中文版 | English
Title

On the phases of a semi-sectorial matrix and the essential phase of a Laplacian

Author
Corresponding AuthorChen,Wei
Publication Years
2023-11-01
DOI
Source Title
ISSN
0024-3795
EISSN
1873-1856
Volume676Pages:441-458
Abstract
In this paper, we extend the definition of phases of sectorial matrices to those of semi-sectorial matrices, which are possibly singular. Properties of the phases are also extended, including those of the Moore-Penrose generalized inverse, compressions and Schur complements, matrix sums and products. In particular, an interlacing relation is established between the phases of A+B and those of A and B combined. Also, a majorization relation is established between the phases of the nonzero eigenvalues of AB and the phases of the compressions of A and B, which leads to a generalized matrix small phase theorem. For the matrices which are not necessarily semi-sectorial, we define their (largest and smallest) essential phases via diagonal similarity transformation. An explicit expression for the essential phases of a Laplacian matrix of a directed graph is obtained.
Keywords
URL[Source Record]
Indexed By
Language
English
SUSTech Authorship
Others
Funding Project
National Natural Science Foundation of China[62073003];National Natural Science Foundation of China[72131001];
WOS Research Area
Mathematics
WOS Subject
Mathematics, Applied ; Mathematics
WOS Accession No
WOS:001071954700001
Publisher
ESI Research Field
MATHEMATICS
Scopus EID
2-s2.0-85166981483
Data Source
Scopus
Citation statistics
Cited Times [WOS]:0
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/559513
Affiliation
1.School of Electrical Engineering and Computer Science,KTH Royal Institute of Technology,Stockholm,Sweden
2.Department of Electronic and Computer Engineering,Hong Kong University of Science and Technology,Kowloon,Clear Water Bay,Hong Kong
3.Department of Mechanics and Engineering Science,State Key Laboratory for Turbulence and Complex Systems,Peking University,Beijing,100871,China
4.Southern University of Science and Technology,Shenzhen,China
Recommended Citation
GB/T 7714
Wang,Dan,Mao,Xin,Chen,Wei,et al. On the phases of a semi-sectorial matrix and the essential phase of a Laplacian[J]. Linear Algebra and Its Applications,2023,676:441-458.
APA
Wang,Dan,Mao,Xin,Chen,Wei,&Qiu,Li.(2023).On the phases of a semi-sectorial matrix and the essential phase of a Laplacian.Linear Algebra and Its Applications,676,441-458.
MLA
Wang,Dan,et al."On the phases of a semi-sectorial matrix and the essential phase of a Laplacian".Linear Algebra and Its Applications 676(2023):441-458.
Files in This Item:
There are no files associated with this item.
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Wang,Dan]'s Articles
[Mao,Xin]'s Articles
[Chen,Wei]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Wang,Dan]'s Articles
[Mao,Xin]'s Articles
[Chen,Wei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Wang,Dan]'s Articles
[Mao,Xin]'s Articles
[Chen,Wei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.