[1] MACK C A. Fifty years of Moore's law[J]. IEEE Transactions on semiconductor manufacturing, 2011, 24(2): 202-207.
[2] AJAYAN J, NIRMAL D. 20-nm enhancement-mode metamorphic GaAs HEMT with highly doped InGaAs source/drain regions for high-frequency applications[J]. International Journal of Electronics, 2017, 104(3): 504-512.
[3] MARUSKA H P, TIETJEN J J. The preparation and properties of vapor‐deposited single‐crystal‐line GaN[J]. Applied Physics Letters, 1969, 15(10): 327-329.
[4] ZHANG J, ZHANG W, WU Y, et al. Wafer-Scale Si–GaN Monolithic Integrated E-Mode Cascode FET Realized by Transfer Printing and Self-Aligned Etching Technology[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3304-3308.
[5] JOSHIN K, KIKKAWA T, MASUDA S, et al. Outlook for GaN HEMT technology[J]. Fujitsu Sci. Tech. J, 2014, 50(1): 138-143.
[6] PENGELLY R S, WOOD S M, MILLIGAN J W, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764-1783.
[7] AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353-355.
[8] NAKAMURA S, SENOH M S M, MUKAI T M T. Highly p-typed Mg-doped GaN films grown with GaN buffer layers[J]. Japanese journal of applied physics, 1991, 30(10A): L1708.
[9] HEBER J. Nobel Prize 2014: Akasaki, Amano & Nakamura[J]. Nature Physics, 2014, 10(11): 791-791.
[10] MISHRA U K, PARIKH P, WU Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031.
[11] TSOU C W, LIN C Y, LIAN Y W, et al. 101-GHz InAlN/GaN HEMTs on silicon with high Johnson’s figure-of-merit[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2675-2678.
[12] AMBACHER O, SMART J, SHEALY J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures[J]. Journal of applied physics, 1999, 85(6): 3222-3233.
[13] WIENECKE S, ROMANCZYK B, GUIDRY M, et al. N-polar GaN cap MISHEMT with record power density exceeding 6.5 W/mm at 94 GHz[J]. IEEE Electron Device Letters, 2017, 38(3): 359-362.
[14] BROWN R. A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness[D]. University of Glasgow, 2015.
[15] MENEGHINI M, DE SANTI C, ABID I, et al. GaN-based power devices: Physics, reliability, and perspectives[J]. Journal of Applied Physics, 2021, 130(18).
[16] REZAEE M, KHOSROABADI S. A new design for improving the performance of AlGaN/GaN high-electron-mobility transistors[J]. Journal of Computational Electronics, 2021, 20(5): 1637-1643.
[17] LI C J, HONG Y P, XUE H X, et al. Formation of two-dimensional electron gas at amorphous/crystalline oxide interfaces[J]. Scientific Reports, 2018, 8(1): 1-9.
[18] ASIF KHAN M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN‐Al x Ga1− x N heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215.
[19] SEHRA K, KUMARI V, GUPTA M, et al. A Π-shaped p-GaN HEMT for reliable enhancement mode operation[J]. Microelectronics Reliability, 2022, 133: 114544.
[20] ANDROSE D R, DEB S, RADHAKRISHNAN S K, et al. T-gate AlGaN/GaN HEMT with effective recess engineering for enhancement mode operation[J]. Materials Today: Proceedings, 2021, 45: 3556-3559.
[21] WANG H, WANG J, LI M, et al. 823-mA/mm drain current density and 945-MW/cm 2 Baliga’s figure-of-merit enhancement-mode GaN MISFETs with a novel PEALD-AlN/LPCVD-Si 3 N 4 dual-gate dielectric[J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
[22] MA Y, XIAO M, DU Z, et al. Tri-gate GaN junction HEMT[J]. Applied Physics Letters, 2020, 117(14): 143506.
[23] YAO Y, HE Z, YANG F, et al. Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique[J]. Applied Physics Express, 2013, 7(1): 016502.
[24] LIN S, WANG M, SANG F, et al. A GaN HEMT structure allowing self-terminated, plasma-free etching for high-uniformity, high-mobility enhancement-mode devices[J]. IEEE Electron Device Letters, 2016, 37(4): 377-380.
