Title | Improve multi-energy supply microgrid resilience using mobile hydrogen trucks based on transportation network |
Author | |
Corresponding Author | Li,Bei |
Publication Years | 2023-10-01
|
DOI | |
Source Title | |
ISSN | 2590-1168
|
EISSN | 2590-1168
|
Volume | 18 |
Abstract | Nowadays, multi-energy supply utility grid system has witnessed the destruction of increasing natural disasters. Under the disasters, the energy supply capability from the utility grid system to the end-user microgrids is decreased, which is due to the destruction of the system infrastructure. Thus, how to improve the resilience of the microgrids under disasters is an essential problem. In this paper, a mobile hydrogen truck-assisted methodology is proposed to deliver hydrogen tanks to end-user microgrids via transportation network to resist to the natural disasters. First, a temporal–spatial destructive model of the natural disasters based on the grid division is presented, and the dynamical energy supply ability of an IEEE30+gas20+heat14 utility grid system is derived. Second, a hydrogen tank delivering model from hydrogen company to microgrids based on transportation network is presented. Third, a real-world transportation network based on SUMO simulator is linked with Matlab to simulate the real-time coupling between transportation network and power network. Last, microgrids optimal operation based on the temporal–spatial destructive model and hydrogen tank delivering model is presented. The simulation results show that with the assistance of the arrived hydrogen tanks through real-world transportation network in microgrid, one can indeed reduce load shedding. However, when considering the damaged transportation network, the saving loads are reduced due to the increase of the mobile hydrogen storage delivery time. It reveals that delivering mobile hydrogen tanks to end-user microgrids can effectively improve the system resilience. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
Funding Project | Basic and Applied Basic Research Foundation of Guangdong Province[2019A1515110641];Basic and Applied Basic Research Foundation of Guangdong Province[2022A1515240034];
|
WOS Research Area | Energy & Fuels
; Engineering
; Transportation
|
WOS Subject | Energy & Fuels
; Engineering, Electrical & Electronic
; Transportation Science & Technology
|
WOS Accession No | WOS:001052094800001
|
Publisher | |
Scopus EID | 2-s2.0-85166969387
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/559571 |
Department | Department of Mechanical and Energy Engineering |
Affiliation | 1.College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen,518060,China 2.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing,211106,China 3.Department of Civil and Environmental Engineering,University of Alberta,Edmonton,T6G 1H9,Canada 4.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
Recommended Citation GB/T 7714 |
Li,Bei,Li,Jiangchen,Jian,Bingcong. Improve multi-energy supply microgrid resilience using mobile hydrogen trucks based on transportation network[J]. eTransportation,2023,18.
|
APA |
Li,Bei,Li,Jiangchen,&Jian,Bingcong.(2023).Improve multi-energy supply microgrid resilience using mobile hydrogen trucks based on transportation network.eTransportation,18.
|
MLA |
Li,Bei,et al."Improve multi-energy supply microgrid resilience using mobile hydrogen trucks based on transportation network".eTransportation 18(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment