中文版 | English
Title

基于纳米压印技术制备高精度大尺寸线栅偏振器

Alternative Title
FABRICATION OF HIGH-PRECISION LARGESCALE WIRE GRID POLARIZERS BASED ON NANOIMPRINT LITHOGRAPHY
Author
Name pinyin
PENG Yihao
School number
12032243
Degree
硕士
Discipline
070205 凝聚态物理
Subject category of dissertation
07 理学
Supervisor
程鑫
Mentor unit
材料科学与工程系
Publication Years
2023-05-17
Submission date
2023-06-29
University
南方科技大学
Place of Publication
深圳
Abstract
偏振器是一种重要的光学元件,多年以来在光通信、显示和光学检测等领域具有广泛的应用。随着光学系统的进一步发展,传统的偏振器已经无法满足微型化,集成化的发展趋势。线栅偏振器作为一种新型的偏振器,与传统的偏振器相比,具有体积小、易于集成、应用光谱范围广、结构稳定、可以定制应用于不同波段的特点,具有十分优异的偏振性能,在多种光学场景下有着巨大的应用潜力。因此实现高精度、大面积、低成本的线栅偏振器的制备具有十分重要的意义。纳米压印作为一种具有高精度,高通量的微纳加工方法,是制备线栅偏振器的一种理想方法。
本研究采用纳米压印技术制备高性能的线栅偏振器,并对其性能进行详细的测试与分析。本文系统地回顾了线栅偏振器的发展现状,分析了纳米压印技术在制备线栅偏振器方面的潜力。基于时域有限差分法对影响线栅偏振器性能的不同因素进行了仿真模拟,为线栅偏振器的设计提供了理论指导。之后详细介绍了线栅偏振器的制备过程,包括母模板制备、子模板压印、基片制备、纳米压印以及刻蚀工艺。通过优化各个关键步骤,成功实现了线栅偏振器的制备,线栅结构面积为 7 cm×7 cm,线栅宽度为 80
nm,周期为 200 nm。利用傅里叶变换红外光谱仪对线栅偏振器光学性能进行了详细的测试和分析,在 2.5-5 μm 的波段范围内 TM 波透过率在 75%右,部分波段透过率接近 80%,消光比为 24 dB 左右,验证了基于纳米压印技术制备的大尺寸线栅偏振器具有高精度和偏振性能良好等特点。
综上所述,本研究为探究基于纳米压印技术制备高精度大面积的线栅偏振器提供了支持,促进了其在红外成像,偏振探测,天文观测等多个领域的应用发展。
Other Abstract
Polarizers are important optical components and have been widely used in fields such as optical communication, display, and optical detection for many years. With the further development of optical systems, traditional polarizers can no longer meet the trend of miniaturization and integration. Wire grid polarizers, as a new type of polarizer, have advantages over traditional polarizers, such as smaller size, easy integration, broad application spectrum, stable structure, and customizable features for different wavelengths. They have excellent polari zation performance and hold tremendous application potential in various optical scenarios. Therefore, the fabrication of high-precision, large-area, and low-cost wire grid polarizers is of great significance. Nanoimprint, as a high-precision and high-throughput micro-nano processing method, is an ideal approach for fabricating wire grid polarizers .This study uses nanoimprint lithography to fabricate high-performance wire grid polarizers and conducts detailed testing and analysis of their performance.
