中文版 | English
Title

果蝇中肠发育进程空间转录组图谱建立及基因调控研究

Alternative Title
CONSTRUCTION OF SPATIAL TRANSCRIPTOMIC ATLAS AND GENE REGULATION INVESTIGATION OF THE DEVELOPING DROSOPHILA MIDGUT
Author
Name pinyin
LIANG Yingxin
School number
12032150
Degree
硕士
Discipline
071008 发育生物学
Subject category of dissertation
07 理学
Supervisor
胡宇慧
Mentor unit
药理学系
Tutor of External Organizations
刘龙奇
Tutor units of foreign institutions
杭州华大生命科学研究院
Publication Years
2023-05-15
Submission date
2023-06-30
University
南方科技大学
Place of Publication
深圳
Abstract

果蝇中肠是唯一的起源于内胚层的器官,也是体积最大的组织器官。 它具有区域多样性,不同的分区发挥着不同的生物学功能。研究果蝇中肠对于理解人类肠道功能具有重要的启示作用。果蝇中肠的发育需要复杂且精密的调控,发育过程中基因的表达在空间和时间上是具有异质性的。利用空间转录组技术可以获得细胞的位置信息和表达信息,对于揭示果蝇中肠分区的基因表达谱以及生物学功能有着积极的推动作用,进而推进对人类胃肠道发育过程的理解。

通过分析发现以下主要结果:

(1)发育中果蝇中肠具有空间异质性:根据空间位置和转录组相似性构建发育中果蝇的时空转录组图谱和发育轨迹,将中肠划分为胃盲囊、前中肠、中肠中部和中后肠等更为细致的细胞类群,并发现随着发育进程,中肠分区不断增多。

2)中肠不同分区具有不同的基因功能:本研究进一步解析了稳态条件下发育中果蝇中肠不同分区的基因功能,发现大多数功能只在特定的分区中富集,而在其它分区中表达较低,如位于中肠最前端的胃盲囊与脂肪体、中枢神经系统等器官协同调控肠道的脂质代谢与信号传导;中肠中部的细胞通过维持酸性环境来分解和消化食物为机体供能。如胃盲囊协同调控肠道脂质代谢与信号传导,中肠中部的细胞则分解和消化食物为机体提供能量。

3)在二龄幼虫早期,中肠道上皮细胞沿着中肠出现基因表达的异质性,这导致了执行不同生物学功能的分化。

4)一些关键转录因子如 vvlGATAeE(spl)m3-HLHHam 以及 Rel 的活性在发育进程中有所变化,并且这些因子被报道可以调节肠道发育。这些对发育中果蝇中肠发育及其对应功能的初步探索有助于为人类研究肠道发育谱系、肠道相关疾病等提供更多的思考。

我们的研究结果表明,处于不同空间位置的中肠分区上的基因表达具有异质性,执行着独特的功能,调控多样且复杂的消化吸收、代谢、免疫等生物学过程,并存在不同的转录因子来调控果蝇肠道的发育。

 

