Title | DeepFlame: A deep learning empowered open-source platform for reacting flow simulations |
Author | |
Corresponding Author | Zhang,Yan |
Publication Years | 2023-10-01
|
DOI | |
Source Title | |
ISSN | 0010-4655
|
EISSN | 1879-2944
|
Volume | 291 |
Abstract | Recent developments in deep learning have brought many inspirations for the scientific computing community and it is perceived as a promising method in accelerating the computationally demanding reacting flow simulations. In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and offline-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interfacing (the core of DeepFlame) is minimised to achieve a simple and clear workflow for code maintenance, extension and upgrading. As a demonstration, we apply our recent work on deep learning for predicting chemical kinetics (Zhang et al., 2022 [8]) to highlight the potential of machine learning in accelerating reacting flow simulation. A thorough code validation is conducted via a broad range of canonical cases to assess its accuracy and efficiency. The results demonstrate that the convection-diffusion-reaction algorithms implemented in DeepFlame are robust and accurate for both steady-state and transient processes. In addition, a number of methods aiming to further improve the computational efficiency, e.g. dynamic load balancing and adaptive mesh refinement, are explored. Their performances are also evaluated and reported. With the deep learning method implemented in this work, a speed-up of two orders of magnitude is achieved in a simple hydrogen ignition case when performed on a medium-end graphics processing unit (GPU). Further gain in computational efficiency is expected for hydrocarbon and other complex fuels. A similar level of acceleration is obtained on an AI-specific chip – deep computing unit (DCU), highlighting the potential of DeepFlame in leveraging the next-generation computing architecture and hardware. Program summary: Program Title: DeepFlame CPC Library link to program files: https://doi.org/10.17632/3pg9xmypp3.1 Developer's repository link: https://github.com/deepmodeling/deepflame-dev Licensing provisions: GPLv3 Programming language: C++ Nature of problem: Solving chemically reacting flows with direct (quasi-direct) simulation methods is usually troubled by the following problems: 1. as the widely-used computational fluid dynamics (CFD) toolbox, OpenFOAM features limited ODE solvers for chemistry and oversimplified transport models, yielding non-negligible errors in simulation results; 2. the chemical source term evaluation is the most computationally expensive and usually accounts for more than 80% of total computing time. Solution method: An open-source platform bringing together the individual strengths of OpenFOAM, Cantera and PyTorch libraries is built in this study. In the present implementation, CVODE solvers, detailed transport models and deep learning algorithms are all adopted to assist the simulation of reacting flow. Note that here machine learning is introduced in combination with heterogeneous computing to accelerate the most demanding solving procedure for chemical source term evaluation. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
Funding Project | National Natural Science Foundation of China[52276096];National Natural Science Foundation of China[92270203];
|
WOS Research Area | Computer Science
; Physics
|
WOS Subject | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS Accession No | WOS:001048967000001
|
Publisher | |
ESI Research Field | PHYSICS
|
Scopus EID | 2-s2.0-85165471884
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:1
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/559580 |
Department | Department of Mechanics and Aerospace Engineering |
Affiliation | 1.State Key Laboratory of Turbulence and Complex Systems,College of Engineering,Peking University,Beijing,100871,China 2.AI for Science Institute (AISI),Beijing,100080,China 3.CAEP Software Center for High Performance Numerical Simulation,Beijing,100088,China 4.Institute of Applied Physics and Computational Mathematics,Beijing,100088,China 5.Department of Mechanics and Aerospace Engineering,SUSTech,Shenzhen,518055,China 6.Institute of Natural Sciences,School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai,200240,China 7.MOE-LSC,Qing Yuan Research Institute,Shanghai Jiao Tong University,Shanghai,200240,China |
Recommended Citation GB/T 7714 |
Mao,Runze,Lin,Minqi,Zhang,Yan,et al. DeepFlame: A deep learning empowered open-source platform for reacting flow simulations[J]. Computer Physics Communications,2023,291.
|
APA |
Mao,Runze,Lin,Minqi,Zhang,Yan,Zhang,Tianhan,Xu,Zhi Qin John,&Chen,Zhi X..(2023).DeepFlame: A deep learning empowered open-source platform for reacting flow simulations.Computer Physics Communications,291.
|
MLA |
Mao,Runze,et al."DeepFlame: A deep learning empowered open-source platform for reacting flow simulations".Computer Physics Communications 291(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment