits application in the treatment of solidtumors
Author
Name pinyin
HAN Xinwei
School number
12032589
Degree
硕士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
任莉莉
Mentor unit
南方科技大学第一附属医院
Publication Years
2023-05-10
Submission date
2023-06-28
University
南方科技大学
Place of Publication
深圳
Abstract

过继性T细胞疗法(Adoptive T Cell TherapyACT)作为一种有效的免疫疗法在多种血液肿瘤的治疗中取得了显著的效果,但在实体瘤的治疗中效果不佳。主要原因在于实体瘤组织结构致密,导致T细胞浸润到肿瘤内部的数量有限,同时实体瘤中高度免疫抑制的肿瘤微环境也使T细胞难以被激活并迅速衰竭。促进T细胞向肿瘤微环境浸润是提高过继性T细胞疗法在临床治疗中的关键。

研究表明NRP1Neuropilin-1NRP1)广泛表达在多种恶性肿瘤细胞表面,而在T细胞表面修饰相应的NRP1配体(Neuropilin-1 LigandNRP1L),可以通过促进T细胞与NRP1阳性的肿瘤细胞结合并形成有利于T细胞向肿瘤内浸润的通道。课题组前期的研究已经证明了Sema3A作为一种NRP1L,能够促进Jurkat-T细胞向实体瘤的浸润。

本研究在此基础上,首先利用基因工程技术,构建了能够促进T细胞向肿瘤微环境浸润的双特异性元件:NRP1L×CD3双特异性蛋白。该蛋白一端由NRP1L的结构域组成,能够与多种恶性肿瘤表面广泛表达的NRP1结合;另外一端由anti-CD3结构域组成,能够识别并结合T 细胞表面CD3结构域。然后通过逆转录病毒构建工程化的间充质干细胞和工程化的293T细胞,通过这两类工程化细胞表达并分泌该类蛋白,验证该蛋白的表达并纯化NRP1L×CD3双特异性蛋白,之后将NRP1L×CD3双特异性蛋白与T细胞孵育,使T细胞表面能够携带NRP1L结构域,进而能够识别并结合NRP1阳性的肿瘤细胞。为了进一步验证NRP1L×CD3双特异性蛋白对于T细胞浸润能力的影响,本研究采用高表达NRP1的细胞系构建3D细胞球模拟实体瘤的3D结构,并通过荧光显微分析技术、流式细胞技术及酶联免疫分析技术对修饰后的T细胞浸润效果进行定性、定量分析。结果显示:NRP1L×CD3双特异性蛋白的修饰能够显著提升T细胞向肿瘤内部的浸润能力并对T细胞有一定的激活作用。综上,我们的研究结果表明NRP1L×CD3双特异性蛋白作为一种创新的双功能策略,可以通过对T细胞的非基因修饰,克服过继性免疫治疗的主要瓶颈,在促进T细胞向实体瘤的浸润方面有着稳定且明显的效果,为过继性T细胞疗法的应用创造条件。

 