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-06
References List

[1] GILLETTE C M, TENNESSEN J M, REIS T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development[J]. Dev Biol, 2021, 475: 234-244.
[2] MALITA A, REWITZ K. Interorgan communication in the control of metamorphosis[J]. Curr Opin Insect Sci, 2021, 43: 54-62.
[3] BOSCO G, CAMPBELL P, LEIVA-NETO J T, et al. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species[J]. Genetics, 2007, 177(3): 1277-1290.
[4] HALES K G, KOREY C A, LARRACUENTE A M, et al. Genetics on the Fly: A Primer on the Drosophila Model System[J]. Genetics, 2015, 201(3): 815-842.
[5] CHINTAPALLI V R, WANG J, DOW J A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease[J]. Nat Genet, 2007, 39(6): 715 -720.
[6] REITER L T, POTOCKI L, CHIEN S, et al. A systematic analysis of human disease -associated gene sequences in Drosophila melanogaster[J]. Genome Res, 2001, 11(6): 1114-1125.
[7] LEADER D P, KRAUSE S A, PANDIT A, et al. FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data[J]. Nucleic Acids Res, 2018, 46(D1): D809-D815.
[8] GRAVELEY B R, BROOKS A N, CARLSON J W, et al. The developmental transcriptome of Drosophila melanogaster[J]. Nature, 2011, 471(7339): 473 -479.
[9] KIELA P R, GHISHAN F K. Physiology of Intestinal Absorption and Secretion[J]. Best Pract Res Clin Gastroenterol, 2016, 30(2): 145-159.
[10] CAPO F, WILSON A, DI CARA F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host￾Microbial Interactions in Humans[J]. Microorganisms, 2019, 7(9)
[11] BUCHON N, OSMAN D. All for one and one for all: Regionalization of the Drosophila intestine[J]. Insect Biochem Mol Biol, 2015, 67: 2-8.
[12] TEPASS U, HARTENSTEIN V. Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm[J]. Development, 1994, 120(3): 579-590.
[13] BUCHON N, OSMAN D, DAVID F P, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila[J]. Cell Rep, 2013, 3(5): 1725-1738.
[14] DUBREUIL R R. Copper cells and stomach acid secretion in the Drosophila midgut[J]. 69Int J Biochem Cell Biol, 2004, 36(5): 745-752.
[15] HUNG R J, LI J S S, LIU Y, et al. Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics[J]. Curr Opin Insect Sci, 2021, 47: 12 -17.
[16] REN W, ZHANG Y, LI M, et al. Windpipe controls Drosophila intestinal homeostasis by regulating JAK/STAT pathway via promoting receptor endocytosis and lysosomal degradation[J]. PLoS Genet, 2015, 11(4): e1005180.
[17] ZHAI Z, BOQUETE J P, LEMAITRE B. Cell-Specific Imd-NF-kappaB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection[J]. Immunity, 2018, 48(5): 897-910 e897.
[18] GUO Z, OHLSTEIN B. Stem cell regulation. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency[J]. Science, 2015, 350(6263)
[19] ZHENG H, YANG X, XI Y. Fat body remodeling and homeostasis control in Drosophila[J]. Life Sci, 2016, 167: 22-31.
[20] WILINSKI D, WINZELER J, DUREN W, et al. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster[J]. Nat Commun, 2019, 10(1): 4052.
[21] WILLIAMS C G, LEE H J, ASATSUMA T, et al. An introduction to spatial transcriptomics for biomedical research[J]. Genome Med, 2022, 14(1): 68.
[22] EMMERT-BUCK M R, BONNER R F, SMITH P D, et al. Laser Capture Microdissection[J]. Science, 1996, 274(5289): 998-1001.
[23] CHEN J, SUO S, TAM P P, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nat Protoc, 2017, 12(3): 566-580.
[24] CASASENT A K, SCHALCK A, GAO R, et al. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing[J]. Cell, 2017, 172(1 -2): 205-217.
[25] GALL J G, PARDUE M L. FORMATION AND DETECTION OF RNA-DNA HYBRID MOLECULES IN CYTOLOGICAL PREPARATIONS[J]. Proc Natl Acad Sci USA, 1969, 69(2): 378-383.
[26] SINGER R H, WARD D C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog[J]. Proceedings of the National Academy of Sciences, 1983, 79(23): 7331-7335.
[27] Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH[J]. The FASEB Journal, 2019, 33(S1)
[28] CHEN K H, BOETTIGER A N, MOFFITT J R, et al. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090.
[29] SINHA, ANUBHAV, ALON, et al. Nanoscale imaging of RNA with expansion microscopy[J]. Nature Methods, 2016
[30] SIMONE, CODELUPPI, LARS E, et al. Spatial organization of the somatosensory cortex revealed by osmFISH[J]. Nature Methods, 201870
[31] NAWY, TAL. In situ sequencing[J]. Nature Methods, 2014
[32] GYLLBORG, DANIEL, LANGSETH, et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue[J].
[33] LEE J H, DAUGHARTHY E R, SCHEIMAN J, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues[J]. Nature Protocols, 2015, 10(3): 442.
[34] FURTH D, HATINI V, LEE J H. In Situ Transcriptome Accessibility Sequencing (INSTA-seq)[J]. Cold Spring Harbor Laboratory, 2019
[35] WANG X, ALLEN W E, WRIGHT M A, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J]. Science, 2018, 361: eaat5691.
[36] STAHL P L, SALMEN F, VICKOVIC S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78 -82.
[37] VICKOVIC S, ERASLAN G, SALMéN F, et al. High-definition spatial transcriptomics for in situ tissue profiling[J]. Nature Methods, 2019, 16(10): 987 -990.
[38] RODRIQUES S G, STICKELS R R, GOEVA A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463-1467.
[39] LIU Y, YANG M, DENG Y, et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue[J]. Cell, 2020
[40] CHEN A, LIAO S, CHENG M, et al. Large field of view-spatially resolved transcriptomics at nanoscale resolution[J]. Cold Spring Harbor Laboratory, 2021