The thesis systematically reviews the current status of wire grid polarizers development and analyzes the potential of nanoimprint lithography in fabricating wire grid polarizers. Based on the finite-difference time-domain method, the performance of wire grid polarizers is simulated, and the effects of different factors on polarization performance are analyzed, providing theoretical guidance for the design of the structure. The thesis elaborates on the fabrication process of
wire grid polarizers, including master template preparation, sub-template
imprinting, substrate preparation, nanoimprinting, and etching processes. By optimizing each key step, the successful fabrication of wire grid polarizers is achieved, with a grating structure area of 7×7 cm, grating width of 80 nm, and period of 200 nm. Subsequently, the polarization performance of the wire grid polarizers is tested and analyzed in detail using a Fourier-transform infrared spectrometer. Wire grid polarizers produced through nanoimprint lithography demonstrate strong polarization capabilities, with a transmittance of approximately 75% for TM waves within the 2.5-5 μm wavelength range, with
certain wavelengths reaching 80%. Additionally, they exhibit an extinction ratio of about 24 dB, verifying that the large-scale wire grid polarizers fabricated using nanoimprint lithography exhibit high precision and good polarization performance.
In summary, this study provides support for the exploration of high
precision large-area wire-grid polarizers prepared based on nanoimprint
lithography technology, and promotes their application development in various fields such as infrared imaging, polarization detection, and astronomical observation.
Keywords
Other Keyword
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] FUETEN F. A computer-controlled rotating polarizer stage for the petrographic microscope[J]. Computers & Geosciences, 1997, 23(2): 203-208.
[2] AZZAM R M A, LOPEZ A G. Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements[J]. Journal of the Optical Society of America, 1989, 6(10): 1513-1521.
[3] BOBROV Y, KUCHENKOVA O, KOUZNETSOV M, et al. LCD applications of thin‐crystal‐film polarizers[J]. Journal of the Society for Information Display, 2004, 12(2): 125-133.
[4] ZHAO J, MA Y, LI R. Characterization of polarizer made of the deep-UV birefringent crystal Ba2Mg(B3O6)2[J]. Applied Optics, 2015, 54(33): 9949-9953.
[5] ZHENG J, HE X, BECKETT P, et al. Dichroic circular polarizers based on plasmonics for polarization imaging applications[J]. Nanomaterials, 2021, 11(8): 2145.
[6] PEETERS E, LUB J, STEENBAKKERS J, et al. High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems[J]. Advanced Materials, 2006, 18(18): 2412-2417.
[7] SIEFKE T, KROKER S, PFEIFFER K, et al. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range[J]. Advanced Optical Materials, 2016, 4(11): 1780-1786.
[8] ZHAO Z, CORSO A J, PELIZZO M G. Nanowire grid reflecting polarizers for ultraviolet applications[J]. IEEE Photonics Journal, 2020, 12(6): 1 -11.
[9] HOKARI R, TAKAKUWA K, KATO H, et al. Low-reflective wire-grid polariser sheetin the visible region fabricated by a nanoprinting process[J]. Scientific Reports, 2021, 11(1): 1-14.
[10] YAMADA I, YAMASHITA N, TANI K, et al. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass[J]. Optics Letters, 2011, 36(19): 3882-3884.
[11] TEHZ DONG J, TOMASINO A, BALISTRERI G, et al. Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing [J]. Nature Communications, 2022, 13(1): 741.
[12] HU C, LIU D. A high-performance Aluminum wire-grid polarizer for the optical telecommunication applications[C]//Passive Components and Fiber-based Devices V. SPIE, 2008, 7134: 1039-1044.
[13] HU C, FIELD J J, KELKAR V, et al. Harmonic optical tomography of nonlinear structures[J]. Nature Photonics, 2020, 14(9): 564-569.63参考文献
[14] OGAWA D, AWAYA N, NAWATA A, et al. Novel Wire Grid Polarizer Structure for Wider Angle of Incidence[C]//2019 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2019: 4-5.
[15] FENG J, ZHAO Y, LIN X W, et al. A transflective nano-wire grid polarizer based fiber-optic sensor[J]. Sensors, 2011, 11(3): 2488-2495.
[16] NAKANO K, MAEDA K, IWASA S, et al. Transparent photoacid generator (ALS) for ArF excimer laser lithography and chemically amplified resist[C]//Advances in Resist Technology and Processing XI. SPIE, 1994, 2195: 194-204.