[25] IM K S. Mobility Fluctuations in a Normally-Off GaN MOSFET Using Tetramethylammonium Hydroxide Wet Etching[J]. IEEE Electron Device Letters, 2020, 42(1): 18-21.
[26] CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795.
[27] CAI Y, ZHOU Y, CHEN K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Letters, 2005, 26(7): 435-437.
[28] ZHANG Z, FU K, DENG X, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si 3 N 4 gate dielectric and standard fluorine ion implantation[J]. IEEE Electron Device Letters, 2015, 36(11): 1128-1131.
[29] CHEN K J, YANG S, TANG Z, et al. Surface nitridation for improved dielectric/III‐nitride interfaces in GaN MIS‐HEMTs[J]. physica status solidi (a), 2015, 212(5): 1059-1065.
[30] OKA T, NOZAWA T. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications[J]. IEEE Electron Device Letters, 2008, 29(7): 668-670.
[31] WANG Y, LYU G, WEI J, et al. Characterization of static and dynamic behavior of 1200 V normally off GaN/SiC cascode devices[J]. IEEE Transactions on Industrial Electronics, 2019, 67(12): 10284-10294.
[32] LU B, SAADAT O I, PALACIOS T. High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor[J]. IEEE Electron Device Letters, 2010, 31(9): 990-992.
[33] HAMADY S. New concepts for normally-off power gallium nitride (GaN) high electron mobility transistor (HEMT)[D]. Universite Toulouse III Paul Sabatier, 2014..
[34] GUO F, HUANG S, WANG X, et al. Suppression of interface states between nitride-based gate dielectrics and ultrathin-barrier AlGaN/GaN heterostructure with in situ remote plasma pretreatments[J]. Applied Physics Letters, 2021, 118(9): 093503.
[35] SUN Z, HUANG H, SUN N, et al. A novel GaN metal-insulator-semiconductor high electron mobility transistor featuring vertical gate structure[J]. Micromachines, 2019, 10(12): 848.
[36] UEMOTO Y, HIKITA M, UENO H, et al. Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399.
[37] GRECO G, IUCOLANO F, ROCCAFORTE F. Review of technology for normally-off HEMTs with p-GaN gate[J]. Materials Science in Semiconductor Processing, 2018, 78: 96-106.
[38] POSTHUMA N E, YOU S, LIANG H, et al. Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance[C]//2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2016: 95-98.
[39] LÜKENS G, HAHN H, KALISCH H, et al. Self-aligned process for selectively etched p-GaN-gated AlGaN/GaN-on-Si HFETs[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3732-3738.
[40] ASIF KHAN M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN‐Al x Ga1− x N heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215.
[41] KHAN M A, CHEN Q, SUN C J, et al. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors[J]. Applied physics letters, 1996, 68(4): 514-516.
[42] HU X, SIMIN G, YANG J, et al. Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate[J]. Electronics Letters, 2000, 36(8): 753-754.
[43] LANFORD W B, TANAKA T, OTOKI Y, et al. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage[J]. Electronics Letters, 2005, 41(7): 449-450.
[44] PALACIOS T, SUH C S, CHAKRABORTY A, et al. High-performance E-mode AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2006, 27(6): 428-430.
[45] KAMBAYASHI H, SATOH Y, OOTOMO S, et al. Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage[J]. Solid-State Electronics, 2010, 54(6): 660-664.
[46] KANAMURA M, OHKI T, KIKKAWA T, et al. Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-$ k $ gate dielectrics[J]. IEEE Electron Device Letters, 2010, 31(3): 189-191.
[47] HWANG I, KIM J, CHOI H S, et al. p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current[J]. IEEE Electron Device Letters, 2013, 34(2): 202-204.
[48] SU L Y, LEE F, HUANG J J. Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer[J]. IEEE Transactions on Electron Devices, 2014, 61(2): 460-465.
[49] ZHANG Z, FU K, DENG X, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si 3 N 4 gate dielectric and standard fluorine ion implantation[J]. IEEE Electron Device Letters, 2015, 36(11): 1128-1131.
[50] ZHOU Q, LIU L, ZHANG A, et al. 7.6 V threshold voltage high-performance normally-off Al 2 O 3/GaN MOSFET achieved by interface charge engineering[J]. IEEE Electron Device Letters, 2015, 37(2): 165-168.
