中文版 | English
Title

钒基氧化物薄膜的制备及其电致变色性能研究

Alternative Title
THE PREPARATION AND ELECTROCHROMIC PROPERTIES OF VANADIUM OXIDE THIN FILMS
Author
Name pinyin
LI Bowen
School number
12032247
Degree
硕士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
温瑞涛
Mentor unit
材料科学与工程系
Publication Years
2023-05-17
Submission date
2023-07-06
University
南方科技大学
Place of Publication
深圳
Abstract

电致变色是指在外部电场刺激下,材料光学性质(透射率、反射率或吸 收系数)发生可逆变化的现象。因此,无机电致变色材料在智能窗、智能显 示、滤波片、光学隐身等领域有巨大的应用潜力。常见的过渡金属氧化物如 WO3,TiO2,NiO 等在电致变色过程中颜色变换单一,且都难以实现对可见 光和近红外光两个波段的独立调控。因此开发多色态变化和双波段调控特性 的无机材料对电致变色器件的发展具有深远影响。 本课题采用磁控溅射在 ITO 玻璃上制备了不同氧含量的钒氧化物薄膜。 研究工作主要包含两个方面:首先通过控制氧分压制备得到具有不同色态的 钒氧化物薄膜(VOx),系统地研究氧含量对薄膜电致变色性能的影响,我们 对比了薄膜在大气环境和气氛保护环境中测试时 VOx 薄膜表现出的不同电 致变色性能,并给予了解释。 其次,我们围绕晶体 V2O5 相变过程中的电致变色性能进行了全面研究。 晶体 V2O5 作为一种具有多次相变的锂电池正极材料的同时也是一种常见的 电致变色材料,之前的研究已经发现了晶体 V2O5 薄膜在 Li+注入和抽出的过 程中薄膜发生黄,绿,蓝三种颜色可逆变化的现象。但我们对 V2O5 薄膜每 一次相变与光学性质(颜色,透过率等)改变之间的联系尚不清楚。在本文 中,我们对晶体 V2O5 在 Li+注入引发相变的过程中发生的多色态变化和可见 光和近红外光谱的双波段吸收特性进行了全面研究。研究发现,晶体 V2O5 在电致变色过程中同时具有多色态转变和可见-近红外光谱双波段调控的特 点。晶体 V2O5 光学性质变化是一个连续过程,并非全部由瞬时相变决定。 我们使用相变和小极化子跃迁理论共同解释了这种光谱变化特性。该工作对 基于晶体 V2O5 多色态变化和双波段调控的电致变色器件具有指导意义。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2023-07
References List

[1] WANG Y, RUNNERSTROM E L, MILLIRON D J. Switchable materials for smart windows [J]. Annual Review of Chemical and Biomolecular Engineering, 2016, (7):283-304
[2] RICHARDSON T J. New electrochromic mirror systems [J]. Solid State Ionics, 2003, 165(1-4): 305-308.
[3] CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices [J]. Accounts of Chemical Research, 2016, 49(8): 1469-1476.
[4] WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development [J]. Materials Science and Engineering: R: Reports, 2020, 140: 100524.
[5] ZHANG X, LI W, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green [J]. Chemical Communications, 2020, 56(69): 10062-10065.
[6] DEB S. Optical and photoelectric properties and colour centres in thin films of tungsten oxide [J]. Philosophical Magazine, 1973, 27(4): 801-822.
[7] GRANQVIST C G. Handbook of inorganic electrochromic materials [M]. Elsevier, 1995.
[8] SHAO Z, HUANG A, MING C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices [J]. Nature Electronics, 2022, 5(1): 45-52.
[9] TONG Z, LI N, LV H, et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device [J]. Solar Energy Materials and Solar Cells, 2016, 146: 135-143.
[10] WANG J, ZHAO W, TAM B, et al. Pseudocapacitive porous amorphous vanadium pentoxide with enhanced multicolored electrochromism [J]. Chemical Engineering Journal, 2023, 452: 139655.
[11] GONG H, LI W, FU G, et al. Recent progress and advances in electrochromic devices exhibiting infrared modulation [J]. Journal of Materials Chemistry A, 2022, 10, 6269-6290参考文献56
[12] HOSSEINI A, MASSOUD Y. A low-loss metal-insulator-metal plasmonic bragg reflector [J]. Optics Express, 2006, 14(23): 11318-11323.
[13] MADASAMY K, VELAYUTHAM D, SURYANARAYANAN V, et al. Viologen-based electrochromic materials and devices [J]. Journal of Materials Chemistry C, 2019, 7(16): 4622-4637.