[17] WANG J J, WALTERS F, LIU X, et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids[J]. Applied Physics Letters, 2007, 90(6): 061104.
[18] WANG L, SCHIFT H, KRISTIANSEN P M, et al. Bilayer wire-grid polarizers for DUV to IR fabricated using EUV interference and nanoimprint lithography[C]//The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2013: 1232-1235.
[19] BARCELO S, LI Z. Nanoimprint lithography for nanodevice fabrication[J]. Nano Convergence, 2016, 3(1): 1-9.
[20] GUO L J. Nanoimprint lithography: methods and material requirements[J]. Advanced Materials, 2007, 19(4): 495-513.
[21] BECK M, GRACZYK M, MAXIMOV I, et al. Improving stamps for 10 nm level wafer scale nanoimprint lithography[J]. Microelectronic Engineering, 2002, 61: 441 -448.
[22] BIRD G R, PARRISH M. The wire grid as a near-infrared polarizer[J]. Journal of the Optical Society of America, 1960, 50(9): 886-891.
[23] SAITO M, KANO T, SEKI T, et al. Microwire arrays for infrared polarizers[J]. Infrared Physics & Technology, 1994, 35(5): 709-714.
[24] TAMADA H, DOUMUKI T, YAMAGUCHI T. Al wire-grid polarizer using the s￾polarization resonance effect at the 0.8-µm-wavelength band[J]. Optics letters, 1997, 22(6): 419-421.
[25] EKINCI Y, SOLAK H H, DAVID C, et al. Bilayer Al wire-grids as broadband and high-performance polarizers[J]. Optics Express, 2006, 14(6): 2323-2334.
[26] LIU X, DENG X, SCIORTINO P, et al. Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids[J]. Nano Letters, 2006, 6(12): 2723-2727.
[27] WANG J J, WALTERS F, LIU X, et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids[J]. Applied Physics Letters, 2007, 90(6): 061104.
[28] ZHOU Y, KLOTZKIN D J. Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 μm[J]. Applied Optics, 2008, 47(20): 3555-3560.
[29] JUNG Y S, LEE J H, LEE J Y, et al. Fabrication of diverse metallic nanowire arrays based on block copolymer self-assembly[J]. Nano Letters, 2010, 10(9): 3722-3726.
[30] CHO Y T. Fabrication of wire grid polarizer for spectroscopy application: From ultraviolet to terahertz[J]. Applied Spectroscopy Reviews, 2018, 53(2-4): 224-245.
[31] WEBER T, KÄSEBIER T, KLEY E B, et al. Broadband iridium wire grid polarizer for UV applications[J]. Optics letters, 2011, 36(4): 445-447. Yamada I, Nishii J, Saito M. Incident angle and temperature dependence of WSi wire-grid polarizer[J]. Infrared Physics & Technology, 2014, 63: 92-96.
[32] YAMADA I, NISHII J, SAITO M. Incident angle and temperature dependence of WSi wire-grid polarizer[J]. Infrared Physics & Technology, 2014, 63: 92-96.
[33] SIEFKE T, KROKER S, PFEIFFER K, et al. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range[J]. Advanced Optical Materials, 2016, 4(11): 1780-1786.
[34] LIU S H, ZHAO Z J, XU F Y, et al. Design of an Au–Pt–Ti wire-grid polarizer based on midinfrared pixelated micropolarizer arrays[J]. Optical Engineering, 2023, 62(3): 037104.
[35] CHOU S Y, KRAUSS P R, Renstrom P J. Nanoimprint lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996, 14(6): 4129-4133.
[36] CHOI J H, JO H B, CHOI H J, et al. Fabrication of TiO2 nano-to-microscale structures using UV nanoimprint lithography[J]. Nanotechnology, 2013, 24(19): 195301.
[37] OH J, HOFFMAN J B, HONG S, et al. Dissolvable template nanoimprint lithography: a facile and versatile nanoscale replication technique[J]. Nano Letters, 2020, 20(10): 6989-6997.