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-07
References List

[1] MET O, JENSEN K M, CHAMBERLAIN C A, et al. Principles of adoptive T cell therapy in cancer [J]. Semin Immunopathol, 2019, 41(1): 49-58.
[2] RILEY R S, JUNE C H, LANGER R, et al. Delivery technologies for cancer immunotherapy [J]. Nat Rev Drug Discov, 2019, 18(3): 175-96.
[3] WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice [J]. Nat Rev Immunol, 2020, 20(11): 651-68.
[4] POCATERRA A, CATUCCI M, MONDINO A. Adoptive T cell therapy of solid tumors: time to team up with immunogenic chemo/radiotherapy [J]. Curr Opin Immunol, 2022, 74: 53-9.
[5] KIESGEN S, MESSINGER J C, CHINTALA N K, et al. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity [J]. Nat Protoc, 2021, 16(3): 1331-42.
[6] BAXEVANIS C N, PEREZ S A, PAPAMICHAIL M. Cancer immunotherapy [J]. Crit Rev Clin Lab Sci, 2009, 46(4): 167-89.
[7] BECKERMANN K E, DUDZINSKI S O, RATHMELL J C. Dysfunctional T cell metabolism in the tumor microenvironment [J]. Cytokine Growth Factor Rev, 2017, 35: 7-14.
[8] GALLUZZI L, CHAN T A, KROEMER G, et al. The hallmarks of successful anticancer immunotherapy [J]. Sci Transl Med, 2018, 10(459).
[9] CHAN J D, LAI J, SLANEY C Y, et al. Cellular networks controlling T cell persistence in adoptive cell therapy [J]. Nat Rev Immunol, 2021, 21(12): 769-84.
[10] RESTIFO N P, DUDLEY M E, ROSENBERG S A. Adoptive immunotherapy for cancer: harnessing the T cell response [J]. Nat Rev Immunol, 2012, 12(4): 269-81.
[11] MOROTTI M, ALBUKHARI A, ALSAADI A, et al. Promises and challenges of adoptive T-cell therapies for solid tumours [J]. Br J Cancer, 2021, 124(11): 1759-76.
[12] WORKENHE S T, POL J, KROEMER G. Tumor-intrinsic determinants of immunogenic cell death modalities [J]. Oncoimmunology, 2021, 10(1): 1893466.
[13] SAHU A, KOSE K, KRAEHENBUEHL L, et al. In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response [J]. Nat Commun, 2022, 13(1): 5312.
[14] AKMAN M, BELISARIO D C, SALAROGLIO I C, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons [J]. J Exp Clin Cancer Res, 2021, 40(1): 28.
[15] JIANG X, XU J, LIU M, et al. Adoptive CD8(+) T cell therapy against cancer:Challenges and opportunities [J]. Cancer Lett, 2019, 462: 23-32.
[16] MOLON B, UGEL S, DEL POZZO F, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells [J]. J Exp Med, 2011, 208(10): 1949-62.
[17] JOHNSON L A, JUNE C H. Driving gene-engineered T cell immunotherapy of cancer [J]. Cell Res, 2017, 27(1): 38-58.
[18] SHRIMALI R K, YU Z, THEORET M R, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer [J]. Cancer Res, 2010, 70(15): 6171-80.
[19] CIPPONI A, WIEERS G, VAN BAREN N, et al. Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? [J]. Cancer Immunol Immunother, 2011, 60(8): 1153-60.
[20] LIM W A, JUNE C H. The Principles of Engineering Immune Cells to Treat Cancer [J]. Cell, 2017, 168(4): 724-40.
[21] MAJZNER R G, MACKALL C L. Clinical lessons learned from the first leg of the CAR T cell journey [J]. Nat Med, 2019, 25(9): 1341-55.
[22] ZHANG Y, LIU Z, WEI W, et al. TCR engineered T cells for solid tumor immunotherapy [J]. Exp Hematol Oncol, 2022, 11(1): 38.
[23] SHAFER P, KELLY L M, HOYOS V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects [J]. Front Immunol, 2022, 13: 835762.
[24] SUN Y, LI F, SONNEMANN H, et al. Evolution of CD8(+) T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer [J]. Cells, 2021, 10(9).
[25] ZHU W, PENG Y, WANG L, et al. Identification of alpha-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy [J]. Hepatology, 2018, 68(2): 574-89.
[26] YAZDANI Z, RAFIEI A, IRANNEJAD H, et al. Designing a novel multiepitope peptide vaccine against melanoma using immunoinformatics approach [J]. J Biomol Struct Dyn, 2022, 40(7): 3312-24.
[27] XU P, LUO H, KONG Y, et al. Cancer neoantigen: Boosting immunotherapy [J]. Biomed Pharmacother, 2020, 131: 110640.
[28] WALSH S R, SIMOVIC B, CHEN L, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy [J]. J Clin Invest, 2019, 129(12): 5400-10.
[29] KOCHENDERFER J N, DUDLEY M E, FELDMAN S A, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells [J]. Blood, 2012, 119(12): 2709-20.
