中文版 | English
Title

随机波背景下基于非线性薛定谔方程的深水极端波浪的预测与分析

Alternative Title
PREDICTION AND ANALYSIS OF EXTREME WAVES IN DEEP WATER BASED ON THE NON-LINEAR SCHRÖDINGER EQUATION IN THE CONTEXT OF RANDOM WAVES
Author
Name pinyin
LIU Junpeng
School number
12032896
Degree
硕士
Discipline
080103 流体力学
Subject category of dissertation
08 工学
Supervisor
冯兴亚
Mentor unit
海洋科学与工程系
Publication Years
2023-05-23
Submission date
2023-06-30
University
南方科技大学
Place of Publication
深圳
Abstract
极端波浪是一种破坏力极强的海洋自然灾害,如何有效地预极端波浪、如合理描述极端波浪的非线性特征是亟需解决的问题。本文旨在利用基于非线性薛定谔方程的 Peregrine 呼吸子解来研究调制不稳定性原理下的极端波浪的非线性特征及预测方法。
本研究设计了一种叠加波模型,将 Peregrine 呼吸子与基于 JONSWAP 模型的随机波相叠加,构造了一种考虑随机波背景的极端波浪模型,以探究 Peregrine 呼吸子的三角频谱特征作为短期预测手段在接近真实海况下的适应性。通过物理水槽和数值模拟,本研究实现了单纯的 Peregrine 呼吸子、叠加波以及不同载波幅值下的叠加波并分析了它们各自的非线性特征和三角频谱特征。
对于 Peregrine 呼吸子的试验和数值模拟结果表明,其可以实现极端波浪且其三角频谱特征符合理论描述;其二次谐波成分为主的高频区间也表现出三角频谱特征,存在预测潜力;波波相互作用等非线性因素削弱了调制不稳定性过程,使得其调制变得缓慢,这点在数值模拟中尤为显著。
对于叠加波的试验和数值模拟的结果表明,在所叠加的随机波浪的波幅较小时,三角频谱特征显著,可以预测极端波浪的发生。然而,当随机波浪的波幅较大时,三角频谱特征显著性变弱,且其更多的是对调制不稳定的预测,而不一定可判断极端波浪一定发生;同时发现利用高频区间的三角频谱特征在叠加波工况下依
旧可以起到辅助预测的作用。
通过数值模拟对载波波陡和随机波共同作用下的极端波浪的演化探究表明,载波波陡越大,调制不稳定性影响的频率范围越大,相应的主频和高频区间的三角频谱特征也越愈加显著;随机波浪的加入削弱了这一特征,尤其是对高频区间的演化前段的削弱尤为明显。
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] MUIR L R, EL-SHAARAWI A. On the calculation of extreme wave heights: a review[J]. OceanEngineering, 1986, 13(1): 93-118.
[2] WHITE B, FORNBERG B. On the chance of freak waves at sea[J]. Journal of Fluid Mechanics,1998, 355: 113-138.
[3] DRAPER L. Freak wave[J]. Marine Observer, 1965, 35(2): 193-195.
[4] KLINTING P, SAND S E. Analysis of prototype freak waves[R]. 1987.
[5] HAVER S. Evidences of the existence of freak waves[C]//Rogue waves. Ifremer Brest, 2001:129-140.
[6] LI C, ÖZKAN-HALLER H T, GARCÍA MEDINA G, et al. Observations of extreme wave runupevents on the US Pacific Northwest coast[J]. Natural Hazards and Earth System Sciences, 2023,23(1): 107-126.
[7] MALAGON SANTOS V, HAIGH I D, WAHL T. Spatial and temporal clustering analysis ofextreme wave events around the uk coastline[J]. Journal of Marine Science and Engineering,2017, 5(3).
[8] 自然资源部. 2021 年中国海洋灾害公报[EB/OL]. 2022. http://gi.mnr.gov.cn/202205/t20220507_2735508.html.
[9] TAO A, PENG J, ZHENG J, et al. Discussions on the occurrence probabilities of observed freakwaves[J]. Journal of Marine Science and Technology, 2015, 23(6): 11.
[10] TAO A, ZHENG J, MEE MEE S, et al. The most unstable conditions of modulation instability[J]. Journal of Applied Mathematics, 2012, 2012.
[11] MA Y, DONG G, PERLIN M, et al. Experimental investigation on the evolution of the modu￾lation instability with dissipation[J]. Journal of Fluid Mechanics, 2012, 711: 101-121.
[12] DE LEÓN S P, SOARES C G. Extreme wave parameters under North Atlantic extratropicalcyclones[J]. Ocean Modelling, 2014, 81: 78-88.
[13] ZOU Q, CHEN H. Wind and current effects on extreme wave formation and breaking[J]. Journalof Physical Oceanography, 2017, 47(7): 1817-1841.
[14] AKRISH G, SCHWARTZ R, RABINOVITCH O, et al. Impact of extreme waves on a verticalwall[J]. Natural Hazards, 2016, 84: 637-653.
[15] ZHANG J, BENOIT M, KIMMOUN O, et al. Statistics of extreme waves in coastal waters:large scale experiments and advanced numerical simulations[J]. Fluids, 2019, 4(2): 99.
[16] FENG X, BAI W. Wave resonances in a narrow gap between two barges using fully nonlinearnumerical simulation[J]. Applied Ocean Research, 2015, 50: 119-129.
[17] LIU Q, FENG X, TANG T. A machine learning model for wave prediction based on supportvector machine[J]. International Journal of Offshore and Polar Engineering, 2022, 32(04): 394-401.
[18] CALLENS A, MORICHON D, ABADIE S, et al. Using Random forest and Gradient boostingtrees to improve wave forecast at a specific location[J]. Applied Ocean Research, 2020, 104:102339.
[19] GRAMCIANINOV C, CAMPOS R, SOARES C G, et al. Distribution and characteristics of ex￾treme waves generated by extratropical cyclones in the North Atlantic Ocean[M]//Developmentsin maritime technology and engineering. CRC Press, 2021: 797-803.
[20] BENJAMIN T, FEIR J. The disintegration of wave trains on deep water Part 1. Theory[J].Journal of Fluid Mechanics, 1967, 27(03): 417–430.
[21] PHILLIPS O, POSNER J. Theoretical and experimental studies of the capillary instability of aliquid jet[J]. Journal of Fluid Mechanics, 1967, 29(03): 435–463.
[22] YUEN H C, LAKE B M. Nonlinear deep water waves: Theory and experiment[J]. The Physicsof Fluids, 1975, 18(8): 956-960.
[23] BARRATT D, VAN DEN BREMER T S, ADCOCK T A A. MNLS simulations of surfacewave groups with directional spreading in deep and finite depth waters[J]. Journal of OceanEngineering and Marine Energy, 2021, 7(3): 261-275.
[24] COPIE F, RANDOUX S, SURET P. The physics of the one-dimensional nonlinear Schrödingerequation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena[J].Reviews in Physics, 2020, 5: 100037.
[25] YUEN H C, FERGUSON JR W E. Relationship between Benjamin–Feir instability and recur￾rence in the nonlinear Schrödinger equation[J]. Physics of Fluids, 1978, 21(8): 1275-1278.
[26] LAKE B M, YUEN H C, RUNGALDIER H, et al. Nonlinear deep-water waves: theory andexperiment. Part 2. Evolution of a continuous wave train[J]. Journal of Fluid Mechanics, 1977,83(1): 49-74.
[27] HEALY T R. Wave focusing[M]. Dordrecht: Springer Netherlands, 2005: 1059-1060.
[28] XU G, ZHOU Y, YAN S, et al. Numerical investigation of wave amplitude spectra effects onfocusing wave generation[J]. Ocean Engineering, 2022, 265: 112550.
[29] PEREGRINE D. Nonlinear water waves: a tale of two effects[J]. Physical Review Letters, 1979,43(10): 717–720.
[30] PELINOVSKY E, TALIPOVA T, KHARIF C. Nonlinear-dispersive mechanism of the freakwave formation in shallow water[J]. Physica D: Nonlinear Phenomena, 2000, 147(1-2): 83-94.
[31] BALDOCK T, SWAN C, TAYLOR P. A laboratory study of nonlinear surface waves on water[J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physicaland Engineering Sciences, 1996, 354(1707): 649-676.
[32] BROWN M G, JENSEN A. Experiments on focusing unidirectional water waves[J]. Journal ofGeophysical Research: Oceans, 2001, 106(C8): 16917-16928.
[33] TOUBOUL J, GIOVANANGELI J P, KHARIF C, et al. Freak waves under the action of wind:experiments and simulations[J]. European Journal of Mechanics-B/Fluids, 2006, 25(5): 662-676.
[34] KHARIF C, GIOVANANGELI J P, TOUBOUL J, et al. Influence of wind on extreme waveevents: experimental and numerical approaches[J]. Journal of Fluid Mechanics, 2008, 594:209-247.
