中文版 | English
Title

面向 GaN 增强型器件应用的 p 型材料研究

Alternative Title
RESEARCH ON P-TYPE MATERIALS FOR GALLIUM NITRIDE ENHANCEMENT MODE DEVICE APPLICATIONS
Author
Name pinyin
LI Honglin
School number
12132450
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
汪青
Mentor unit
深港微电子学院
Publication Years
2023-05-16
Submission date
2023-06-29
University
南方科技大学
Place of Publication
深圳
Abstract

   氮化镓(GaN)被誉为宽禁带半导体材料,它具有优良的物理特性,如宽带隙、高迁移率、高耐压和高热导率等,为各种行业的发展提供了强大的支持,如消费型电子、铁路、航空、汽车和工业设备等。在GaN HEMT的应用中,降低功耗及保证电路安全运行十分关键,因此增强型GaN HEMT的研究尤为重要。目前各种实现增强型GaN HEMT的方法都存在一定的不足。而基于pGaN栅极的增强型器件由于工艺可重复性高、栅极稳定性较好等优势,得到了广泛关注,并且是目前唯一商用的增强型GaN器件方案。但是,具有pGaN栅极的增强型器件对干法刻蚀工艺及镁的有效激活有很高的要求,其进一步发展也受此阻碍。因此,本课题从p型材料的角度出发,通过对一系列p型材料进行性能表征,针对更适合应用在增强型GaN HEMT中作为栅极的p型材料,做出一系列研究。

本课题通过对氧化亚铜、氧化亚镍和硼掺杂金刚石等一系列p型材料进行表征测试,详细分析了p型材料的生长速率、表面形貌、拉曼光谱和空穴浓度等信息。并且,通过将氧化亚铜、氧化亚镍等膜层应用在GaN HEMT栅极中,其阈值电压均实现了正偏。由于具有较好的薄膜性质,器件的开关电流比也得到了显著提升,这些结果都论证了p型氧化亚铜、氧化亚镍材料实现增强型器件的可行性。对于p型硼掺杂金刚石,本课题通过对单晶金刚石新型刻蚀工艺进行优化,有效改善了金刚石的表面形貌。此外,本课题优化了硼掺杂金刚石的欧姆接触工艺,实现了0.22 Ω·mm的金刚石上欧姆接触。这不仅为金刚石在GaN HEMT上应用奠定了基础,更为未来第四代半导体金刚石器的制备提供工艺技术支持。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2021
Year of Degree Awarded
2023-06
References List