[14] MORTIMER R J. Electrochromic materials [J]. Annual Review of Materials Research, 2011, 41: 241-268.
[15] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications [J]. Displays, 2006, 27(1): 2-18.
[16] PERNITES R B, PONNAPATI R R, ADVINCULA R C. Superhydrophobic–superoleophilic polythiophene films with tunable wetting and electrochromism [J]. Advanced Materials, 2011, 23(28): 3207-3213.
[17] MONK P, MORTIMER R, ROSSEINSKY D. Electrochromism and electrochromic devices [M]. Cambridge University Press, 2007. p512.
[18] SONMEZ G, SHEN C K, RUBIN Y, et al. A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era [J]. Angewandte Chemie, 2004, 116(12): 1524-1528.
[19] SONMEZ G, SHEN C K, RUBIN Y, et al. The unusual effect of bandgap lowering by C60 on a conjugated polymer [J]. Advanced Materials, 2005, 17(7): 897-900.
[20] ITAYA K, SHIBAYAMA K, AKAHOSHI H, et al. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device [J]. Journal of Applied Physics, 1982, 53(1): 804-805.
[21] KO J H, YEO S, PARK J H, et al. Graphene-based electrochromic systems: the case of Prussian Blue nanoparticles on transparent graphene film [J]. Chemical Communications, 2012, 48(32): 3884-3886.
[22] ARMER C F, LüBKE M, REDDY M, et al. Phase change effect on the structural and electrochemical behaviour of pure and doped vanadium pentoxide as positive electrodes for lithium ion batteries [J]. Journal of Power Sources, 2017, 353: 40-50.
[23] LUO Y, BAI Y, MISTRY A, et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by 参考文献57multiscale operando investigation [J]. Nature Materials, 2022, 21(2): 217-227.
[24] LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries [J]. Nature, 2020, 585(7823): 63-67.
[25] HORROCKS G A, LIKELY M F, VELAZQUEZ J M, et al. Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study [J]. Journal of Materials Chemistry A, 2013, 1(48): 15265-15277.
[26] JARRY A, WALKER M, THEODORU S, et al. Elucidating Structural Transformations in Li xV2O5 Electrochromic Thin Films by Multimodal Spectroscopies [J]. Chemistry of Materials, 2020, 32(17): 7226-7236.
[27] MJEJRI I, GAUDON M, ROUGIER A. Mo addition for improved electrochromic properties of V2O5 thick films [J]. Solar Energy Materials and Solar Cells, 2019, 198: 19-25.
[28] WEN R-T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films [J]. Nature Materials, 2015, 14(10): 996-1001.
[29] WEN R-T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping [J]. ACS Applied Materials & Interfaces, 2016, 8(9): 5777-5782.
[30] FAUGHNAN B W, CRANDALL R S, HEYMAN P M. Electrochromism in WO3 amorphous films [J]. Rca Rev, 1975, 36(1): 177-197.
[31] SAKAI N, EBINA Y, TAKADA K, et al. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency [J]. Journal of the Electrochemical Society, 2005, 152(12): E384-E389.
[32] LIU L, DIAO X, HE Z, et al. High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage [J]. Energy Storage Materials, 2020, 33: 258-267.
[33] CHEN J, WANG Z, LIU C, et al. Mimicking Nature's Butterflies: Electrochromic Devices with Dual ‐ Sided Differential Colorations [J]. Advanced Materials, 2021, 33(14): 2007314.
[34] WANG Z, WANG X, CONG S, et al. Towards full-colour tunability of 参考文献58inorganic electrochromic devices using ultracompact fabry-perot nanocavities [J]. Nature Communications, 2020, 11(1): 1-9.
[35] ZHANG W, LI H, ELEZZABI A Y. Electrochromic Displays Having Two‐Dimensional CIE Color Space Tunability [J]. Advanced Functional Materials, 2022, 32(7): 2108341.
[36] ZHANG W, LI H, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices [J]. Light: Science & Applications, 2020, 9(1): 1-11.
[37] OHNO Y. CIE fundamentals for color measurements [J]. 2000.
[38] IBRAHEEM N A, HASAN M M, KHAN R Z, et al. Understanding color models: a review [J]. ARPN Journal of Science and Technology, 2012, 2(3): 265-275.
[39] XIAO L, LV Y, LIN J, et al. WO3‐Based Electrochromic Distributed Bragg Reflector: Toward Electrically Tunable Microcavity Luminescent Device [J]. Advanced Optical Materials, 2018, 6(1): 1700791.
[40] HOPMANN E, ELEZZABI A Y. Plasmochromic nanocavity dynamic light color switching [J]. Nano Letters, 2020, 20(3): 1876-1882.