[35] FANG Q, LIU J, HONG R, et al. Experimental investigation of focused wave action on coastalbridges with box girder[J]. Coastal Engineering, 2021, 165: 103857.
[36] VYZIKAS T, STAGONAS D, BULDAKOV E, et al. The evolution of free and bound wavesduring dispersive focusing in a numerical and physical flume[J]. Coastal Engineering, 2018,132: 95-109.
[37] HAO J, LI J, LIU S, et al. Wave amplification caused by Bragg resonance on parabolic-typetopography[J]. Ocean Engineering, 2022, 244: 110442.
[38] LAVRENOV I. The wave energy concentration at the Agulhas current off South Africa[J].Natural Hazards, 1998, 17(2): 117-127.
[39] VANEM E, ZHU T, BABANIN A. Statistical modelling of the ocean environment–A reviewof recent developments in theory and applications[J]. Marine Structures, 2022, 86: 103297.
[40] SLUNYAEV A. Nonlinear analysis and simulations of measured freak wave time series[J].European Journal of Mechanics-B/Fluids, 2006, 25(5): 621-635.
[41] ISLAS A, SCHOBER C. Predicting rogue waves in random oceanic sea states[J]. Physics offluids, 2005, 17(3): 031701.
[42] SLUNYAEV A. Analysis of the nonlinear spectrum of intense sea wave with the purpose ofextreme wave prediction[J]. Radiophysics and Quantum Electronics, 2018, 61: 1-21.
[43] DUCROZET G, BONNEFOY F, LE TOUZÉ D, et al. A modified high-order spectral methodfor wavemaker modeling in a numerical wave tank[J]. European Journal of Mechanics-B/Fluids,2012, 34: 19-34.
[44] RUBAN V P. Predictability of the appearance of anomalous waves at sufficiently smallBenjamin–Feir indices[J]. JETP letters, 2016, 103: 568-572.
[45] CLAUSS G N F, KOSLECK S, TESTA D, et al. Forecast of critical situations in short￾crested seas[C]//International Conference on Offshore Mechanics and Arctic Engineering: vol￾ume 48197. 2008: 217-226.
[46] VAN GROESEN E, WIJAYA A. High waves in Draupner seas—Part 2: Observation and pre￾diction from synthetic radar images[J]. Journal of Ocean Engineering and Marine Energy, 2017,3(4): 325-332.
[47] NAAIJEN P, HUIJSMANS R. Real time wave forecasting for real time ship motion predictions[C]//International Conference on Offshore Mechanics and Arctic Engineering: volume 48210.2008: 607-614.
[48] WIJAYA A P, NAAIJEN P, VAN GROESEN E, et al. Reconstruction and future prediction ofthe sea surface from radar observations[J]. Ocean Engineering, 2015, 106: 261-270.
[49] TRULSEN K, STANSBERG C. Spatial evolution of water surface waves: Numerical simulationand experiment of bichromatic waves[C]//Int Soc Offshore, 2001: 71-77.
[50] DUAN W, MA X, HUANG L, et al. Phase-resolved wave prediction model for long-crest wavesbased on machine learning[J]. Computer Methods in Applied Mechanics and Engineering,2020, 372.
[51] KALOOP M R, KUMAR D, ZARZOURA F, et al. A wavelet-Particle swarm optimization￾Extreme learning machine hybrid modeling for significant wave height prediction[J]. OceanEngineering, 2020, 213: 107777.
[52] GUTH S, SAPSIS T P. Machine learning predictors of extreme events occurring in complexdynamical systems[J]. Entropy, 2019, 21(10): 925.
[53] KAGEMOTO H. Forecasting a water-surface wave train with artificial intelligence-A case study[J]. Ocean Engineering, 2020, 207: 107380.
[54] LAW Y, SANTO H, LIM K, et al. Deterministic wave prediction for unidirectional sea-statesin real-time using Artificial Neural Network[J]. Ocean Engineering, 2020, 195: 106722.
[55] SLUNYAEV A, PELINOVSKY E, SOARES C G. Modeling freak waves from the North Sea[J]. Applied Ocean Research, 2005, 27(1): 12-22.
[56] AKHMEDIEV N, SOTO-CRESPO J M, ANKIEWICZ A, et al. Early detection of rogue wavesin a chaotic wave field[J]. Physics Letters A, 2011, 375(33): 2999-3001.
[57] BAYINDIR C. Early detection of rogue waves by the wavelet transforms[J]. Physics Letters A,2016, 380(1-2): 156-161.
[58] CHABCHOUB A, NEUMANN S, HOFFMANN N, et al. Spectral properties of the Peregrinesoliton observed in a water wave tank[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11).
