中文版 | English
Title

柔性惯性传感器的制备与在颅内血肿穿刺导航系统的应用

Alternative Title
FABRICATION OF FLEXIBLE INERTIAL SENSOR AND ITS APPLICATION IN INTRACRANIAL HEMATOMA PUNCTURE NAVIGATION SYSTEM
Author
Name pinyin
ZHANG Yilan
School number
12132602
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
王琳
Mentor unit
中国科学院深圳先进技术研究院
Publication Years
2023-05-15
Submission date
2023-07-05
University
南方科技大学
Place of Publication
深圳
Abstract

据统计,全球出血性脑卒中的发病率约为10-30人每10万人,出血性脑卒中的死亡率通常在30%到50%之间。常见的治疗方案是进行颅内血肿穿刺手术。随着科技的发展,现有的穿刺手术辅助导航系统有立体定向导航、电磁导航和光学导航。但是这些导航系统容易受到环境中光学、电磁的干扰导致定位误差,而且操作复杂。在本文中,我们制备了一种基于柔性基底的惯性传感器,并且研发了一种使用两个柔性惯性传感器和病人头颅CT影像,对颅内血肿穿刺手术进行导航的方法。该方法不受环境中光线、电磁的干扰,而且使用惯性传感器追踪病人头部姿态,不需要通过打骨钉将病人头颅固定。该方法的原理是当病人头部发生移动时,头部柔性惯性传感器获得补偿角度,与CT影像获得的规划路径结合,确定穿刺路径。手术针上的柔性惯性传感器用来追踪手术针的实时姿态信息,通过调整手术针的姿态与规划路径一致,来实现穿刺手术导航功能。实验中首先使用Madgwick算法对柔性惯性传感器的姿态进行解算,接着通过5组实验对两个惯性传感器的角度变化进行一致性分析,实验结果表明两个惯性传感器之间的角度误差在1°以内,证明了两个惯性传感器具有高度一致性。然后在颅骨模型上进行了5组模拟穿刺实验,实验结果表明,在穿刺过程中的角度误差平均值不超过1°,均方根误差不超过0.7°。证明了该系统在颅内血肿穿刺手术上具有巨大的应用潜力。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2021
Year of Degree Awarded
2023-06
References List