[30] HE J, XIONG X, YANG H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response [J]. Cell Res, 2022, 32(6): 530-42.
[31] WANG S, SUN J, CHEN K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors [J]. BMC Med, 2021, 19(1): 140.
[32] GALON J, COSTES A, SANCHEZ-CABO F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J]. Science, 2006, 313(5795): 1960-4.
[33] TAUBE J M, AKTURK G, ANGELO M, et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation [J]. J Immunother Cancer, 2020, 8(1).
[34] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-74.
[35] MOTZ G T, SANTORO S P, WANG L P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors [J]. Nat Med, 2014, 20(6): 607-15.
[36] MOTZ G T, COUKOS G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales [J]. Nat Rev Immunol, 2011, 11(10): 702-11.
[37] HAMZAH J, JUGOLD M, KIESSLING F, et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction [J]. Nature, 2008, 453(7193): 410-4.
[38] SCHAAF M B, GARG A D, AGOSTINIS P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy [J]. Cell Death Dis, 2018, 9(2): 115.
[39] MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age [J]. Nature, 2011, 480(7378): 480-9.
[40] GAJEWSKI T F, SCHREIBER H, FU Y X. Innate and adaptive immune cells in the tumor microenvironment [J]. Nat Immunol, 2013, 14(10): 1014-22.
[41] FACCIABENE A, PENG X, HAGEMANN I S, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells [J]. Nature, 2011, 475(7355): 226-30.
[42] MARTINEZ-BOSCH N, VINAIXA J, NAVARRO P. Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy [J]. Cancers (Basel), 2018, 10(1).
[43] WU Q, YOU L, NEPOVIMOVA E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape [J]. J Hematol Oncol, 2022, 15(1): 77.
[44] GE Z, WU S, ZHANG Z, et al. Mechanism of tumor cells escaping from immune surveillance of NK cells [J]. Immunopharmacol Immunotoxicol, 2020, 42(3): 187-98.
[45] REN Z, HU Y, LI G, et al. HIF-1alpha induced long noncoding RNA FOXD2-AS1 promotes the osteosarcoma through repressing p21 [J]. Biomed Pharmacother, 2019, 117: 109104.
[46] ZHANG L, CONEJO-GARCIA J R, KATSAROS D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer [J]. N Engl J Med, 2003, 348(3): 203-13.
[47] HWANG W T, ADAMS S F, TAHIROVIC E, et al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis [J]. Gynecol Oncol, 2012, 124(2): 192-8.
[48] SATO E, OLSON S H, AHN J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer [J]. Proc Natl Acad Sci U S A, 2005, 102(51): 18538-43.
[49] BOUMA-TER STEEGE J C, BAETEN C I, THIJSSEN V L, et al. Angiogenic profile of breast carcinoma determines leukocyte infiltration [J]. Clin Cancer Res, 2004, 10(21): 7171-8.
[50] BOISSONNAS A, FETLER L, ZEELENBERG I S, et al. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor [J]. J Exp Med, 2007, 204(2): 345-56.
[51] CHAOUL N, TANG A, DESRUES B, et al. Lack of MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated with an increased control of tumor growth [J]. Oncoimmunology, 2018, 7(3): e1404213.
[52] NISONOFF A, WISSLER F C, LIPMAN L N. Properties of the major component of a peptic digest of rabbit antibody [J]. Science, 1960, 132(3441): 1770-1.
[53] FUDENBERG H H, DREWS G, NISONOFF A. Serologic Demonstration of Dual Specificity of Rabbit Bivalent Hybrid Antibody [J]. J Exp Med, 1964, 119(1): 151-66.
[54] LABRIJN A F, JANMAAT M L, REICHERT J M, et al. Bispecific antibodies: a mechanistic review of the pipeline [J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
[55] OFFNER S, HOFMEISTER R, ROMANIUK A, et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells [J]. Mol Immunol, 2006, 43(6): 763-71.
[56] BLANCO B, DOMINGUEZ-ALONSO C, ALVAREZ-VALLINA L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy [J]. Clin Cancer Res, 2021, 27(20): 5457-64.
[57] PORTER D L, LEVINE B L, KALOS M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia [J]. N Engl J Med, 2011, 365(8): 725-33.
[58] SUURS F V, LUB-DE HOOGE M N, DE VRIES E G E, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges [J]. Pharmacol Ther, 2019, 201: 103-19.
[59] RADER C. Bispecific antibodies in cancer immunotherapy [J]. Curr Opin Biotechnol, 2020, 65: 9-16.
[60] TORRES E T R, EMENS L A. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies [J]. Breast Cancer Res Treat, 2022, 191(2): 291-302.
[61] SHIM H. Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations [J]. Biomolecules, 2020, 10(3).
[62] LEE D W, GARDNER R, PORTER D L, et al. Current concepts in the diagnosis and management of cytokine release syndrome [J]. Blood, 2014, 124(2): 188-95.
[63] BELMONTES B, SAWANT D V, ZHONG W, et al. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors [J]. Sci Transl Med, 2021, 13(608).
[64] CHUCKRAN C A, LIU C, BRUNO T C, et al. Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy [J]. J Immunother Cancer, 2020, 8(2).
[65] LECLERC M, VOILIN E, GROS G, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1 [J]. Nat Commun, 2019, 10(1): 3345.
[66] ZHANG X, KLAMER B, LI J, et al. A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer [J]. BMC Med Genomics, 2020, 13(Suppl 5): 45.
[67] SONG X, ZHANG W, ZHANG Y, et al. Expression of semaphorin 3A and neuropilin 1 with clinicopathological features and survival in human tongue cancer [J]. Med Oral Patol Oral Cir Bucal, 2012, 17(6): e962-8.
[68] EOM Y W, SHIM K Y, BAIK S K. Mesenchymal stem cell therapy for liver fibrosis [J]. Korean J Intern Med, 2015, 30(5): 580-9.
[69] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential [J]. Trends Pharmacol Sci, 2020, 41(9): 653-64.
[70] GALIPEAU J, SENSEBE L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities [J]. Cell Stem Cell, 2018, 22(6): 824-33.
[71] MITTAL V. Epithelial Mesenchymal Transition in Tumor Metastasis [J]. Annu Rev Pathol, 2018, 13: 395-412.
[72] VON EINEM J C, GUENTHER C, VOLK H D, et al. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: Results from the phase 1/2 TREAT-ME-1 trial [J]. Int J Cancer, 2019, 145(6): 1538-46.
[73] LIN W, HUANG L, LI Y, et al. Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities [J]. Biomed Res Int, 2019, 2019: 2820853.
[74] MARKOV A, THANGAVELU L, ARAVINDHAN S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders [J]. Stem Cell Res Ther, 2021, 12(1): 192.
[75] KAVARI S L, SHAH K. Engineered stem cells targeting multiple cell surface receptors in tumors [J]. Stem Cells, 2020, 38(1): 34-44.
[76] GAO P, REN G, LIANG J, et al. STAT6 Upregulates NRP1 Expression in Endothelial Cells and Promotes Angiogenesis [J]. Front Oncol, 2022, 12: 823377.
[77] LI H, ZHAO J, LIU B, et al. MicroRNA-320 targeting neuropilin 1 inhibits proliferation and migration of vascular smooth muscle cells and neointimal formation [J]. Int J Med Sci, 2019, 16(1): 106-14.
[78] CHEN Z, GAO H, DONG Z, et al. NRP1 regulates radiation-induced EMT via TGF-beta/Smad signaling in lung adenocarcinoma cells [J]. Int J Radiat Biol, 2020, 96(10): 1281-95.
[79] DUMOND A, PAGES G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment [J]. Front Cell Dev Biol, 2020, 8: 662.
[80] OVERACRE-DELGOFFE A E, CHIKINA M, DADEY R E, et al. Interferon-gamma Drives T(reg) Fragility to Promote Anti-tumor Immunity [J]. Cell, 2017, 169(6): 1130-41 e11.
[81] KWIATKOWSKI S C, GUERRERO P A, HIROTA S, et al. Neuropilin-1 modulates TGFbeta signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy [J]. PLoS One, 2017, 12(9): e0185065.
[82] ZHU B, ZHAN Q Q, LIU Q Y, et al. The effect of neuropilin-1 silencing on the transforming growth factor-beta1-mediated epithelial-mesenchymal transition of colon cancer SW480 cells and its effect on the proliferation and migration of colon cancer cells [J]. J Physiol Pharmacol, 2022, 73(2).
[83] QUANTE M, RASKOPF E, STAHL S, et al. No functional and transductional significance of specific neuropilin 1 siRNA inhibition in colon carcinoma cell lines lacking VEGF receptor 2 [J]. Oncol Rep, 2009, 21(5): 1161-8.

Academic Degree Assessment Sub committee
生物学
Domestic book classification number
R73-36
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544489
DepartmentSchool of Medicine
Recommended Citation
GB/T 7714
韩欣玮. 基因工程T细胞改造及其在实体瘤治疗中的应用探索[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032589-韩欣玮-南方科技大学医(3074KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[韩欣玮]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[韩欣玮]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[韩欣玮]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.