[51] CHU R, CAO Y, CHEN M, et al. An experimental demonstration of GaN CMOS technology[J]. IEEE Electron Device Letters, 2016, 37(3): 269-271.
[52] HUA M, WEI J, TANG G, et al. Normally-off LPCVD-SiN x/GaN MIS-FET with crystalline oxidation interlayer[J]. IEEE Electron Device Letters, 2017, 38(7): 929-932.
[53] WANG H, WANG J, LI M, et al. 823-mA/mm drain current density and 945-MW/cm 2 Baliga’s figure-of-merit enhancement-mode GaN MISFETs with a novel PEALD-AlN/LPCVD-Si 3 N 4 dual-gate dielectric[J]. IEEE Electron Device Letters, 2018, 39(12): 1888-1891.
[54] CHEN L, WANG H, HOU B, et al. Hetero-integration of quasi two-dimensional PbZr0. 2Ti0. 8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas[J]. Applied Physics Letters, 2019, 115(19): 193505.
[55] MA Y, XIAO M, DU Z, et al. Tri-gate GaN junction HEMT[J]. Applied Physics Letters, 2020, 117(14): 143506.
[56] CHENG Y, NG Y H, ZHENG Z, et al. RF Enhancement-Mode-GaN Gate HEMT on 200 mm-Si Substrates[J]. IEEE Electron Device Letters, 2022, 44(1): 29-31.
[57] FUJII T, TSUYUKUCHI N, HIROSE Y, et al. Fabrication of enhancement‐mode AlxGa1–xN/GaN junction heterostructure field‐effect transistors with p‐type GaN gate contact[J]. physica status solidi c, 2007, 4(7): 2708-2711.
[58] EFTHYMIOU L, LONGOBARDI G, CAMUSO G, et al. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502.
[59] KOZODOY P, XING H, DENBAARS S P, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.
[60] KAUFMANN U, SCHLOTTER P, OBLOH H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers[J]. Physical Review B, 2000, 62(16): 10867.
[61] SATO H, MINAMI T, TAKATA S, et al. Transparent conducting p-type NiO thin films prepared by magnetron sputtering[J]. Thin solid films, 1993, 236(1-2): 27-31.
[62] Voigtländer B. Atomic force microscopy[M]. Berlin, Germany:: Springer, 2019.
[63] BEUVIER T, RICHARD-PLOUET M, BROHAN L. Accurate methods for quantifying the relative ratio of anatase and TiO2 (B) nanoparticles[J]. The Journal of Physical Chemistry C, 2009, 113(31): 13703-13706.
[64] The Hall effect and its applications[M]. Springer Science & Business Media, 2013.
[65] Haider M, Russer J A. The correlation transmission line matrix (CTLM) method[C]//2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017: 1509-1512.
[66] LIANG L, ZAIXIN X, ZHUOQI D. First-Principles Study of Se-Doped Cu2S and Cu2O[J]. Journal of Dali University, 6(12): 29.
[67] MEYER B K, POLITY A, REPPIN D, et al. Binary copper oxide semiconductors: From materials towards devices[J]. physica status solidi (b), 2012, 249(8): 1487-1509.
[68] ZHANG D. Fabrication of Oxide Semiconductors and Fromation of the Heterostructure by UV Oxidation of Metallic Thin Films[J]. 2014.
[69] LAI J C, WANG X C, MI W B, et al. Structure and optical properties of polycrystalline NiO films and its resistive switching behavior in Au/NiO/Pt structures[J]. Physica B: Condensed Matter, 2015, 478: 89-94.
[70] ANDERSON T J, KOEHLER A D, HOBART K D, et al. Nanocrystalline Diamond-Gated AlGaN/GaN HEMT[J]. IEEE electron device letters, 2013, 34(11): 1382-1384.
[71] MOROFUSHI Y, MATSUSHITA H, MIKI N. Microscale patterning of single crystal diamond by thermochemical reaction between sidero-metal and diamond[J]. Precision engineering, 2011, 35(3): 490-495.
[72] LI G, LI X, ZHAO J, et al. Design principle for a p-type oxide gate layer on AlGaN/GaN toward normally-off HEMTs: Li-doped NiO as a model[J]. Journal of Materials Chemistry C, 2020, 8(3): 1125-1134.
Edit Comment