[41] CHO C S, XI J, SI Y, et al. Microscopic examination of spatial transcriptome using Seq-Scope[J]. Cell, 2021(101)
[42] SRIVATSAN S R, REGIER M C, BARKAN E, et al. Embryo-scale, single-cell spatial transcriptomics[J]. Science, 2021, 373(6550): 111-117.
[43] LIAO J, LU X, SHAO X, et al. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics[J]. Trends Biotechnol, 2021, 39(1): 43-58.
[44] KEBSCHULL J M, RINGACH N, RICHMAN E B, et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell type set[J]. Cold Spring Harbor Laboratory, 2020
[45] ORTIZ C, NAVARRO J F, JUREK A, et al. Molecular atlas of the adult mouse brain[J]. Science Advances, 2020, 6(26): eabb3446.
[46] MAYNARD K E, COLLADO-TORRES L, WEBER L M, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Cold Spring Harbor Laboratory, 2020(3)
[47] ASP M, GIACOMELLO S, LARSSON L, et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart[J]. Cell, 2019, 179(7): 1647-711660.e1619.
[48] CHEN H, MURRAY E, SINHA A, et al. Dissecting mammalian spermatogenesis using spatial transcriptomics[J]. Cell reports, 37(5): 109915.
[49] FAWKNER-CORBETT D, ANTANAVICIUTE A, PARIKH K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021
[50] GARCIA-ALONSO L, HANDFIELD L F, ROBERTS K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro[J]. Nature Genetics.
[51] JI A L, RUBIN A J, THRANE K, et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma[J]. Cell, 2020
[52] CHEN W T, LU A, CRAESSAERTS K, et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease[J]. Cell, 2020
[53] WANG M, HU Q, LV T, et al. High-resolution spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae[J]. Cold Spring Harbor Laboratory, 2021
[54] LIU C, LI R, LI Y, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis[J]. Cold Spring Harbor Laboratory, 2021
[55] CHEN A, LIAO S, CHENG M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball patterned arrays[J]. Cold Spring Harbor Laboratory, 2021
[56] LEI Y, CHENG M, LI Z, et al. Spatially resolved gene regulatory and disease -related vulnerability map of the adult Macaque cortex[J]. Nat Commun, 2022, 13(1): 6747.
[57] XIA K, SUN H X, LI J, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J]. Dev Cell, 2022, 57(10): 1299-1310 e1294.
[58] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1): 15-21.
[59] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nat Methods, 2021, 18(1): 100-106.
[60] ZEIRA R, LAND M, STRZALKOWSKI A, et al. Alignment and integration of spatial transcriptomics data[J]. Nat Methods, 2022, 19(5): 567-575.
[61] WU T, HU E, XU S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141.
[62] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587 e3529.
[63] DETOMASO D, YOSEF N. Hotspot identifies informative gene modules across modalities of single-cell genomics[J]. Cell Syst, 2021, 12(5): 446-456 e449.
[64] AIBAR S, GONZALEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Methods, 2017, 14(11): 1083-1086.72
[65] LAJEUNESSE D R, JOHNSON B, PRESNELL J S, et al. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells[J]. Bmc Physiology, 2010, 10(1): 1-14.
[66] PALM W, SAMPAIO J L, BRANKATSCHK M, et al. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition[J]. Plos Genetics, 2012, 8(7): e1002828.
[67] CASAS-VILA N, BLUHM A, SAYOLS S, et al. The developmental proteome of Drosophila melanogaster[J]. Genome Research, 2017, 27(7): 1273.
[68] MARTíNEZ-CORRALES G, CABRERO P, DOW J, et al. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule[J]. Development, 2019, 146(9): dev.178087.
[69] SHIN M, FERGUSON M, WILLMS R J, et al. Immune regulation of intestinal-stemcell function in Drosophila[J]. Stem Cell Reports, 2022, 17(4): 741 -755.
[70] MOORE, ADRIAN, W., et al. Hamlet, a Binary Genetic Switch Between Single - and Multiple- Dendrite Neuron Morphology[J]. Science, 2002
[71] WIKLUND M L, STEINERT S, JUNELL A, et al. The N-terminal half of the Drosophila Rel/NF-kappaB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes[J]. Dev Comp Immunol, 2009, 33(5): 690-696.
[72] SARVARI M, MIKANI A, MEHRABADI M. The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella[J]. Dev Comp Immunol, 2020, 110: 103732.
[73] MEIER S, SPRECHER S G, REICHERT H, et al. ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila[J]. Mech Dev, 2006, 123(1): 76-83.
[74] HAO X, WANG S, LU Y, et al. Lola regulates Drosophila adult midgut homeost asis via non-canonical hippo signaling[J]. Elife, 2020, 9
[75] CROWNER D, MADDEN K, GOEKE S, et al. Lola regulates midline crossing of CNS axons in Drosophila[J]. Development, 2002, 129(6): 1317-1325.
[76] TIEBE M, LUTZ M, DE?LA?GARZA A, et al. REPTOR and REPTOR-BP Regulate Organismal Metabolism and Transcription Downstream of TORC1[J]. Developmental Cell, 2015, 33(3)

Academic Degree Assessment Sub committee
生物学
Domestic book classification number
Q96
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/544728
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
梁颖欣. 果蝇中肠发育进程空间转录组图谱建立及基因调控研究[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032150-梁颖欣-生物系.pdf(8506KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[梁颖欣]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[梁颖欣]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[梁颖欣]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.