[1] GILLETTE C M, TENNESSEN J M, REIS T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development[J]. Dev Biol, 2021, 475: 234-244.
[2] MALITA A, REWITZ K. Interorgan communication in the control of metamorphosis[J]. Curr Opin Insect Sci, 2021, 43: 54-62.
[3] BOSCO G, CAMPBELL P, LEIVA-NETO J T, et al. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species[J]. Genetics, 2007, 177(3): 1277-1290.
[4] HALES K G, KOREY C A, LARRACUENTE A M, et al. Genetics on the Fly: A Primer on the Drosophila Model System[J]. Genetics, 2015, 201(3): 815-842.
[5] CHINTAPALLI V R, WANG J, DOW J A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease[J]. Nat Genet, 2007, 39(6): 715 -720.
[6] REITER L T, POTOCKI L, CHIEN S, et al. A systematic analysis of human disease -associated gene sequences in Drosophila melanogaster[J]. Genome Res, 2001, 11(6): 1114-1125.
[7] LEADER D P, KRAUSE S A, PANDIT A, et al. FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data[J]. Nucleic Acids Res, 2018, 46(D1): D809-D815.
[8] GRAVELEY B R, BROOKS A N, CARLSON J W, et al. The developmental transcriptome of Drosophila melanogaster[J]. Nature, 2011, 471(7339): 473 -479.
[9] KIELA P R, GHISHAN F K. Physiology of Intestinal Absorption and Secretion[J]. Best Pract Res Clin Gastroenterol, 2016, 30(2): 145-159.
[10] CAPO F, WILSON A, DI CARA F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and HostMicrobial Interactions in Humans[J]. Microorganisms, 2019, 7(9)
[11] BUCHON N, OSMAN D. All for one and one for all: Regionalization of the Drosophila intestine[J]. Insect Biochem Mol Biol, 2015, 67: 2-8.
[12] TEPASS U, HARTENSTEIN V. Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm[J]. Development, 1994, 120(3): 579-590.
[13] BUCHON N, OSMAN D, DAVID F P, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila[J]. Cell Rep, 2013, 3(5): 1725-1738.
[14] DUBREUIL R R. Copper cells and stomach acid secretion in the Drosophila midgut[J]. 69Int J Biochem Cell Biol, 2004, 36(5): 745-752.
[15] HUNG R J, LI J S S, LIU Y, et al. Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics[J]. Curr Opin Insect Sci, 2021, 47: 12 -17.
[16] REN W, ZHANG Y, LI M, et al. Windpipe controls Drosophila intestinal homeostasis by regulating JAK/STAT pathway via promoting receptor endocytosis and lysosomal degradation[J]. PLoS Genet, 2015, 11(4): e1005180.
[17] ZHAI Z, BOQUETE J P, LEMAITRE B. Cell-Specific Imd-NF-kappaB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection[J]. Immunity, 2018, 48(5): 897-910 e897.
[18] GUO Z, OHLSTEIN B. Stem cell regulation. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency[J]. Science, 2015, 350(6263)
[19] ZHENG H, YANG X, XI Y. Fat body remodeling and homeostasis control in Drosophila[J]. Life Sci, 2016, 167: 22-31.
[20] WILINSKI D, WINZELER J, DUREN W, et al. Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster[J]. Nat Commun, 2019, 10(1): 4052.
[21] WILLIAMS C G, LEE H J, ASATSUMA T, et al. An introduction to spatial transcriptomics for biomedical research[J]. Genome Med, 2022, 14(1): 68.
[22] EMMERT-BUCK M R, BONNER R F, SMITH P D, et al. Laser Capture Microdissection[J]. Science, 1996, 274(5289): 998-1001.
[23] CHEN J, SUO S, TAM P P, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nat Protoc, 2017, 12(3): 566-580.
[24] CASASENT A K, SCHALCK A, GAO R, et al. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing[J]. Cell, 2017, 172(1 -2): 205-217.
[25] GALL J G, PARDUE M L. FORMATION AND DETECTION OF RNA-DNA HYBRID MOLECULES IN CYTOLOGICAL PREPARATIONS[J]. Proc Natl Acad Sci USA, 1969, 69(2): 378-383.
[26] SINGER R H, WARD D C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog[J]. Proceedings of the National Academy of Sciences, 1983, 79(23): 7331-7335.
[27] Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH[J]. The FASEB Journal, 2019, 33(S1)
[28] CHEN K H, BOETTIGER A N, MOFFITT J R, et al. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090.
[29] SINHA, ANUBHAV, ALON, et al. Nanoscale imaging of RNA with expansion microscopy[J]. Nature Methods, 2016
[30] SIMONE, CODELUPPI, LARS E, et al. Spatial organization of the somatosensory cortex revealed by osmFISH[J]. Nature Methods, 201870
[31] NAWY, TAL. In situ sequencing[J]. Nature Methods, 2014
[32] GYLLBORG, DANIEL, LANGSETH, et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue[J].
[33] LEE J H, DAUGHARTHY E R, SCHEIMAN J, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues[J]. Nature Protocols, 2015, 10(3): 442.
[34] FURTH D, HATINI V, LEE J H. In Situ Transcriptome Accessibility Sequencing (INSTA-seq)[J]. Cold Spring Harbor Laboratory, 2019
[35] WANG X, ALLEN W E, WRIGHT M A, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J]. Science, 2018, 361: eaat5691.
[36] STAHL P L, SALMEN F, VICKOVIC S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78 -82.
[37] VICKOVIC S, ERASLAN G, SALMéN F, et al. High-definition spatial transcriptomics for in situ tissue profiling[J]. Nature Methods, 2019, 16(10): 987 -990.