[1] MACK C A. Fifty years of Moore's law[J]. IEEE Transactions on semiconductor manufacturing, 2011, 24(2): 202-207.
[2] AJAYAN J, NIRMAL D. 20-nm enhancement-mode metamorphic GaAs HEMT with highly doped InGaAs source/drain regions for high-frequency applications[J]. International Journal of Electronics, 2017, 104(3): 504-512.
[3] MARUSKA H P, TIETJEN J J. The preparation and properties of vapor‐deposited single‐crystal‐line GaN[J]. Applied Physics Letters, 1969, 15(10): 327-329.
[4] ZHANG J, ZHANG W, WU Y, et al. Wafer-Scale Si–GaN Monolithic Integrated E-Mode Cascode FET Realized by Transfer Printing and Self-Aligned Etching Technology[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3304-3308.
[5] JOSHIN K, KIKKAWA T, MASUDA S, et al. Outlook for GaN HEMT technology[J]. Fujitsu Sci. Tech. J, 2014, 50(1): 138-143.
[6] PENGELLY R S, WOOD S M, MILLIGAN J W, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764-1783.
[7] AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353-355.
[8] NAKAMURA S, SENOH M S M, MUKAI T M T. Highly p-typed Mg-doped GaN films grown with GaN buffer layers[J]. Japanese journal of applied physics, 1991, 30(10A): L1708.
[9] HEBER J. Nobel Prize 2014: Akasaki, Amano & Nakamura[J]. Nature Physics, 2014, 10(11): 791-791.
[10] MISHRA U K, PARIKH P, WU Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031.
[11] TSOU C W, LIN C Y, LIAN Y W, et al. 101-GHz InAlN/GaN HEMTs on silicon with high Johnson’s figure-of-merit[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2675-2678.
[12] AMBACHER O, SMART J, SHEALY J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures[J]. Journal of applied physics, 1999, 85(6): 3222-3233.
[13] WIENECKE S, ROMANCZYK B, GUIDRY M, et al. N-polar GaN cap MISHEMT with record power density exceeding 6.5 W/mm at 94 GHz[J]. IEEE Electron Device Letters, 2017, 38(3): 359-362.
[14] BROWN R. A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness[D]. University of Glasgow, 2015.
[15] MENEGHINI M, DE SANTI C, ABID I, et al. GaN-based power devices: Physics, reliability, and perspectives[J]. Journal of Applied Physics, 2021, 130(18).
[16] REZAEE M, KHOSROABADI S. A new design for improving the performance of AlGaN/GaN high-electron-mobility transistors[J]. Journal of Computational Electronics, 2021, 20(5): 1637-1643.
[17] LI C J, HONG Y P, XUE H X, et al. Formation of two-dimensional electron gas at amorphous/crystalline oxide interfaces[J]. Scientific Reports, 2018, 8(1): 1-9.
[18] ASIF KHAN M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN‐Al x Ga1− x N heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215.
[19] SEHRA K, KUMARI V, GUPTA M, et al. A Π-shaped p-GaN HEMT for reliable enhancement mode operation[J]. Microelectronics Reliability, 2022, 133: 114544.
[20] ANDROSE D R, DEB S, RADHAKRISHNAN S K, et al. T-gate AlGaN/GaN HEMT with effective recess engineering for enhancement mode operation[J]. Materials Today: Proceedings, 2021, 45: 3556-3559.
[21] WANG H, WANG J, LI M, et al. 823-mA/mm drain current density and 945-MW/cm 2 Baliga’s figure-of-merit enhancement-mode GaN MISFETs with a novel PEALD-AlN/LPCVD-Si 3 N 4 dual-gate dielectric[J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
[22] MA Y, XIAO M, DU Z, et al. Tri-gate GaN junction HEMT[J]. Applied Physics Letters, 2020, 117(14): 143506.
[23] YAO Y, HE Z, YANG F, et al. Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique[J]. Applied Physics Express, 2013, 7(1): 016502.
[24] LIN S, WANG M, SANG F, et al. A GaN HEMT structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices[J]. IEEE Electron Device Letters, 2016, 37(4): 377-380.
[25] IM K S. Mobility Fluctuations in a Normally-Off GaN MOSFET Using Tetramethylammonium Hydroxide Wet Etching[J]. IEEE Electron Device Letters, 2020, 42(1): 18-21.
[26] CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795.
[27] CAI Y, ZHOU Y, CHEN K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Letters, 2005, 26(7): 435-437.
[28] ZHANG Z, FU K, DENG X, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si 3 N 4 gate dielectric and standard fluorine ion implantation[J]. IEEE Electron Device Letters, 2015, 36(11): 1128-1131.
[29] CHEN K J, YANG S, TANG Z, et al. Surface nitridation for improved dielectric/III‐nitride interfaces in GaN MIS‐HEMTs[J]. physica status solidi (a), 2015, 212(5): 1059-1065.
[30] OKA T, NOZAWA T. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications[J]. IEEE Electron Device Letters, 2008, 29(7): 668-670.
[31] WANG Y, LYU G, WEI J, et al. Characterization of static and dynamic behavior of 1200 V normally off GaN/SiC cascode devices[J]. IEEE Transactions on Industrial Electronics, 2019, 67(12): 10284-10294.
[32] LU B, SAADAT O I, PALACIOS T. High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor[J]. IEEE Electron Device Letters, 2010, 31(9): 990-992.
[33] HAMADY S. New concepts for normally-off power gallium nitride (GaN) high electron mobility transistor (HEMT)[D]. Universite Toulouse III Paul Sabatier, 2014..
[34] GUO F, HUANG S, WANG X, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier AlGaN/GaN heterostructure with in situ remote plasma pretreatments[J]. Applied Physics Letters, 2021, 118(9): 093503.
[35] SUN Z, HUANG H, SUN N, et al. A novel GaN metal-insulator-semiconductor high electron mobility transistor featuring vertical gate structure[J]. Micromachines, 2019, 10(12): 848.
[36] UEMOTO Y, HIKITA M, UENO H, et al. Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399.
[37] GRECO G, IUCOLANO F, ROCCAFORTE F. Review of technology for normally-off HEMTs with p-GaN gate[J]. Materials Science in Semiconductor Processing, 2018, 78: 96-106.
[38] POSTHUMA N E, YOU S, LIANG H, et al. Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance[C]//2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2016: 95-98.