[59] BAYINDIR C A. A tomographic approach for the early detection of 2D rogue waves[J]. TWMSJournal of Applied and Engineering Mathematics, 2020, 10(3): 638-649.
[60] 付睿丽. 长峰极端波浪的统计特性和预报方法研究[D]. 大连理工大学, 2021.
[61] Marques Machado F M, LOPES A M G, FERREIRA A D. Numerical simulation of regularwaves: Optimization of a numerical wave tank[J]. Ocean Engineering, 2018, 170: 89-99.
[62] RAPP B E. Computational fluid dynamics[M]//Micro and Nano Technologies: Microfluidics(Second Edition). Second edition ed. Elsevier, 2023: 653-666.
[63] LV C, ZHAO X, LI M, et al. An improved wavemaker velocity boundary condition for generatingrealistic waves in the numerical wave tank[J]. Ocean Engineering, 2022, 261: 112188.
[64] KETABDARI M J. Free surface flow simulation using vof method[M]//Numerical Simulation.Rijeka: IntechOpen, 2016.
[65] SHAUER N, DESMOND K W, GORDON P A, et al. A three-dimensional generalized finiteelement method for the simulation of wave propagation in fluid-filled fractures[J]. ComputerMethods in Applied Mechanics and Engineering, 2021, 386: 114136.
[66] OLIVEIRA D, DE ALMEIDA J L, SANTIAGO A, et al. Development of a CFD-based nu￾merical wave tank of a novel multipurpose wave energy converter[J]. Renewable Energy, 2022,199: 226-245.
[67] FITZGERALD C. Nonlinear potential flow models[M]//Numerical Modelling of Wave EnergyConverters. Academic Press, 2016: 83-104.
[68] WANG W, PáKOZDI C, KAMATH A, et al. A flexible fully nonlinear potential flow modelfor wave propagation over the complex topography of the Norwegian coast[J]. Applied OceanResearch, 2022, 122: 103103.
[69] LIN Z, QIAN L, BAI W, et al. A finite volume based fully nonlinear potential flow model forwater wave problems[J]. Applied Ocean Research, 2021, 106: 102445.
[70] WANG W, PáKOZDI C, KAMATH A, et al. A fully nonlinear potential flow wave modellingprocedure for simulations of offshore sea states with various wave breaking scenarios[J]. Applied Ocean Research, 2021, 117: 102898.
[71] ZAKHAROV V E, SHABAT A B. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media[J]. Journal of Experimental and Theoretical Physics, 1972, 34: 62-69.
[72] PEREGRINE D H. Water waves, nonlinear Schrödinger equations and their solutions[J]. TheANZIAM Journal, 1983, 25(1): 16-43.
[73] CHABCHOUB A, AKHMEDIEV N, HOFFMANN N. Experimental study of spatiotemporallylocalized surface gravity water waves[J]. Physical Review E, 2012, 86(1): 016311-016311.
[74] URSELL F, DEAN R G, YU Y. Forced small-amplitude water waves: a comparison of theoryand experiment[J]. Journal of Fluid Mechanics, 1960, 7(1): 33-52.
[75] 俞聿修, 柳淑学. 随机波浪及其工程应用[M]. 大连理工大学出版社, 2011.
[76] BAI W, FENG X, TAYLOR R E, et al. Fully nonlinear analysis of near-trapping phenomenonaround an array of cylinders[J]. Applied Ocean Research, 2014, 44: 71-81.
[77] BAI W, Eatock Taylor R. Numerical simulation of fully nonlinear regular and focused wavediffraction around a vertical cylinder using domain decomposition[J]. Applied Ocean Research,2007, 29(1): 55-71.
[78] LI Y, WANG X. Numerical study of effects of gap and incident wave steepness on water resonance between two rectangular barges[J]. European Journal of Mechanics - B/Fluids, 2021, 86:157-168.
[79] BAI W, TAYLOR R E. Higher-order boundary element simulation of fully nonlinear waveradiation by oscillating vertical cylinders[J]. Applied Ocean Research, 2006, 28(4): 247-265.

Academic Degree Assessment Sub committee
力学
Domestic book classification number
O352
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544663
DepartmentDepartment of Ocean Science and Engineering
Recommended Citation
GB/T 7714
刘俊鹏. 随机波背景下基于非线性薛定谔方程的深水极端波浪的预测与分析[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032896-刘俊鹏-海洋科学与工程(19330KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘俊鹏]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘俊鹏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘俊鹏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.