[41] HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods [J]. Nano Letters, 2017, 17(9): 5756-5761.
[42] LLORDéS A, WANG Y, FERNANDEZ-MARTINEZ A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing [J]. Nature Materials, 2016, 15(12): 1267-1273.
[43] WANG Z, ZHANG Q, CONG S, et al. Using Intrinsic Intracrystalline Tunnels for Near‐Infrared and Visible‐Light Selective Electrochromic Modulation [J]. Advanced Optical Materials, 2017, 5(11): 1700194.
[44] LLORDéS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites [J]. Nature, 2013, 500(7462): 323-326.
[45] BACHMANN H-G, AHMED F R, BARNES W H. The crystal structure of vanadium pentoxide [J]. Zeitschrift für Kristallographie-Crystalline Materials, 1961, 115(1-6): 110-131.参考文献59
[46] ZHANG X-F, WANG K-X, WEI X, et al. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries [J]. Chemistry of Materials, 2011, 23(24): 5290-5292.
[47] LI Y, HUANG Z, KALAMBATE P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery [J]. Nano Energy, 2019, 60: 752-759.
[48] WANG H G, MA D L, HUANG Y, et al. Electrospun V2O5 nanostructures with controllable morphology as high‐performance cathode materials for lithium‐ion batteries [J]. Chemistry–A European Journal, 2012, 18(29): 8987-8993.
[49] LIU Y, JIA C, WAN Z, et al. Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film [J]. Solar Energy Materials and Solar Cells, 2015, 132: 467-475.
[50] HE Z, WANG J-L, CHEN S-M, et al. Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control [J]. Accounts of Chemical Research, 2022, 55(11): 1480-1491.
[51] TONG Z, HAO J, ZHANG K, et al. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films [J]. Journal of Materials Chemistry C, 2014, 2(18): 3651-3658.
[52] YUE Y, LIANG H. Micro ‐ and nano ‐ structured vanadium pentoxide (V2O5) for electrodes of lithium ‐ ion batteries [J]. Advanced Energy Materials, 2017, 7(17): 1602545.
[53] MUñOZ-CASTRO M, BERKEMEIER F, SCHMITZ G, et al. Controlling the optical properties of sputtered-deposited LixV2O5 films [J]. Journal of Applied Physics, 2016, 120(13): 135106.
[54] MJEJRI I, GAUDON M, SONG G, et al. Crystallized V2O5 as oxidized phase for unexpected multicolor electrochromism in V2O3 thick film [J]. ACS Applied Energy Materials, 2018, 1(6): 2721-2729.
[55] MJEJRI I, DUTTINE M, BUFFIèRE S, et al. From the Irreversible Transformation of VO2 to V2O5 Electrochromic Films [J]. Inorganic Chemistry, 2022, 61(46): 18496-18503.
[56] KELLY P J, ARNELL R D. Magnetron sputtering: a review of recent 参考文献60developments and applications [J]. Vacuum, 2000, 56(3): 159-172.
[57] DAHLMAN C J, HEO S, ZHANG Y, et al. Dynamics of lithium insertion in electrochromic titanium dioxide nanocrystal ensembles [J]. Journal of the American Chemical Society, 2021, 143(22): 8278-8294.
[58] SANCHEZ C, LIVAGE J, LUCAZEAU G. Infrared and Raman study of amorphous V2O5 [J]. Journal of Raman Spectroscopy, 1982, 12(1): 68-72.
[59] HUOTARI J, LAPPALAINEN J, ERIKSSON J, et al. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppblevel detection of ammonia [J]. Journal of Alloys and Compounds, 2016, 675: 433-440.
[60] GRACIA F, YUBERO F, ESPINOS J, et al. First nucleation steps of vanadium oxide thin films studied by XPS inelastic peak shape analysis [J]. Applied Surface Science, 2005, 252(1): 189-195.
[61] SILVERSMIT G, POELMAN H, DEPLA D, et al. A comparative XPS and UPS study of VOx layers on mineral TiO2 (001)‐ anatase supports [J]. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 2006, 38(9): 1257-1265.
[62] TIAN B, TANG W, SU C, et al. Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 642-650.
[63] BHUPATHI S, WANG S, ABUTOAMA M, et al. Femtosecond laser-induced vanadium oxide metamaterial nanostructures and the study of optical response by experiments and numerical simulations [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41905-41918.
[64] LAMSAL C, RAVINDRA N. Optical properties of vanadium oxides-an analysis [J]. Journal of Materials Science, 2013, 48: 6341-6351.