[39] LÜKENS G, HAHN H, KALISCH H, et al. Self-aligned process for selectively etched p-GaN-gated AlGaN/GaN-on-Si HFETs[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3732-3738.
[40] ASIF KHAN M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN‐Al x Ga1− x N heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215.
[41] KHAN M A, CHEN Q, SUN C J, et al. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors[J]. Applied physics letters, 1996, 68(4): 514-516.
[42] HU X, SIMIN G, YANG J, et al. Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate[J]. Electronics Letters, 2000, 36(8): 753-754.
[43] LANFORD W B, TANAKA T, OTOKI Y, et al. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage[J]. Electronics Letters, 2005, 41(7): 449-450.
[44] PALACIOS T, SUH C S, CHAKRABORTY A, et al. High-performance E-mode AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2006, 27(6): 428-430.
[45] KAMBAYASHI H, SATOH Y, OOTOMO S, et al. Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage[J]. Solid-State Electronics, 2010, 54(6): 660-664.
[46] KANAMURA M, OHKI T, KIKKAWA T, et al. Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-$ k $ gate dielectrics[J]. IEEE Electron Device Letters, 2010, 31(3): 189-191.
[47] HWANG I, KIM J, CHOI H S, et al. p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current[J]. IEEE Electron Device Letters, 2013, 34(2): 202-204.
[48] SU L Y, LEE F, HUANG J J. Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer[J]. IEEE Transactions on Electron Devices, 2014, 61(2): 460-465.
[49] ZHANG Z, FU K, DENG X, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si 3 N 4 gate dielectric and standard fluorine ion implantation[J]. IEEE Electron Device Letters, 2015, 36(11): 1128-1131.
[50] ZHOU Q, LIU L, ZHANG A, et al. 7.6 V threshold voltage high-performance normally-off Al 2 O 3/GaN MOSFET achieved by interface charge engineering[J]. IEEE Electron Device Letters, 2015, 37(2): 165-168.
[51] CHU R, CAO Y, CHEN M, et al. An experimental demonstration of GaN CMOS technology[J]. IEEE Electron Device Letters, 2016, 37(3): 269-271.
[52] HUA M, WEI J, TANG G, et al. Normally-off LPCVD-SiN x/GaN MIS-FET with crystalline oxidation interlayer[J]. IEEE Electron Device Letters, 2017, 38(7): 929-932.
[53] WANG H, WANG J, LI M, et al. 823-mA/mm drain current density and 945-MW/cm 2 Baliga’s figure-of-merit enhancement-mode GaN MISFETs with a novel PEALD-AlN/LPCVD-Si 3 N 4 dual-gate dielectric[J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
[54] CHEN L, WANG H, HOU B, et al. Hetero-integration of quasi two-dimensional PbZr0. 2Ti0. 8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas[J]. Applied Physics Letters, 2019, 115(19): 193505.
[55] MA Y, XIAO M, DU Z, et al. Tri-gate GaN junction HEMT[J]. Applied Physics Letters, 2020, 117(14): 143506.
[56] CHENG Y, NG Y H, ZHENG Z, et al. RF Enhancement-Mode-GaN Gate HEMT on 200 mm-Si Substrates[J]. IEEE Electron Device Letters, 2022, 44(1): 29-31.
[57] FUJII T, TSUYUKUCHI N, HIROSE Y, et al. Fabrication of enhancement‐mode AlxGa1–xN/GaN junction heterostructure field‐effect transistors with p‐type GaN gate contact[J]. physica status solidi c, 2007, 4(7): 2708-2711.
[58] EFTHYMIOU L, LONGOBARDI G, CAMUSO G, et al. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502.
[59] KOZODOY P, XING H, DENBAARS S P, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.
[60] KAUFMANN U, SCHLOTTER P, OBLOH H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers[J]. Physical Review B, 2000, 62(16): 10867.
[61] SATO H, MINAMI T, TAKATA S, et al. Transparent conducting p-type NiO thin films prepared by magnetron sputtering[J]. Thin solid films, 1993, 236(1-2): 27-31.
[62] Voigtländer B. Atomic force microscopy[M]. Berlin, Germany:: Springer, 2019.
[63] BEUVIER T, RICHARD-PLOUET M, BROHAN L. Accurate methods for quantifying the relative ratio of anatase and TiO2 (B) nanoparticles[J]. The Journal of Physical Chemistry C, 2009, 113(31): 13703-13706.
[64] The Hall effect and its applications[M]. Springer Science & Business Media, 2013.
[65] Haider M, Russer J A. The correlation transmission line matrix (CTLM) method[C]//2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017: 1509-1512.
[66] LIANG L, ZAIXIN X, ZHUOQI D. First-Principles Study of Se-Doped Cu2S and Cu2O[J]. Journal of Dali University, 6(12): 29.
[67] MEYER B K, POLITY A, REPPIN D, et al. Binary copper oxide semiconductors: From materials towards devices[J]. physica status solidi (b), 2012, 249(8): 1487-1509.
[68] ZHANG D. Fabrication of Oxide Semiconductors and Fromation of the Heterostructure by UV Oxidation of Metallic Thin Films[J]. 2014.
[69] LAI J C, WANG X C, MI W B, et al. Structure and optical properties of polycrystalline NiO films and its resistive switching behavior in Au/NiO/Pt structures[J]. Physica B: Condensed Matter, 2015, 478: 89-94.
[70] ANDERSON T J, KOEHLER A D, HOBART K D, et al. Nanocrystalline Diamond-Gated AlGaN/GaN HEMT[J]. IEEE electron device letters, 2013, 34(11): 1382-1384.
[71] MOROFUSHI Y, MATSUSHITA H, MIKI N. Microscale patterning of single crystal diamond by thermochemical reaction between sidero-metal and diamond[J]. Precision engineering, 2011, 35(3): 490-495.
[72] LI G, LI X, ZHAO J, et al. Design principle for a p-type oxide gate layer on AlGaN/GaN toward normally-off HEMTs: Li-doped NiO as a model[J]. Journal of Materials Chemistry C, 2020, 8(3): 1125-1134.

Academic Degree Assessment Sub committee
材料与化工
Domestic book classification number
TN386.3
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544564
DepartmentPreparatory Office of SUSTech Institute of Microelectronics, SUSTech and HKUST
Recommended Citation
GB/T 7714
李鸿霖. 面向 GaN 增强型器件应用的 p 型材料研究[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132450-李鸿霖-南方科技大学-(3290KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李鸿霖]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李鸿霖]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李鸿霖]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.