[1] WEI X, YI Z, LI W, et al. Energy harvesting fueling the revival of self-powered unmanned aerial vehicles [J]. Energy Conversion and Management, 2023, 283.
[2] 王亚楠, 吴思缈, 刘鸣. 中国脑卒中15年变化趋势和特点[J]. 华西医学, 2021, 36(06): 803-807.
[3] Barkhordari M, Sadeghian H, Keshmiri M. Robot Assisted Needle Insertion Using CT-Scan Images[C]//2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM). IEEE, 2018: 566-571.
[4] HANNAH T C, KELLNER R, KELLNER C P. Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques: A Review [J]. Diagnostics, 2021, 11(3).
[5] LIU L, MARIANI S G, DE SCHLICHTING E, et al. Frameless ROSA® Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy [J]. Operative Neurosurgery, 2020, 19(1): 57-64.
[6] Lü Y, LI C, LIU M, et al. MRI-guided stereotactic aspiration of brain abscesses by use of an optical tracking navigation system [J]. Acta Radiologica, 2014, 55(1): 121-8.
[7] PUTZER D, ARCO D, SCHAMBERGER B, et al. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study [J]. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2016, 188(05): 470-8.
[8] Gralla J, Nimsky C, Buchfelder M, et al. Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results[J]. Zentralblatt für Neurochirurgie, 2003, 64(04): 166-170.
[9] Bucholz R, McDurmont L. The history, current status, and future of the stealthstation treatment guidance system[M]//Textbook of Stereotactic and Functional Neurosurgery. 2009.
[10] HALDRUP M, MUNYEMANA P, MA'AYA A, et al. Surgical occlusion of middle meningeal artery in treatment of chronic subdural haematoma: anatomical and technical considerations [J]. Acta Neurochir (Wien), 2021, 163(4): 1075-81.
[11] HOUTEN J K, NASSER R, BAXI N. Clinical Assessment of Percutaneous Lumbar Pedicle Screw Placement Using the O-Arm Multidimensional Surgical Imaging System [J]. Neurosurgery, 2012, 70(4): 990-5.
[12] VAN DE KELFT E, COSTA F, VAN DER PLANKEN D, et al. A Prospective Multicenter Registry on the Accuracy of Pedicle Screw Placement in the Thoracic, Lumbar, and Sacral Levels With the Use of the O-arm Imaging System and StealthStation Navigation [J]. Spine, 2012, 37(25): E1580-E7.
[13] Mahony R, Euston M, Kim J, et al. A non-linear observer for attitude estimation of a fixed-wing unmanned aerial vehicle without GPS measurements[J]. Transactions of the Institute of Measurement and Control, 2011, 33(6): 699-717.
[14] SETOODEH P, KHAYATIAN A, FRAJAH E. Attitude Estimation By Separate-Bias Kalman Filter-Based Data Fusion [J]. Journal of Navigation, 2004, 57(2): 261-73.
[15] 吴哲明, 孙振国, 张文增,等. 基于惯性测量单元旋转的陀螺漂移估计和补偿方法[J]. 清华大学学报:自然科学版, 2014(9):5.
[16] 陈宽.用于可穿戴和植入式医疗器械的柔性电子技术[J].中国医学装备,2020,(12):191-196.
[17] XU H, GAO L, ZHAO H, et al. Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation [J]. Microsyst Nanoeng, 2021, 7: 92.
[18] MENG Y, BOTTENFIELD B, BOLDING M, et al. Sensing Passive Eye Response to Impact Induced Head Acceleration Using MEMS IMUs [J]. IEEE Trans Biomed Circuits Syst, 2018, 12(1): 182-91.
[19] VAN DEN BRAND J, DE KOK M, KOETSE M, et al. Flexible and stretchable electronics for wearable health devices [J]. Solid-State Electronics, 2015, 113: 116-20.
[20] Kim K, Lee S. Implementation of six-axis inertial measurement unit on a stretchable platform using “cut-and-paste” method for biomedical applications[J]. Sens. Mater, 2019, 31: 1397-1405.
[21] KABUYE E, HELLEBREKERS T, BOBO J, et al. Tracking of Scalpel Motions With an Inertial Measurement Unit System [J]. IEEE Sensors Journal, 2022, 22(5): 4651-60.
[22] Suh Y S, Park S K, Kang H J, et al. Attitude estimation adaptively compensating external acceleration[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2006, 49(1): 172-179.
[23] SABATINI A M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing [J]. IEEE Trans Biomed Eng, 2006, 53(7): 1346-56.
[24] Kalman R E. A new approach to linear filtering and prediction problems[J]. 1960.
[25] Wei X, Yi Z, Li W, et al. Energy harvesting fueling the revival of self-powered unmanned aerial vehicles[J]. Energy Conversion and Management, 2023, 283: 116863.
[26] Madgwick S O H, Harrison A J L, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm[C]//2011 IEEE international conference on rehabilitation robotics. IEEE, 2011: 1-7.
[27] HAN S-L, XIE M-J, CHIEN C-C, et al. Using MEMS-based inertial sensor with ankle foot orthosis for telerehabilitation and its clinical evaluation in brain injuries and total knee replacement patients [J]. Microsystem Technologies, 2015, 22(3): 625-34.
[28] CHEN H, CAO Z, SU S, et al. Measurement System for Attitude of Anterior Pelvic Plane and Implantation of Prothesis in THR Surgery [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1913-21.
[29] Cao Z, Su S, Chen H, et al. Pose measurement of Anterior Pelvic Plane based on inertial measurement unit in total hip replacement surgeries[C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016: 5801-5804.
[30] CHEN H, YANG Z, ZHANG J, et al. An IMU-Based Real-Time Measuring System for Acetabular Prosthesis Implant Angles in THR Surgeries [J]. IEEE Sensors Journal, 2021, 21(17): 19407-15.
[31] Cao Z, Su S, Tang H, et al. IMU-based real-time pose measurement system for anterior pelvic plane in total hip replacement surgeries[C]//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017: 1360-1363.
[32] SCUDERI G R. Total knee arthroplasty performed with inertial navigation within the surgical field [J]. Seminars in Arthroplasty, 2014, 25(3): 179-86.
[33] Feng C, Wong K, Meng M Q H, et al. Drilling pattern analysis of femur bone based on inertial measurement unit signal[C]//2014 IEEE International Conference on Information and Automation (ICIA). IEEE, 2014: 841-845.
[34] Behrens A, Grimm J, Gross S, et al. Inertial navigation system for bladder endoscopy[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 5376-5379.
[35] HUANG Z, HU C. Real-Time Attitude Tracking of Capsule Endoscope Based on MEMS IMU and Error Analysis [Z]. 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2021: 968-73.10.1109/rcar52367.2021.9517523
[36] FU C, WANG N, CHEN H, et al. A Novel Simple Puncture Positioning and Guidance System for Intracerebral Hematoma [J]. World Neurosurg, 2019, 131: e562-e9.
[37] LIN C Y, TANG W R, CHIANG P C, et al. Improving puncture accuracy in percutaneous CT-guided needle insertion with wireless inertial measurement unit: a phantom study [J]. Eur Radiol, 2023.
[38] Chen X, Xu B, Yu X. iPod touch-assisted instrumentation of the spine: is it accurate and reliable?[J]. Neurosurgery, 2014, 75(6): E734-E736.
[39] LI F, GAN Z, XU X, et al. Smartphone navigated endoscopic port surgery of hypertensive basal ganglia hemorrhage [J]. J Clin Neurosci, 2022, 101: 193-7.
[40] 方路平, 高坤, 潘清, 曹平, 徐仙明. 基于陀螺仪的穿刺手术导航系统设计[J]. 浙江工业大学学报, 2016,44(02): 129-133.

Academic Degree Assessment Sub committee
材料科学与工程
Domestic book classification number
TM9
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/545196
DepartmentShenzhen Institute of Advanced Technology Chinese Academy of Sciences
Recommended Citation
GB/T 7714
张一栏. 柔性惯性传感器的制备与在颅内血肿穿刺导航系统的应用[D]. 深圳. 南方科技大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
12132602-张一栏-中国科学院深圳(3090KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张一栏]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张一栏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张一栏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.