[65] LINDSTRöM H, SöDERGREN S, SOLBRAND A, et al. Li+ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films [J]. The Journal of Physical Chemistry B, 1997, 101(39): 7717-7722.
[66] HUANG S, ZHANG R, SHAO P, et al. Electrochromic performance fading and restoration in amorphous TiO2 thin films [J]. Advanced Optical Materials, 2022, 10(16): 2200903.参考文献61
[67] LI J, LIU W, WEI Y, et al. Effect of Oxygen Content on the Properties of Sputtered TaOx Electrolyte Film in All-Solid-State Electrochromic Devices [J]. Coatings, 2022, 12(12): 1831.
[68] LE T K, PHAM P V, DONG C-L, et al. Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives [J]. Journal of Materials Chemistry C, 2022, 10(11): 4019-4071.
[69] BADDOUR-HADJEAN R, PEREIRA-RAMOS J-P. Raman microspectrometry applied to the study of electrode materials for lithium batteries [J]. Chemical Reviews, 2010, 110(3): 1278-1319.
[70] PATRISSI C J, MARTIN C R. Sol‐gel‐based template synthesis and li‐insertion rate performance of nanostructured vanadium pentoxide [J]. Journal of the Electrochemical Society, 1999, 146(9): 3176.
[71] BADDOUR-HADJEAN R, RAEKELBOOM E, PEREIRA-RAMOS J. New Structural Characterization of the Li xV2O5 System Provided by Raman Spectroscopy [J]. Chemistry of Materials, 2006, 18(15): 3548-3556.
[72] GUO X, CHEN C, ONG S P. Intercalation Chemistry of the Disordered Rocksalt Li3V2O5 Anode from Cluster Expansions and Machine Learning Interatomic Potentials [J]. Chemistry of Materials, 2023, 35(4): 1537-1546.
[73] 张天宁, 王书霞, 黄田田, et al. Atomic-Layer-Deposited ultrathin films of vanadium pentoxide crystalline nanoflakes with controllable thickness and optical band-gap [J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 3-7.
[74] 方容川. 固体光谱学 [M]. 中国科学技术大学出版社, 2001.
[75] TAUC J. Optical properties of amorphous semiconductors [J]. Amorphous and Liquid Semiconductors, 1974: 159-220.
[76] TALLEDO A, GRANQVIST C G. Electrochromic vanadium pentoxidebased films: Structural, electrochemical, and optical properties [J]. Journal of Applied Physics, 1995, 77(9): 4655-4666.
[77] LAMBRECHT W, DJAFARI-ROUHANI B, LANNOO M, et al. The energy band structure of V2O5. I. Theoretical approach and band calculations [J]. Journal of Physics C: Solid State Physics, 1980, 13(13): 2485.
[78] KAMAT P V, DIMITRIJEVIC N M, NOZIK A J. Dynamic Burstein-Moss 参考文献62shift in semiconductor colloids [J]. The Journal of Physical Chemistry, 1989, 93(8): 2873-2875.
[79] WANG Q, BRIER M, JOSHI S, et al. Defect-induced Burstein-Moss shift in reduced V2O5 nanostructures [J]. Physical Review B, 2016, 94(24): 245305.
[80] PARKER J, LAM D, XU Y-N, et al. Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations [J]. Physical Review B, 1990, 42(8): 5289.
[81] BERGGREN L, JONSSON J C, NIKLASSON G A. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory [J]. Journal of Applied Physics, 2007, 102(8): 083538.
[82] GAPONENKO S V. Optical properties of semiconductor nanocrystals [M]. Cambridge University Press, 1998.
[83] LYNCH D W, OLSON C, WEAVER J. Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV [J]. Physical Review B, 1975, 11(10): 3617.
[84] MOKEROV V, MAKAROV V, TULVINSKII V, et al. Optical properties of vanadium pentoxide in the region of photon energies from 2 eV to 14 eV [J]. Opt Spectrosc(USSR)(Engl Transl);(United States), 1976, 40(1).
[85] SHAFEEQ K, ATHIRA V, KISHOR C R, et al. Structural and optical properties of V2O5 nanostructures grown by thermal decomposition technique [J]. Applied Physics A, 2020, 126: 1-6.
[86] RASHEED R T, MANSOOR H S, ABDULLAH T A, et al. Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method [J]. Journal of Thermal Analysis and Calorimetry, 2021, 145: 297-307.

Academic Degree Assessment Sub committee
物理学
Domestic book classification number
TB34
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/545156
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
李博文. 钒基氧化物薄膜的制备及其电致变色性能研究[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12032247-李博文-材料科学与工程(5692KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[李博文]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[李博文]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李博文]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.