[38] RODRIQUES S G, STICKELS R R, GOEVA A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463-1467.
[39] LIU Y, YANG M, DENG Y, et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue[J]. Cell, 2020
[40] CHEN A, LIAO S, CHENG M, et al. Large field of view-spatially resolved transcriptomics at nanoscale resolution[J]. Cold Spring Harbor Laboratory, 2021
[41] CHO C S, XI J, SI Y, et al. Microscopic examination of spatial transcriptome using Seq-Scope[J]. Cell, 2021(101)
[42] SRIVATSAN S R, REGIER M C, BARKAN E, et al. Embryo-scale, single-cell spatial transcriptomics[J]. Science, 2021, 373(6550): 111-117.
[43] LIAO J, LU X, SHAO X, et al. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics[J]. Trends Biotechnol, 2021, 39(1): 43-58.
[44] KEBSCHULL J M, RINGACH N, RICHMAN E B, et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell type set[J]. Cold Spring Harbor Laboratory, 2020
[45] ORTIZ C, NAVARRO J F, JUREK A, et al. Molecular atlas of the adult mouse brain[J]. Science Advances, 2020, 6(26): eabb3446.
[46] MAYNARD K E, COLLADO-TORRES L, WEBER L M, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Cold Spring Harbor Laboratory, 2020(3)
[47] ASP M, GIACOMELLO S, LARSSON L, et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart[J]. Cell, 2019, 179(7): 1647-711660.e1619.
[48] CHEN H, MURRAY E, SINHA A, et al. Dissecting mammalian spermatogenesis using spatial transcriptomics[J]. Cell reports, 37(5): 109915.
[49] FAWKNER-CORBETT D, ANTANAVICIUTE A, PARIKH K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021
[50] GARCIA-ALONSO L, HANDFIELD L F, ROBERTS K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro[J]. Nature Genetics.
[51] JI A L, RUBIN A J, THRANE K, et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma[J]. Cell, 2020
[52] CHEN W T, LU A, CRAESSAERTS K, et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease[J]. Cell, 2020
[53] WANG M, HU Q, LV T, et al. High-resolution spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae[J]. Cold Spring Harbor Laboratory, 2021
[54] LIU C, LI R, LI Y, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis[J]. Cold Spring Harbor Laboratory, 2021
[55] CHEN A, LIAO S, CHENG M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball patterned arrays[J]. Cold Spring Harbor Laboratory, 2021
[56] LEI Y, CHENG M, LI Z, et al. Spatially resolved gene regulatory and disease -related vulnerability map of the adult Macaque cortex[J]. Nat Commun, 2022, 13(1): 6747.
[57] XIA K, SUN H X, LI J, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J]. Dev Cell, 2022, 57(10): 1299-1310 e1294.
[58] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1): 15-21.
[59] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nat Methods, 2021, 18(1): 100-106.
[60] ZEIRA R, LAND M, STRZALKOWSKI A, et al. Alignment and integration of spatial transcriptomics data[J]. Nat Methods, 2022, 19(5): 567-575.
[61] WU T, HU E, XU S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141.
[62] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587 e3529.
[63] DETOMASO D, YOSEF N. Hotspot identifies informative gene modules across modalities of single-cell genomics[J]. Cell Syst, 2021, 12(5): 446-456 e449.
[64] AIBAR S, GONZALEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Methods, 2017, 14(11): 1083-1086.72
[65] LAJEUNESSE D R, JOHNSON B, PRESNELL J S, et al. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells[J]. Bmc Physiology, 2010, 10(1): 1-14.
[66] PALM W, SAMPAIO J L, BRANKATSCHK M, et al. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition[J]. Plos Genetics, 2012, 8(7): e1002828.
[67] CASAS-VILA N, BLUHM A, SAYOLS S, et al. The developmental proteome of Drosophila melanogaster[J]. Genome Research, 2017, 27(7): 1273.
[68] MARTíNEZ-CORRALES G, CABRERO P, DOW J, et al. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule[J]. Development, 2019, 146(9): dev.178087.
[69] SHIN M, FERGUSON M, WILLMS R J, et al. Immune regulation of intestinal-stemcell function in Drosophila[J]. Stem Cell Reports, 2022, 17(4): 741 -755.
[70] MOORE, ADRIAN, W., et al. Hamlet, a Binary Genetic Switch Between Single - and Multiple- Dendrite Neuron Morphology[J]. Science, 2002
[71] WIKLUND M L, STEINERT S, JUNELL A, et al. The N-terminal half of the Drosophila Rel/NF-kappaB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes[J]. Dev Comp Immunol, 2009, 33(5): 690-696.
[72] SARVARI M, MIKANI A, MEHRABADI M. The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella[J]. Dev Comp Immunol, 2020, 110: 103732.
[73] MEIER S, SPRECHER S G, REICHERT H, et al. ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila[J]. Mech Dev, 2006, 123(1): 76-83.
[74] HAO X, WANG S, LU Y, et al. Lola regulates Drosophila adult midgut homeost asis via non-canonical hippo signaling[J]. Elife, 2020, 9
[75] CROWNER D, MADDEN K, GOEKE S, et al. Lola regulates midline crossing of CNS axons in Drosophila[J]. Development, 2002, 129(6): 1317-1325.
[76] TIEBE M, LUTZ M, DE?LA?GARZA A, et al. REPTOR and REPTOR-BP Regulate Organismal Metabolism and Transcription Downstream of TORC1[J]. Developmental Cell, 2015, 33(3)
Edit Comment