[38] WU D, S RAJPUT N, LUO X. Nanoimprint lithography-the past, the present and the future[J]. Current Nanoscience, 2016, 12(6): 712-724.
[39] LI M, CHEN Y, LUO W, et al. Interfacial interactions during demolding in nanoimprint lithography[J]. Micromachines, 2021, 12(4): 349.
[40] TANIGUCHI J T J, TOKANO Y T Y, MIYAMOTO I M I, et al. Preparation of diamond mold using electron beam lithography for application to nanoimprint lithography[J]. Japanese Journal of Applied Physics, 2000, 39(12S): 7070.
[41] RONGSHUN. New approaches of mold fabrication for nanoimprint lithography[J]. Journal of Micro/Nanolithography, MEMS and MOEMS, 2011, 10(1): 011506-011506-6.
[42] HIRAI Y, FUJIWARA M, OKUNO T, et al. Study of the resist deformation in nanoimprint lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(6): 2811-2815
[43] WU C C, HSU S L C. Preparation of epoxy/silica and epoxy/titania hybrid resists via a sol-gel process for nanoimprint lithography[J]. The Journal of Physical Chemistry C, 2010, 114(5): 2179-2183.
[44] PRADANA A, KLUGE C, GERKEN M. Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles[J]. Optical Materials Express, 2014, 4(2): 329-337.
[45] LOCHMANN S, GROTHE J, ECKHARDT K, et al. Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures[J]. Nanoscale, 2018, 10(21): 10109-10115.
[46] CHECCUCCI S, BOTTEIN T, GURIOLI M, et al. Multifunctional metasurfaces based on direct nanoimprint of titania sol–gel coatings[J]. Advanced Optical Materials, 2019, 7(10): 1801406.
[47] MOON J, KWON S, ALAHBAKHSHI M, et al. Surface energy-driven preferential grain growth of metal halide perovskites: effects of nanoimprint lithography beyond direct patterning[J]. American Chemical Society Applied Materials & Interfaces, 2021, 13(4): 5368-5378.
[48] ZHOU J, TAO F, ZHU J, et al. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics[J]. Nanophotonics, 2019, 8(2): 307-316.
[49] GAFUROV A N, JEONG J, PARK P, et al. Registration error analysis and compensation of roll-to-roll screen printing system for flexible electronics[J]. Flexible and Printed Electronics, 2021, 6(2): 024003.
[50] BURGHOORN M, ROOSEN M D, DE R J, et al. Single layer broadband anti-reflective coatings for plastic substrates produced by full wafer and roll-to-roll step-and-flash nano-imprint lithography[J]. Materials, 2013, 6(9): 3710-3726
[51] ZHANG C, YI P, PENG L, et al. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate[J]. Scientific Reports, 2017, 7(1): 39814.
[52] AHN S H, GUO L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting[J]. American Chemical Society Nano, 2009, 3(8): 2304-2310.
[53] CHOROSZUCHO A. Analysis of the influence of the complex structure of clay hollow bricks on the values of electric field intensity by using the FDTD method[J]. Archives of Electrical Engineering, 2016, 65(4): 745--759.
[54] LI M, CHEN Y, LUO W, et al. Interfacial interactions during demolding in nanoimprint lithography[J]. Micromachines, 2021, 12(4): 349.
[55] GIECHASKIEL B, CLAIROTTE M. Fourier transform infrared (FTIR) spectroscopy for measurements of vehicle exhaust emissions: A review[J]. Applied Sciences, 2021, 11(16): 7416.

Academic Degree Assessment Sub committee
物理学
Domestic book classification number
TN305.7
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544614
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
彭怡豪. 基于纳米压印技术制备高精度大尺寸线栅偏振器[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032243-彭怡豪-材料科学与工程(3801KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[彭怡豪]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[彭怡豪]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[彭怡豪]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.